风电并网变换器直接功率控制策略
- 格式:pdf
- 大小:472.58 KB
- 文档页数:3
并网逆变器原理
并网逆变器是一种将直流电能转化为交流电能,且可将电能提供给电网的设备。
其工作原理如下:
1. 输入电路:并网逆变器的输入电路接收来自太阳能电池组或其他直流电源的直流电能。
输入电路通常包括一个DC-DC变
换器,用于调整输入电压和电流的参数。
2. 拓扑结构:并网逆变器采用不同的拓扑结构,最常见的是单相桥式逆变器或三相桥式逆变器。
这些拓扑结构能够将低电压和电流的直流电能转化为交流电,并保持满足电网的传输要求。
3. 控制策略:并网逆变器的控制策略是关键。
通过使用先进的控制算法,可以实现逆变器的最大功率点追踪,以确保太阳能电池组或其他直流电源能够以最佳效率运行。
此外,控制策略还要保证逆变器输出的交流电能与电网的频率和相位相匹配,以确保平稳的电能传输。
4. 输出电路:并网逆变器的输出电路将转换后的交流电能连接到电网上。
输出电路通常包括一个滤波器,用于消除或减少输出电流中的谐波成分,并确保电能传输的质量和稳定性。
5. 电网连接:最后一步是将并网逆变器连接到电网上。
这通常需要遵守电网运营商的规定和标准,并进行相应的配置和调试。
风电场风电机组优化有功功率控制的研究2017年度申报专业技术职务任职资格评审答辩论文题目:风电场风电机组优化有功功率控制的研究作者姓名:李亮单位:中核汇能有限公司申报职称:高级工程师专业:电气二Ο一七年六月十二日摘要随着风电装机容量的与日俱增,实现大规模的风电并网是风电发展的必然趋势。
然而,由于风能是一种波动性、随机性和间歇性极强的清洁能源,导致风电并网调度异于常规能源。
基于此,本文将针对风电场层的有功功率分配开展工作,主要工作概括如下:(1)对风电机组和风电场展开研究,分析风力发电机组运行特性、风力发电机组控制策略、风电场的控制策略。
(2)提出了一种简单有效的风电场有功功率分配算法,可以合理利用各机组的有功容量,优化风电场内有功调度分配指令,减少机组控制系统动作次数,平滑风电机组出力波动。
(3)优化风机控制算法后,通过现场实际采集数据将所提方法与现有方法进行了比较,验证了所提方法的合理性。
关键词:风电机组、风电场、有功功率控制、AGCAbstractWith increasing wind power capacity, to achieve large-scale wind power is an inevitable trend of wind power development. However, since the wind is a volatile, random and intermittent strong clean energy, resulting in wind power dispatch is different from conventional energy sources. And the wind farm is an organic combination for a large number of wind turbines, wind farms under active intelligent distribution layer hair is also included in the grid scheduling section. Based on this, the active allocation and scheduling for grid scheduling side active layer wind farm work, the main work is summarized as follows:(1)Wind turbines and wind farms to expand research, in-depth analysis of the operating characteristics of wind turbines, wind turbine control strategy, control strategies of wind farms.(2)This paper proposes a simple and effective wind power active power allocation algorithm, can reasonable use each unit capacity, according to the optimization of wind farms in active dispatching command, decrease The Times of turbine control system action smooth wind power output fluctuation unit.(3)After optimization of the fan control algorithm, through the practical field data collected will be presented method are compared with those of the existing method, the rationality of the proposed method was verified.Keywords:wind turbine, wind farm, active power control目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题研究背景 (1)1.2 有功功率控制的现状 (1)第2章风力发电机组及风电场有功控制基础 (2)2.1 风力发电机组运行原理 (2)2.1.1 风电机组的组成 (2)2.1.2 风电机组数学模型 (2)2.1.3 风力发电机组运行特性 (8)2.1.4 风力发电机组控制策略 (9)2.2 风电场有功功率控制 (10)2.2.1 风电场的基本结构 (10)2.2.2 风电场的控制策略 (11)第3章风电场内有功功率控制策略 (13)3.1 风电场有功功率控制的基本要求 (13)3.2 风电场有功功率工作模式 (13)3.3 风电场有功功率控制状态 (14)3.5 风电场实测数据对比 (15)3.5.1 风电场电气接线 (15)3.5.2 单台风力发电机组测试 (15)第4章结论 (19)参考文献 (20)第1章绪论1.1 课题研究背景相比于常规的火电和燃气电站,风电场的有功调节能力十分有限。
双馈型风力发电变流器及其控制随着环保意识的日益增强和可再生能源的广泛应用,风力发电技术得到了快速发展。
双馈型风力发电变流器作为风力发电系统中的关键设备之一,在提高风能利用率和电能质量方面具有重要作用。
本文将介绍双馈型风力发电变流器的工作原理、特点优势及其控制方式。
双馈型风力发电变流器是一种交直流变换设备,可将风力发电机发出的交流电转换为直流电,再供给电力系统使用。
其工作原理是采用双馈(交流和直流)线路,通过电力电子器件(如IGBT、SGCT等)的开关动作,控制交流和直流电流的双向流动,实现能量的交直流转换。
高效性:双馈型风力发电变流器具有较高的能量转换效率,可实现风能的最大化利用。
灵活性:双馈型风力发电变流器可通过控制开关器件的占空比,调节输出电流的幅值、频率和相位,满足不同风速和负荷条件下的运行需求。
稳定性:双馈型风力发电变流器可有效平抑风速波动带来的影响,提高电力系统的稳定性。
维护性:双馈型风力发电变流器采用模块化设计,便于维护和检修,降低了运维成本。
矢量控制:通过控制交流侧电流的幅值和相位,实现有功功率和无功功率的解耦控制,提高电力系统的稳定性。
直接功率控制:采用瞬时功率采样,通过控制逆变侧电流的幅值和相位,直接控制有功功率和无功功率,具有快速的动态响应。
神经网络控制:利用神经网络技术,建立风力发电变流器数学模型,实现自适应控制和优化运行。
模糊控制:基于模糊逻辑理论,通过模糊控制器对变流器进行非线性控制,具有良好的鲁棒性和适应性。
双馈型风力发电变流器作为风力发电系统的关键设备之一,具有高效、灵活、稳定和维护简便等特点及优势。
其控制方式多种多样,包括矢量控制、直接功率控制、神经网络控制和模糊控制等,可根据实际应用场景选择合适的控制方式以实现最优运行。
随着风电技术的不断发展,双馈型风力发电变流器在未来将发挥更加重要的作用,为可再生能源的广泛应用和绿色能源转型提供强有力的支持。
随着环境保护和可持续发展的日益重视,风力发电作为一种清洁、可再生的能源,越来越受到人们的。
双馈风电系统全风速下的功率控制策略李军军;易吉良;肖强辉【摘要】为了实现全风速条件下的功率调节,对双馈风力发电机组的功率控制策略进行了研究.额定风速以下采用基于叶尖速比的最大功率追踪控制,实现最大风能捕获;额定风速以上采用变桨距角控制,输出功率维持恒定,保证整个系统安全稳定地运行.利用MATLAB建模并进行了仿真,仿真结果表明:在较大的风速变化区间内,双馈风电机组能实现对输出功率的有效调节,两种功率控制策略切换时系统能保持较好的稳定性.【期刊名称】《湖南工业大学学报》【年(卷),期】2014(028)004【总页数】7页(P46-52)【关键词】双馈风力发电;最大功率跟踪;变桨距角控制;稳定性【作者】李军军;易吉良;肖强辉【作者单位】湖南工业大学电气与信息工程学院,湖南株洲412007;湖南工业大学电气与信息工程学院,湖南株洲412007;湖南工业大学电气与信息工程学院,湖南株洲412007【正文语种】中文【中图分类】TM614风能是一种绿色环保的新型能源,近些年已被大规模开发与利用,使得风力发电已成为极具商业化发展前景的发电方式。
双馈风电机组通过控制变换器实施交流励磁,可改变转子电流的频率、幅值和相位,实现变速恒频运行。
双馈电机转子仅提供转差功率,与转子相连的变换器容量为机组的25%~30%,变换器投资低,非常具有市场优势。
为了提高发电效率,在风速较小的情况下,风电机组通常采用最大功率追踪控制,这方面的研究文献[1-6]较多;但对全风速下的功率控制策略的研究较少。
本文对双馈型风电机组在全风速下的功率控制策略进行研究,在较大的风速变化区间内,能实现输出功率的有效调节与控制。
双馈风力发电系统如图1所示,主要由双馈风电机组、双PWM变换器以及电网等部分组成。
其中:Ps, Qs, Is表示双馈电机定子输出的有功、无功功率和电流;Pr, Qr, Ir表示双馈电机转子输出的有功、无功功率和电流;Pg, Qg, Ig表示双馈电机网侧变换器输出的有功、无功功率和电流;P0, Q0, I0表示机组向电网输出的有功、无功功率和电流;Ur表示转子侧电压;Ug表示网侧变换器电压;Us表示机组与电网并网点电压;U表示电网电压;Udc表示直流电压;r为电机转子角速度;L0,R0表示网侧变换器滤波电感、电阻;Lt表示线路、变压器折算后电感。
国家电网公司风电并网运行控制技术规定(试行)2009年11月目次1总则 (1)2风电并网分析模型及方法 (1)3风电运行方式 (1)4电力平衡 (2)5有功功率及频率控制 (2)6无功功率及电压控制 (2)7 紧急情况下的风电场控制 (2)1总则1.1为保障风电场接入电网后电力系统安全、优质、经济运行,实现电网与风电的协调发展,根据国家有关法律法规及相关技术标准,特制订本规定。
1.2风电场并网运行按照调度管辖范围实行统一调度、分级管理,贯彻安全第一方针,坚持公开、公平、公正的原则。
1.3本规定适用于接入电网的风电机组及风电场,也适用于电网调度机构。
2风电并网分析模型及方法2.1 在风电并网分析工作中应采用风电机组的详细数学模型,模型的参数应由风电场提供实测参数。
对没有实测参数的风电机组,暂时可以采用同类机组的典型模型和参数,风电机组模型和参数实测确定以后需重新校核。
2.2 仿真计算中对单个风电场可根据计算目的采用详细或等值模型,风电场等值模型须能反映风电场的动态特性。
2.3 用于风电接入电网运行分析的计算软件须得到相应电网调度机构的认可。
3风电运行方式3.1电网结构发生变化或出现其他影响风电场上网送出能力时,应综合考虑系统安全稳定性、电压约束等因素以及风电场自身的特性和运行约束,通过计算分析确定允许风电场上网的新的最大有功功率,风电场应按照电网调度机构给定功率进行控制。
3.2风电功率相关性较强的多个风电场,需统一考虑计算最大输送功率;当出现输电通道受阻情况时,各风电场有功出力按容量比例平均分配。
3.3运行方式计算分析时,应考虑全网风电功率预测最大出力和最小出力两种情况,并考虑风电功率波动对系统安全稳定性的影响。
4电力平衡4.1电网调度机构每天根据次日风电功率预测值及系统运行情况,制定风电功率计划曲线。
4.2确定常规电源开机计划时风电场宜按能达到的可靠出力参与电力平衡,确保电网旋转备用容量不低于规定值。
全功率风机变流器介绍一、全功率变流器控制原理全功率风力发电系统主体电路结构,如图1所示。
发电机的输出端连接变流器的机侧,变流器的网侧输出经升压变器后,连接电网。
图1全功率风力发电系统主体电路结构。
随着风速的变化,发电机的转速也变化,因此发电机输出的电压幅值和频率是变化的,而电网的电压幅值和频率是恒定的。
为了将发电机输出的频率和幅值变化的交流电送入到电网,变流器起到中间纽带环节的作用。
首先将发电机输出的交流电经机侧变流器部分整流成直流电,再经由网侧变流器部分逆变成交流电送入电网。
图2为全功率风力发电功率控制原理图,风机总控依据当前的风况,通过变桨和偏航控制叶片吸收的机械能,获得发电机的转矩量。
然后将转矩量值下发给变流器。
变流器根据总控下发的转矩指令,控制对发电机电能的抽取,从而控制并网电流大小。
总控依据当前风况,下发发电机转矩指令。
变流器响应转矩指令,控制并网功率。
图2 功率控制原理图对于机侧的变流器部分,在无速度传感器控制技术的基础上,采用基于定子电流定向的复合矢量控制技术,实现最大转矩电流比矢量控制的控制性能。
图3为发电机的控制矢量图。
图3 发电机控制矢量图对于网侧的变流器部分,采用电流解耦控制技术及并网电流对称控制技术。
通过对并网电流的解耦,将并网电流分解为有功电流、无功电流单独控制,实现有功功率和无功功率的控制。
同时为实现三相并网电流的对称控制,将负序的有功电流和无功电流控制为零。
控制结构框图如图4所示。
*dc图4 网侧变流器控制框图根据机侧变流器主体电路及控制策略,进行建模分析。
图5为机侧变流器的主体电路结构,图6为转换为数学模型的机侧控制框图。
V图5 机侧变流器主体电路结构图6机侧变流器控制数学模型框图根据网侧变流器主体电路及控制策略,进行建模分析。
图7为网侧变流器的主体电路机构,图8为为转换为数学模型的网侧控制框图。
V0图7 网侧变流器主体电路结构图8 网侧变流器控制数学模型框图全功率风机变流器网侧、机侧协同控制策略如图9所示。
风电并网系统的虚拟同步稳定分析与惯量优化控制大规模风电装配虚拟惯量控制器后,将会引起电网惯量分布的改变,系统频率、阻尼及功角等暂态稳定特性均会受到显著影响。
近期研究成果表明,风电机组引入虚拟惯量可以有效解决电气解耦导致的惯量削弱问题。
然而,在含虚拟惯量的电力系统中,惯量不再是无法改变的固有特性,而会与系统功角、阻尼特性间存在相互影响。
因此,评估虚拟惯量对电力系统提供支持的安全性时,除关注频率特性外,还应全面分析其对系统功角、阻尼特性的影响。
标签:风力发电;产业发展;并网技术;功率预测引言当前我国发电技术不断进步,可以对天然能量进行有效应用,将其转化为电能,最终实现资源可再生,其发电包括了火力、水力和风力等多种发电技术,而风力发电属于我国应用最多的一种发电技术,风具有很强的可利用性。
但风力发电容易受到外界多种自然因素的影响,风力发电的随机性属于发电的主要影响阻力,所以就需要加强对风力发电技术相关问题的分析与研究,选择合理的方式解决其技术问题,进一步提升风力发电的电能质量。
1风电发展概况我国对风电产业的发展已经历经了二十余年的时间,自上世紀九十年代起,我国便大力发展风电产业,而风电并网容易更是以年均22%的速度呈现出明显的增长态势。
现如今,我国风力发电的增长速度已经远远超过了其他发电方式。
在2012年,我国的风机装机数量已经增长到了2002年的百倍以上,每年的平均增长率则高达60%。
在并网风电容量方面,截止到2013年我国的风电并网容量便已经达到了62.4GW,在我国华中、华东、西北、东北以及华北等地,其风电并网容量分别达到了0.88GW、4.7GW、12.6GW、19.2GW以及24GW,尤其是西北、东北和华北三地,其在全国风电并网容量中的占比高达90.91%,百万千瓦以上的省级风电并网数量则多达13个。
现如今,风电装机电源在我国12个省份中仅次于火电,这些省份包括黑龙江、天津、蒙西、山西、山东、宁夏、上海、蒙东、辽宁、江苏和吉林。
(类 别: 全日制硕士研究生 题 目:基于P S C A D 的双馈感应风力发电机并网控制 英文题目:Grid Connection Control of DFIG Wind Power Generation Based on PSCAD 研究生:周杰 学科名称:电力电子与电力传动 指导教师:李含善 教授 任永峰 副教授 二○一○年五月硕士学位论文分类号: 学校代码: 10128 U D C : 学 号: 20071079摘要全球能源不断消耗,环境日益污染。
风能是一种绿色能源,已经受到世界各国的广泛重视。
风力发电技术得到了快速的发展,已经由初期的恒速恒频(CSCF)风力发电发展到现在的兆瓦级变速恒频(VSCF)风力发电。
其中,双馈电机(DFIG)变速恒频风电机组由于其自身的各种优点已经成为风力发电的主流。
采用双馈电机的风力发电系统具有变速运行、四象限潮流控制、改善电能质量、变频器容量小等优点,在风力发电中被广泛使用。
本文以电力系统仿真软件PSCAD/EMTDC为平台,对兆瓦级变速恒频双馈电机进行了仿真研究。
分析了双馈电机的基本结构、运行原理、能量流动关系,建立了双馈电机数学模型。
在此基础上建立了转子侧变换器与网侧变换器的控制系统。
转子侧变换器采用定子磁链定向的矢量控制,并网前实施空载并网控制,并网成功后进行控制策略切换。
在额定风速以下时,发电机输出功率未达到额定功率,采用最大功率跟踪控制,并给出最大风能追踪下的定子有功功率的参考值;在额定风速以上时,增大桨叶节距角,使风力发电机组保持在额定功率发电。
网侧变换器采用电网电压定向的矢量控制,实现直流电压的稳定及网侧的单位功率因数控制。
仿真研究中,将所建模型与PSCAD/EMTDC模型库中的已有模型相结合。
并网前结合桨距角控制解决了转子转速缺乏控制的问题。
风机从接入电网,控制策略切换到发电的全过程仿真表明,该控制策略能快速地控制发电机的定子电压满足并网条件,实现电机在变速条件下的顺利并网,能够很好的实现功率解耦控制及最大风能追踪。
《基于永磁同步电机的直驱型风力发电系统控制策略的研究》篇一一、引言随着可再生能源的持续发展,风力发电作为一种绿色、环保的能源方式,已逐渐成为全球范围内的研究热点。
在风力发电系统中,永磁同步电机(PMSM)因其高效率、高功率密度和低维护成本等优点,被广泛应用于直驱型风力发电系统。
本文旨在研究基于永磁同步电机的直驱型风力发电系统的控制策略,以提高系统的运行效率和稳定性。
二、永磁同步电机基本原理永磁同步电机(PMSM)是一种以稀土永磁材料作为转子磁场的电机。
其基本原理是利用电子控制系统控制定子电流的相位和幅值,使电机产生恒定的电磁转矩,从而实现电机的稳定运行。
PMSM具有高效率、高功率密度、低噪音等优点,适用于直驱型风力发电系统。
三、直驱型风力发电系统概述直驱型风力发电系统是指风能直接驱动永磁同步电机进行发电的系统。
该系统无需齿轮箱等传动装置,简化了系统结构,提高了系统的可靠性。
同时,由于直接利用风能驱动电机,使得系统的能量转换效率更高。
四、控制策略研究针对直驱型风力发电系统,本文研究以下控制策略:1. 最大功率点跟踪(MPPT)控制策略:为充分利用风能资源,通过控制电机的工作点在最佳工作曲线附近,实现最大功率输出。
通过实时监测电机的输出功率和风速等信息,调整电机的转速和电压等参数,实现MPPT控制。
2. 速度和电流双闭环控制策略:为保证电机的稳定运行和输出功率的稳定性,采用速度和电流双闭环控制策略。
外环为速度环,根据风速和系统要求设定目标转速;内环为电流环,根据电机定子电流的实际值与参考值之间的误差调整电流控制器,实现对电机转速的精确控制。
3. 故障诊断与保护策略:为保证系统的安全运行,设计故障诊断与保护策略。
通过实时监测电机的运行状态和系统参数,及时发现并处理系统故障。
当系统出现异常时,自动切断电源或调整系统工作状态,避免设备损坏或事故发生。
五、实验与分析为验证所提出的控制策略的有效性,本文进行了实验分析。