当前位置:文档之家› 油缸缸筒壁厚计算与验算

油缸缸筒壁厚计算与验算

油缸缸筒壁厚计算与验算
油缸缸筒壁厚计算与验算

液压缸的结构参数的计算

1.中等强度缸筒壁厚计算: ?

σδ

)3.2(y y P D P -=

mm

式中:Py---试验压力 MPa D---缸筒内径 mm σ---许用应力(100~110MPa) ?---系数取1 许用应力是抗拉强度除以安全系数(系数取~5)

2.缸筒壁厚的验算

额定工作压力P n 应低于一定极限值,以保证工作安全: 保证工作安全的压力D

D D p S n

2

1

2

2

1

)(35.0-≤σ

MPa

同时额定工作压力也应与完全塑性变形压力有一定的比例范围,以避免塑性变形的发生:

塑性变形压力

P p rl n

)42.0~35.0(≤

MPa

缸筒完全塑性变形的压力 D

D P S

rl

1

lg

3.2σ≤ MPa

式中:σs ——缸筒材料屈服强度σs =355 MPa

P rl ——缸筒发生完全塑性变形的压力MPa

D 1——缸筒外径mm D ——缸筒内径mm

27SiMn 屈服强度σs=835 Mpa 抗拉强度σb=980 Mpa(许用应力σ=280~310 Mpa)

(完整版)气缸的设计计算1

4.1纵向气缸的设计计算与校核: 由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1: /β=200N 运动速度v=30mm/s,取β=0.7,所以实际液压缸的负载大小为:F=F D=1.27= =66.26mm F—气缸的输出拉力 N; P —气缸的工作压力P a 按照GB/T2348-1993标准进行圆整,取D=20 mm 气缸缸径尺寸系列

8 10 12 16 20 25 32 40 50 63 80 (90)100 (110)125 (140)160 (180)200 (220)250 320 400 500 630 由d=0.3D 估取活塞杆直径 d=8mm 缸筒长度S=L+B+30 L为活塞行程;B为活塞厚度 活塞厚度B=(0.6 1.0)D= 0.720=14mm 由于气缸的行程L=50mm ,所以S=L+B+30=886 mm 导向套滑动面长度A: 一般导向套滑动面长度A,在D<80mm时,可取A=(0.6 1.0)D;在D>80mm 时, 可取A=(0.6 1.0)d。 所以A=25mm 最小导向长度H: 根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:H

代入数据即最小导向长度H + =80 mm 活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm 由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算: 式中 —缸筒壁厚(m); D—缸筒内径(m); P—缸筒承受的最大工作压力(MPa); —缸筒材料的许用应力(MPa); 实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7倍;重型气缸约取计算值的20倍,再圆整到标准管材尺码。 参考《液压与气压传动》缸筒壁厚强度计算及校核 ,我们的缸体的材料选择45钢,=600 MPa, ==120 MPa n为安全系数一般取 n=5;缸筒材料的抗拉强度(Pa) P—缸筒承受的最大工作压力(MPa)。当工作压力p≤16 MPa时,P=1.5p;当工作压力p>16 MPa时,P=1.25p 由此可知工作压力0.6 MPa小于16 MPa,P=1.5p=1.5×0.6=0.9 MPa ==0.3mm

液压缸计算

液压缸设计计算说明 系统压力为1p =25 MPa 本系统中有顶弯缸、拉伸缸以及压弯缸。以下为这三种液压缸的设计计算。 一、 顶弯缸 1 基本参数的确定 (1)按推力F 计算缸筒内径D 根据公式 3.5710D -=? ① 其中,推力F=120KN 系统压力1p =25 MPa 带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定 确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。若速比为?,则 d = ② 取?=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm 8050 D d ?===1.6 (3)最小导向长度H 的确定 对一般的液压缸,最小导向长度H 应满足 202 L D H ≥+ ③ 其中,L 为液压缸行程,L=500mm

带入③式,计算得H=65mm (4)活塞宽度B 的确定 活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定 在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2 A B C H +=- ⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径 缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1 假设此液压缸为厚壁缸筒,则壁厚1]2D δ= ⑧ 液压缸筒材料选用45号钢。其抗拉强度为σb =600MPa 其中许用应力[]b n σσ=,n 为安全系数,取n=5 将数据带入⑧式,计算得δ=8.76mm 故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算 按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其

油缸压力计算公式

油缸压力计算公式 油缸工作时候的压力是由负载决定的,物理学力的压力等于力除以作用面积(即P=F/S) 如果要计算油缸的输出力,可按一下公式计算: 设活塞(也就是缸筒)的半径为R (单位mm) 活塞杆的半径为r (单位mm) 工作时的压力位P (单位MPa) 则 油缸的推力F推=3.14*R*R*P (单位N) 油缸的拉力F拉=3.14*(R*R-r*r)*P (单位N) 100吨油缸,系统压力16Mpa,请帮我计算下选用的油缸活塞的直径是多少?怎么计算的? 理论值为:282mm 16Mpa=160kgf/cm2 100T=100000kg 100000/160=625cm2 缸径D={(4*625/3.1415926)开平方} 液压油缸行程所需时间计算公式 当活塞杆伸出时,时间为(15×3.14×缸径的平方×油缸行程)÷流量 当活塞杆缩回时,时间为[15×3.14×(缸径的平方-杆径的平方)×油缸行程]÷流量 缸径单位为m 杆径单位为m 行程单位为m 流量单位为L/min 套筒式液压油缸的行程是怎么计算的,以及其工作原理 形成计算很简单: 油缸总长,减去两端盖占用长度,减去活塞长度,即为有效形成,一般两端还会设置缓冲防撞机构或回路。 工作原理: 1、端盖进油式:油缸的两端盖接有管路一端通油活塞及活塞杆向令一个方向运行;结构紧凑适合小型油缸 2、活塞杆内通油式:活塞杆为中空,内通油,活塞与活塞杆链接部位有通油孔,通油后活塞及活塞杆想另一方向运行;适合大型油缸。 3、缸体直入式:大吨位单作用油缸,一端无端盖(端盖与缸体焊接一体),直接对腔体供油,向令一方向做功,另一端端盖进油回程或弹簧等储能元件回程。 大致如此几种 我有一台液压油缸柱塞直径40毫米缸体外径150毫米高度400毫米请专业人士告诉我它的吨位最好能告诉我计算公式谢谢 油泵压力10MPA 一台液压机械的压力(吨位)是与柱塞直径和供油压力有关。 其工作压力(吨位)的计算:

液压缸计算公式

液压缸计算公式 1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径: 4,F4== D,3.14,,p F:负载力 (N) 2A:无杆腔面积 () mm P:供油压力 (MPa) D:缸筒内径 (mm) :缸筒外径 (mm) D1 2、缸筒壁厚计算 π×,??ηδσψμ 1)当δ/D?0.08时 pDmax,,(mm) 02,p 2)当δ/D=0.08~0.3时 pDmax,,(mm) 02.3,-3ppmax 3)当δ/D?0.3时 ,,,,0.4pDpmax,,,,(mm) 0,,2,1.3p,pmax,, ,b,, pn δ:缸筒壁厚(mm) ,:缸筒材料强度要求的最小值(mm) 0 :缸筒内最高工作压力(MPa) pmax :缸筒材料的许用应力(MPa) ,p :缸筒材料的抗拉强度(MPa) ,b :缸筒材料屈服点(MPa) ,s

n:安全系数 3 缸筒壁厚验算 22,(D,D)s1(MPa) PN,0.352D1 D1P,2.3,lg rLsD PN:额定压力 :缸筒发生完全塑性变形的压力(MPa) PrL :缸筒耐压试验压力(MPa) Pr E:缸筒材料弹性模量(MPa) :缸筒材料泊松比 =0.3 , 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免 塑性变形的发生,即: ,,(MPa) PN,0.35~0.42PrL 4 缸筒径向变形量 22,,DPDD,1r,,D,,,,(mm) 22,,EDD,1,,变形量?D不应超过密封圈允许范围5 缸筒爆破压力 D1PE,2.3,lg(MPa) bD 6 缸筒底部厚度 Pmax,(mm) ,0.433D12,P :计算厚度处直径(mm) D2 7 缸筒头部法兰厚度 4Fbh,(mm) ,(r,d),aLP F:法兰在缸筒最大内压下所承受轴向力(N) b:连接螺钉孔的中心到法兰内圆的距离(mm) :法兰外圆的半径(mm) ra

液压油缸设计计算公式 (2)

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △ P=0.000698×USLQ/d 4 U :油的黏度(cst) S :油的比重

油缸压力计算公式

油缸压力计算公式-CAL-FENGHAI.-(YICAI)-Company One1

油缸压力计算公式 油缸工作时候的压力是由负载决定的,物理学力的压力等于力除以作用面积(即P=F/S) 如果要计算油缸的输出力,可按一下公式计算: 设活塞(也就是缸筒)的半径为R (单位mm) 活塞杆的半径为r (单位mm) 工作时的压力位P (单位MPa) 则 油缸的推力 F推=*R*R*P (单位N) 油缸的拉力 F拉=*(R*R-r*r)*P (单位N) 100吨油缸,系统压力16Mpa,请帮我计算下选用的油缸活塞的直径是多少怎么计算的 理论值为:282mm 16Mpa=160kgf/cm2 100T=100000kg 100000/160=625cm2 缸径D={(4*625/)开平方} 液压油缸行程所需时间计算公式 当活塞杆伸出时,时间为(15××缸径的平方×油缸行程)÷流量 当活塞杆缩回时,时间为[15××(缸径的平方-杆径的平方)×油缸行程]÷流量 缸径单位为 m 杆径单位为 m 行程单位为 m 流量单位为 L/min 套筒式液压油缸的行程是怎么计算的,以及其工作原理 形成计算很简单: 油缸总长,减去两端盖占用长度,减去活塞长度,即为有效形成,一般两端还会设置缓冲防撞机构或回路。 工作原理: 1、端盖进油式:油缸的两端盖接有管路一端通油活塞及活塞杆向令一个方向运行;结构紧凑适合小型油缸 2、活塞杆内通油式:活塞杆为中空,内通油,活塞与活塞杆链接部位有通油孔,通油后活塞及活塞杆想另一方向运行;适合大型油缸。 3、缸体直入式:大吨位单作用油缸,一端无端盖(端盖与缸体焊接一体),直接对腔体供油,向令一方向做功,另一端端盖进油回程或弹簧等储能元件回程。 大致如此几种 我有一台液压油缸柱塞直径40毫米缸体外径150毫米高度400毫米请专业人士告诉我它的吨位最好能告诉我计算公式谢谢 油泵压力10MPA 一台液压机械的压力(吨位)是与柱塞直径和供油压力有关。 其工作压力(吨位)的计算:

液压缸尺寸计算

液压缸尺寸计算 The following text is amended on 12 November 2020.

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷F F=59036N(活塞杆在抬腿过程中始终受压) 2、惯性载荷F F=0(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载荷) 3、密封阻力F F=(1?F F)F,其中F是作用于活塞上的载 荷,且F=F F ,F F是外载荷,F F=F F+F F,其中F F是 F F 液压缸的机械效率,取F F=0.95 综上可得:外载荷F F=59036N,密封阻力F F=2952N,总 载荷F=61988N。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为F=12MPa1(由于 总载荷为61988N大于50000N,故根据手册选取工作压力 为12MPa) 2、选择执行元件液压缸的背压力为F2=1MPa(由于回油路 带有调速阀,且回油路的不太复杂,故根据手册选取被压 压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: F=F1F1?F2F2 F1----------液压缸工作腔压力(Pa)

F 2----------液压缸回油腔压力(Pa ) F 1----------无杆腔活塞有效作用面积,F 1= πD 24,D 为活塞直径(m ) F 2----------有杆腔活塞有效作用面积,F 2= π4(D 2?d 2),d 为活塞杆直径 (m ) 选取d/D=(由于工作压力为12MPa 大于5MPa ,故根据手册选取d/D=) 综上可得:D=,根据手册可查得常用活塞杆直径,可取D=90mm , d=60mm 。 校核活塞杆的强度,其中活塞杆的材料为45钢,故[σ]=100MPa。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩 强度即可。σ= F 14πd 2=21.9MPa<[σ]=100MPa,故满足强度要求。 即d=60mm ,则D=90mm 。 由此计算得工作压力为: F 1=10.3MPa 根据所选取的活塞直径D=90mm ,可根据手册选的液压缸的外径为 108mm ,即可得液压缸壁厚为δ =9mm。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故[σ]= 100MPa。 由于该缸处于低压系统,故先按薄壁筒计算,σ=F F F 2δ,其中工作压 力P =F =12MPa ≤16MPa 1,可取F F =1.5F 1,则σ=90MPa<[σ]= 100MPa,故满足强度要求。 又由于D /δ=10,故可将该缸筒视为厚壁,则δ的校核应按下面公式 进行。

油缸设计计算公式

液压油缸的主要技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以,高于16乘以 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配

非标液压、机电、试验、工控设备开发研制。 液压缸无杆腔面积A=*40*40/ (平方米)=(平方米) 泵的理论流量Q=排量*转速=32*1430/1000000 (立方米/分)=(立方米/ 分) 液压缸运动速度约为V=*Q/A= m/min 所用时间约为T=缸的行程/速度=L/V==8 (秒) 上面的计算是在系统正常工作状态时计算的,如果溢流阀的安全压力调得较低,负载过大,液压缸的速度就没有上面计算的大,时间T就会增大. 楼主应把系统工作状态说得更清楚一些.其实这是个很简单的问题:你先求出油缸的体积,会求吧,等于:4021238立方毫米;然后再求出泵的每分钟

流量,需按实际计算,效率取92%(国家标准),得出流量 为:32X1430X1000X92%=立方毫米;两数一除就得出时间:分钟,也就是秒,至于管道什么流速什么的东西根本不要考虑,影响比较少. 油缸主要尺寸的确定方法 1.油缸的主要尺寸 油缸的主要尺寸包括:缸筒内径、活塞缸直径、缸筒长度以及缸筒壁厚等。 2.主要尺寸的确定 (1)缸筒直径的确定 根据公式:F=P×A,由活塞所需要的推力F和工作压力P可求得活塞的有效面积A,进一步根据油缸的不同结构形式,计算缸筒的直径D。 (2)活塞杆尺寸的选取 活塞杆的直径d,按工作时的受力情况来确定。根据表4-2来确定。 (3)油缸长度的确定 油缸筒长度=活塞行程+活塞长度+活塞导向长度+活塞杆密封及导向 长度+其它长度。活塞长度=—1)D;活塞杆导向长度=(—)d。其它长度指一些特殊的需要长度,如:两端的缓冲装置长度等。某些单活塞杆油缸油时提出最小导向程度的要求,如: H≥L/20+D/2。 液压设计常用资料 时间:2010-8-27 14:17:02 径向密封沟槽尺寸 O形密封圈截面直径d 2 沟槽宽度b 气动动密封液压动密封 和 静密封 b b 1 b 2

油缸的设计计算

油缸出力与速度计算 1.柱塞油缸: ①柱塞的推力F = 3 2 10 785.0-???d p (吨) ( P :液体工作压力kgf/cm 2 d :柱塞直径cm) ②柱塞的运动速度V = 2 60785.0d Q ?? (mm/s) (Q :总输入油的流量L/min d :柱塞直径m) 2.活塞油缸:(无杆腔为工作腔) ①工作行程的推力F = 3 210785.0-???D p (吨) (不考虑有背压) (P :液体工作压力kgf/cm 2 D :油缸内径cm) F ,=[()]322,210785.0785.0-?-?-??d D p D p (吨) (考虑回油腔有背压) (P :液体工作压力kgf/cm 2 P ,,:液体背压压力kgf/cm 2 d :活塞杆直径m) ②活塞工作行程的运动速度V 下= 2 60785.0D Q ?? (mm/s) (Q :油泵供给油缸的流量L/min D :油缸内径m) ③从活塞杆腔排油的流量Q 排=()Q D d D ?-2 2 2 (L/min ) (Q :油泵供给油缸的流量L/min D :油缸内径m d :活塞杆直径m) ④回程的拉力F =()3 2210785.0-?-??d D p (吨) (不考虑有背压) (P :液体工作压力kgf/cm 2 D :油缸内径cm d :活塞杆直径cm ) F ,=[()]322,210785.0785.0-?-?-??d D p D p (吨) (考虑回油腔有背压) (P :液体工作压力kgf/cm 2 P ,,:液体背压压力kgf/cm 2 d :活塞杆直径cm) ⑤活塞回程工作的运动速度V 回= ( ) 2 2 60785.0d D Q -?? (mm/s) (Q :油泵供给油缸的流量L/min D :油缸内径m) ⑥从无杆腔排油的流量Q 排= Q D ?2 2 2 (L/min )

液压缸计算

液压缸设计计算说明 系统压力为1p =25 MPa 本系统中有顶弯缸、拉伸缸以及压弯缸。以下为这三种液压缸的设计计算。 一、 顶弯缸 1 基本参数的确定 (1)按推力F 计算缸筒内径D 根据公式 3.5710D -=? ① 其中,推力F=120KN 系统压力1p =25 MPa 带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定 确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。若速比为?,则 d = ② 取?=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm 80 50 D d ?= = =1.6 (3)最小导向长度H 的确定 对一般的液压缸,最小导向长度H 应满足 202 L D H ≥ + ③ 其中,L 为液压缸行程,L=500mm

带入③式,计算得H=65mm (4)活塞宽度B 的确定 活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定 在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2 A B C H +=- ⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径 缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1 假设此液压缸为厚壁缸筒,则壁厚1]2D δ= ⑧ 液压缸筒材料选用45号钢。其抗拉强度为σb =600MPa 其中许用应力[]b n σσ= ,n 为安全系数,取n=5 将数据带入⑧式,计算得δ=8.76mm 故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算 按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其

液压缸计算公式

1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径: p F D π4= =??14.34= F :负载力 (N ) A :无杆腔面积 (2m m ) P :供油压力 (MPa) D :缸筒内径 (mm) 1D :缸筒外径 (mm) 2、缸筒壁厚计算 π×/≤≥ηδσψμ 1)当δ/D ≤0.08时 p D p σδ2max 0> (mm ) 2)当δ/D=0.08~0.3时 max max 03-3.2p D p p σδ≥ (mm ) 3)当δ/D ≥0.3时 ??? ? ?? -+≥max max 03.14.02p p D p p σσδ(mm ) n b p σσ= δ:缸筒壁厚(mm ) 0δ:缸筒材料强度要求的最小值(mm )

max p :缸筒内最高工作压力(MPa ) p σ:缸筒材料的许用应力(MPa ) b σ:缸筒材料的抗拉强度(MPa ) s σ:缸筒材料屈服点(MPa ) n :安全系数 3 缸筒壁厚验算 2 1221s ) (35 .0D D D PN -≤σ(MPa) D D P s rL 1 lg 3.2σ≤ PN :额定压力 rL P :缸筒发生完全塑性变形的压力(MPa) r P :缸筒耐压试验压力(MPa) E :缸筒材料弹性模量(MPa) ν:缸筒材料泊松比 =0.3 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免塑性变形的发生,即: ()rL P PN 42.0~35.0≤(MPa) 4 缸筒径向变形量 ??? ? ??+-+=?ν221221D D D D E DP D r (mm ) 变形量△D 不应超过密封圈允许范围 5 缸筒爆破压力 D D P E b 1 lg 3.2σ=(MPa)

液压缸的计算

(2)伸缩缸。伸缩缸由两个或多个活塞缸套装而成,前一级活塞缸的活塞杆内孔是后一级活塞缸的缸筒,伸出时可获得很长的工作行程,缩回时可保持很小的结构尺寸,伸缩缸被广泛用于起重运输车辆上。 伸缩缸可以是如图4-10(a)所示的单作用式,也可以是如图4-10(b)所示的双作用式,前者靠外力回程,后者靠液压回程。 图4-10伸缩缸 伸缩缸的外伸动作是逐级进行的。首先是最大直径的缸筒以最低的油液压力开始外伸,当到达行程终点后,稍小直径的缸筒开始外伸,直径最小的末级最后伸出。随着工作级数变大,外伸缸筒直径越来越小,工作油液压力随之升高,工作速度变快。其值为: F i=p1 2 4i D (4-30) V1=4q/πD i2 (4-31) 式中的i指i级活塞缸。 图4-11齿轮缸 (3)齿轮缸。它由两个柱塞缸和一套齿条传动装置组成,如图4-11所示。柱塞的移动经齿轮齿条传动装置变成齿轮的传动,用于实现工作部件的往复摆动或间歇进给运动。 二、液压缸的典型结构和组成 1.液压缸的典型结构举例图4-12所示的是一个较常用的双作用单活塞杆液压缸。它是由缸底20、缸筒10、缸盖兼导向套9、活塞11和活塞杆18组成。缸筒一端与缸底焊接,另一端缸盖(导向套)与缸筒用卡键6、套5和弹簧挡圈4固定,以便拆装检修,两端设有油口A和B。活塞11与活塞杆18利用卡键15、卡键帽16和弹簧挡圈17连在一起。活塞与缸孔的密封采用的是一对Y形聚氨酯密封圈12,由于活塞与缸孔有一定间隙,采用由尼龙1010制成的耐磨环(又叫支承环)13定心导向。杆18和活塞11的内孔由密封圈14密封。较长的导向套9则可保证活塞杆不偏离中心,导向套外径由O形圈7密封,而其内孔则由Y形密封圈8和防尘圈3分别防止油外漏和灰尘带入缸内。缸与杆端销孔与外界连接,销孔内有尼龙衬套抗磨。

液压缸的设计计算

液压缸的设计计算-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

液压缸的设计计算 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。

液压缸的设计计算

液压缸的设计计算? 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。 (3)法兰型液压缸

液压缸尺寸计算

①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的 载荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册选 取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: ----------液压缸工作腔压力(Pa)

----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=) 综上可得:D=,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故。 由于该缸处于低压系统,故先按薄壁筒计算,,其中工作压力,可取,则

液压常用计算公式

液压常用计算公式 1、齿轮泵流量(min /L ): 1000 Vn q o = ,1000 o Vn q η= 说明:V 为泵排量 (r ml /);n 为转速(min /r );o q 为理论流量(min /L );q 为实际流量(min /L ) 2、齿轮泵输入功率(kW ): 60000 2Tn P i π= 说明:T 为扭矩(m N .);n 为转速(min /r ) 3、齿轮泵输出功率(kW ): 612 60 ' q p pq P o = = 说明:p 为输出压力(a MP );' p 为输出压力(2 /cm kgf );q 为实际流量 (min /L ) 4、齿轮泵容积效率(%): 100V ?= o q q η 说明:q 为实际流量(min /L );o q 为理论流量(min /L ) 5、齿轮泵机械效率(%): 10021000?= Tn pq m πη 说明:p 为输出压力(a MP ); q 为实际流量(min /L );T 为扭矩(m N .); n 为转速(min /r ) 6、齿轮泵总效率(%):

m ηηη?=V 说明:V η为齿轮泵容积效率(%);m η为齿轮泵机械效率(%) 7、齿轮马达扭矩(m N .): π 2q P T t ??= ,m t T T η?= 说明:P ?为马达的输入压力与输出压力差 (a MP ); q 为马达排量(r ml /);t T 为马达的理论扭矩(m N .);T 为马达的实际输出扭矩(m N .);m η为马达的机械效率(%) 8、齿轮马达的转速(min /r ): V q Q n η?= 说明:Q 为马达的输入流量(min /ml ); q 为马达排量(r ml /); V η为 马达的容积效率(%) 9、齿轮马达的输出功率(kW ): 3 10 602?= nT P π 说明:n 为马达的实际转速(min /r ); T 为马达的实际输出扭矩(m N .) 10、液压缸面积(2 cm ): 4 2 D A π= 说明:D 为液压缸有效活塞直径(cm ) 11、液压缸速度(min m ): A Q V 10= 说明:Q 为流量(min L );A 为液压缸面积(2 cm ) 12、液压缸需要的流量(min L ):

油缸压力计算公式

油缸压力计算公式 Modified by JACK on the afternoon of December 26, 2020

油缸压力计算公式 油缸工作时候的压力是由负载决定的,物理学力的压力等于力除以作用面积(即P=F/S)如果要计算油缸的输出力,可按一下公式计算: 设活塞(也就是缸筒)的半径为R (单位mm) 活塞杆的半径为r (单位mm) 工作时的压力位P (单位MPa) 则 油缸的推力 F推=*R*R*P (单位N) 油缸的拉力 F拉=*(R*R-r*r)*P (单位N) 100吨油缸,系统压力16Mpa,请帮我计算下选用的油缸活塞的直径是多少怎么计算的 理论值为:282mm 16Mpa=160kgf/cm2 100T=100000kg 100000/160=625cm2 缸径D={(4*625/)开平方} 液压油缸行程所需时间计算公式 当活塞杆伸出时,时间为(15××缸径的平方×油缸行程)÷流量 当活塞杆缩回时,时间为[15××(缸径的平方-杆径的平方)×油缸行程]÷流量 缸径单位为 m 杆径单位为 m 行程单位为 m 流量单位为 L/min 套筒式液压油缸的行程是怎么计算的,以及其工作原理 形成计算很简单:

油缸总长,减去两端盖占用长度,减去活塞长度,即为有效形成,一般两端还会设置缓冲防撞机构或回路。 工作原理: 1、端盖进油式:油缸的两端盖接有管路一端通油活塞及活塞杆向令一个方向运行;结构紧凑适合小型油缸 2、活塞杆内通油式:活塞杆为中空,内通油,活塞与活塞杆链接部位有通油孔,通油后活塞及活塞杆想另一方向运行;适合大型油缸。 3、缸体直入式:大吨位单作用油缸,一端无端盖(端盖与缸体焊接一体),直接对腔体供油,向令一方向做功,另一端端盖进油回程或弹簧等储能元件回程。 大致如此几种 我有一台液压油缸柱塞直径40毫米缸体外径150毫米高度400毫米请专业人士告诉我它的吨位最好能告诉我计算公式谢谢 油泵压力10MPA 一台液压机械的压力(吨位)是与柱塞直径和供油压力有关。 其工作压力(吨位)的计算: 柱塞的受力面积×供油压力=工作压力(吨位) 柱塞的受力面积单位:mm2 供油压力单位:N/mm2 工作压力(吨位)单位:N 折算:1N= 1000Kgf=1Tf(吨力) 油缸15到25吨的力要多大的钢径

液压缸的设计计算

液压缸的设计计算 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 3.1设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 3.2液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。(2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 P?25Mpa、缸筒内径焊接型液压缸通常额定压力,在活塞杆和缸mm320?D n筒的加工条件许可下,允许最大行程。m15?10?S. (3)法兰型液压缸 缸筒与前、后端盖均为法兰连接,而法兰与缸筒有整体、焊接、螺纹等连接方式。法兰型液压缸的特点是额定压力较高,缸筒内径大,外形尺寸大。适用于较严酷的冲击负载和外界工作条件,又称重载型液压缸。 P?35Mpa、缸筒内径法兰型液压缸通常额定压力,在活塞杆和缸mm320D?n筒的加工条件许可下,允许最大行程。m?8S由此可知,我们设计的液压升降平台车的液压缸应选择(2)焊接型液压缸比较合适。当然对缸筒的连接还需根据具体

液压缸尺寸计算

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的载 荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册选 取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时:

----------液压缸工作腔压力(Pa) ----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=0.7(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=0.7) 综上可得:D=82.8mm,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其 压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故

液压油缸压力计算公式 液压油缸设计计算公式

液压油缸压力计算公式液压油缸设计计算公式液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以 1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲 的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不 合格吧,好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸 的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指 标,油缸的工作性能主要表现在以下几个方面: 1 1.最低启动压力:是指液压缸在无负载状态下的 最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综 合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸 的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置,也因此它是液压缸 的主要指标之。 液压油缸常用计算公式

液压油缸常用计算公式 项目公式 液压油缸面积(cm 2 ) A =πD 2 /4 液压油缸速度 (m/min) V = Q / A 液压油缸需要的流量 (l/min) 液压油缸出力 (kgf) 泵或马达流量 (l/min) Q=V×A/10=A×S/10t F = p × A F = (p × A) , (p×A) ( 有背压存在时) Q = q × n / 1000 符号意义 D :液压缸有效活塞直径 (cm) Q :流量 (l / min) 2 V :速度 (m/min) S :液压缸行程 (m) t :时间 (min) p :压力 (kgf /cm 2 ) q :泵或马达的几何排量 (cc/rev) n :转速( rpm ) 泵或马达转速 (rpm) Q :流量 (l / min) n = Q / q ×1000 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速 (m/s) d :管内径 (mm) v = Q ×21.22 / d 2 ? U :油的黏度 (cst) 管内压力降 (kgf/cm 2 ) P=0.000698×USLQ/d 4 S :油的比重 非标液压、机电、试验、工控设备开发研制。 液压缸无杆腔面积A=3.14*40*40/10000000 (平方 米)=0.005024(平方米) 泵的理论流量Q=排量*转速=32*1430/1000000 (立方米/ 分)=0.04576(立方米/分)

相关主题
文本预览
相关文档 最新文档