第三章 核酸的化学
- 格式:ppt
- 大小:4.93 MB
- 文档页数:100
第二章蛋白质化学1、蛋白质的变性2、氨基酸的PI3、肽4、模体(超二级结构)5、结构域6、蛋白质一级结构7、蛋白质的四级结构8、亚基9、盐析10、分子伴侣11.标准氨基酸1.在理化因素作用下,蛋白质的空间构象被破坏,其理化性质和生物学活性也丧失的过程。
2.调整溶液的pH,使氨基酸带上等量的正电荷和负电荷,此时溶液的pH值为pI。
3.氨基酸之间脱去一分子水以肽键相连而成的化合物。
4.蛋白质中,由两个或三个具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象,称为模体,也叫超二级结构。
5.蛋白质的三级结构中存在着若干个二级结构肽段区域或模体的聚集区,它们通常依据特定的几何位置排列,形成具有特定功能的区域,这种区域称为结构域。
6.蛋白质多肽链从N端到C端的氨基酸的排列顺序及二硫键的位置。
7.由两条以上具有独立三级结构的肽链通过非共价键连接而成的结构。
8.蛋白质四级结构中具有独立三级结构的肽链9.大量的中性盐使蛋白质沉淀下来而使蛋白质不变性的过程。
10.是通过提供一个保护环境,加速蛋白质折叠成天然构象蛋白质的伴侣分子。
由于在细胞中合成蛋白质新生多肽链的速度很快,为此存在许多可以帮助蛋白质新生多肽链折叠的蛋白质,统称为分子伴侣。
11.用于合成蛋白质的20种氨基酸为标准氨基酸,与其他氨基酸的区别是它们都有遗传密码。
第三章核酸化学1、稀有碱基2、增色效应3、减色效应4、变性温度5、核酸分子杂交1.核酸分子中,除了常规碱基之外,还存在含量很少的其他碱基,称为稀有碱基。
2.DNA变性导致其紫外吸收值增加,称为增色效应。
3.变性DNA复性恢复成天然构象时,其紫外吸收降低,称为减色效应。
4.50%DNA变性解链时的温度称为解链温度,又称变性温度、熔解温度或熔点。
5.不同来源的核酸链因存在互补序列而形成互补双链结构的过程称为核酸分子杂交。
第四章酶12.Km值Km是反应速度为最大反应速度一半时的底物浓度1、酶2、酶的活性中心3、酶的必需基团4、多酶体系5、酶的特异性6、酶原激活7、同工酶8、米氏常数9、酶的最适温度10、酶的激活剂1.活细胞产生的具有催化作用的蛋白质及核酸。
生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
第二章蛋白质的结构与功能一、名词解释1.生物化学:生物化学是研究生物体的化学组成以及生物体内发生的各种化学变化的学科2.肽键:一个氨基酸的α–羧基与另一个氨基酸的α–氨基脱水缩合而成的酰胺键(–CO–NH–)称为肽键3.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质分子解离成阴阳离子的趋势相等,净电荷为零,呈兼性离子状态,此时溶液的PH称为该蛋白质的等电点4.蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构5.二级结构:蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象6.亚基:四级结构中每一条具有独立三级结构的多肽链称为亚基(本章考的最多的名词解释)二、问答1.蛋白质的基本组成单位是什么?其结构特点是什么?基本组成单位:氨基酸结构特点:组成蛋白质的20种氨基酸都属于α–氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L–氨基酸(甘氨酸除外)2.什么是蛋白质的变性?在某些物理或化学因素作用下,蛋白质分子中的次级键断,特定的空间结构被破坏,从而导致蛋白质理化性质改变和生物学活性丧失的现象,称为蛋白质的变性3.什么是蛋白质的二级结构?它主要有哪几种?维持二级结构稳定的化学键是什么?蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象种类:α–螺旋、β–折叠、β–转角、无规卷曲维持蛋白质二级结构稳定的化学键是氢键重点:蛋白质的基本组成单位:氨基酸氨基酸的结构通式维持蛋白质一级结构稳定的是肽键二级结构稳定的化学键是氢键三级结构稳定的是疏水键α–螺旋是蛋白质中最常见最典型含量最丰富的二级结构形式由一条多肽链构成的蛋白质,只有具有三级结构才能发挥生物活性。
如果蛋白质只由一条多肽链构成,则三级结构为其最高级结构只有完整的四级结构才具有生物学功能,亚基单独存在一般不具有生物学功能胰岛素虽然由两条多肽链组成,但肽链间通过共价键(二硫键)相连,这种结构不属于四级结构蛋白质的变构现象例子:老年痴呆症、舞蹈病、疯牛病蛋白质分子表面的水化膜和同种电荷是维持蛋白质亲水胶体稳定的两个因素(填空题)凝固的前提是发生变性,凝固的蛋白质一定发生变性加热使蛋白质变性并凝聚成块状称为凝固第三章核酸的结构与功能一、名词解释1.核苷酸:核苷分子中戊糖的自由羟基与磷酸通过磷酸酯键连接而形成的化合物。
第一章 核酸的结构与功能1、种类:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。
核糖核酸(RNA),存在于细胞质和细胞核内。
2、核酸的分子组成:基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。
戊糖:DNA分子的核苷酸的糖是β-D-2-脱氧核糖,RNA中为β-D-核糖。
3、核酸的一级结构核苷酸在多肽链上的排列顺序为核酸的一级结构,4、 DNA的二级结构DNA双螺旋结构是核酸的二级结构。
双螺旋的骨架由糖和磷酸基构成,两股链之间的碱基互补配对,是遗传信息传递者,DNA半保留复制的基础,结构要点: a.DNA是一反向平行的互补双链结构亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤始终与胸腺嘧啶配对,形成两个氢键,鸟嘌呤始终与胞嘧啶配对,形成三个氢键。
b.DNA是右手螺旋结构螺旋直径为2nm。
每旋转一周包含了10个碱基,每个碱基的旋转角度为36度。
螺距为3.4nm,每个碱基平面之间的距离为0.34nm。
c.DNA双螺旋结构稳定的维系横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以后者为重要。
5、RNA的空间结构与功能mRNA:1. 真核生物mRNA的5'-端有特殊帽结构2. 真核生物mRNA的3'-末端有多聚腺苷酸尾3. mRNA碱基序列决定蛋白质的氨基酸序列tRNA:1、3′末端为—CCA-OH 2、含10~20% 稀有碱基3、其二级结构呈“三叶草形”4. tRNA的反密码子能够识别mRNA密码子rRNA:rRNA的结构为花状,rRNA 与核糖体蛋白结合组成核糖体(ribosome),为蛋白质的合成提供场所。
rRNA单独存在不执行其功能。
tRNA功能是在细胞蛋白质合成过程中作为各种氨基酸的戴本并将其转呈给mRNA。
6、核酸的理化性质在某些理化因素作用下,如加热,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为变性。
分享生物化学笔记,大家下载了慢慢看生物化学重点第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu谷氨酸和Asp天冬氨酸);④碱性氨基酸(Lys赖氨酸、Arg精氨酸和His组氨酸二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
《生物化学》人民卫生出版社出版黄平主编第一章绪论一、选择题( B )1、下列物质中,人体含量最多的是A、维生素B、水C、蛋白质D、脂类( A )2、哪一年,我国首次人工合成了胰岛素A、1965年B、1962年C、1981年D、1964年( D )3、医学生学习生物化学以什么为研究对象A、生物B、动物C、病人D、人体二、名词解释4、生物化学答:是生命的化学,是一门在分子水平上研究生命现象和本质的科学。
第二章蛋白质化学一、单项选择题( C )5. 蛋白质中氮的含量占A.6.25%B.12%C.16%D.20%( B )6. 维持蛋白质二级结构稳定的主要化学键是A.二硫键B.氢键C.盐键D.范德华力( A )7. 变性蛋白质的哪些结构不发生改变A.一级结构B.二级结构C.三级结构D.三级以上的结构二、多选题(ABCD)8、维持蛋白质三级结构稳定的化学键有A、氢键B、盐键C、疏水键D、范德华力(ACD )9、下列属于碱性氨基酸的是A、赖氨酸B、天冬氨酸C、精氨酸D、组氨酸( AB )10、下列属于酸性氨基酸的是A、天冬氨酸B、谷氨酸C、苏氨酸D、亮氨酸(ABD )11、下列哪些氨基酸在中性溶液中显碱性A、赖氨酸B、精氨酸C、天冬氨酸D、组氨酸(ABCE)12、变性的蛋白质下列哪些不正确A、次级键不断裂B、空间结构不改变C、理化性质不改变D、生物活性丧失E、肽键断裂三、填空题。
13.蛋白质变性的本质是(空间结构)破坏,而不影响(一级结构)的破坏。
14.蛋白质分子的AA之间以(肽键)相连.15.蛋白质二级结构主要是(α-螺旋)和(β-折叠)结构.16.组成蛋白质的碱性AA有(赖AA)、(精AA)、(组AA),酸性AA有(天冬AA)和(谷AA)。
17.AA是组成(蛋白质)的基本单位.四、名词解释.18.肽键答:是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱去一分子水所形成的酰胺键。
19.蛋白质变性作用答:蛋白质在某些理化因素的作用下,其空间结构受到破坏,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性作用。
DNA复制,即DNA生物合成,是以碱基互补为基础的一个严格的脱氧核苷酸分子逻辑组合的过程,对真核细胞来说,它发生在细胞周期的S期。
揭示DNA复制的奥秘,起初是从原核细胞开始的,从中积累了丰富的实验依据,发现DNA复制的规律。
随后的研究进一步证明,真核生物DNA复制的过程与原核生物基本相似。
因此,本节主要叙述的是原核生物DNA复制过程。
DNA复制基本上可分为解链、引发、延长及终止四个阶段。
一、DNA复制的一般特点1.DNA的双螺旋的两条链在局部需要解开,以利于每条链作模板。
2. DNA的局部解旋引起周围区域过度缠绕, 拓朴异构酶使超螺张力释放.3.DNA聚合酶以5`到3`方向合成。
DNA的两条链方向相反,因此,,一条链的合成是连续的,而另一条链的合成则是不连续的。
不连续链每个片段的合成都是独立进行的,然后各片段再连接起来。
4. DNA复制必须高度精确, DNA复制错误率大约是1/1010,校正机制保证新合成的NA的正确性。
5. DNA的合成必须非常迅速, 其合成速度与基因组的大小及细胞分裂速度有关。
6. 复制器本身不能复制线性DNA的末端,一种特殊的端粒酶参与端粒的复制。
二、复制的起始DNA复制的起始阶段,由下列两步构成。
(一)预引发:1.解旋解链,形成复制叉由拓扑异构酶和解链酶作用,使DNA的超螺旋及双螺旋结构解开,碱基间氢键断裂,形成两条单链DNA。
单链DNA结合蛋白(SSB)结合在两条单链DNA上,形成复制叉。
图10-21 复制叉的三维作用结构(二)引发体组装:由蛋白因子(如dnaB等)识别复制起始点,并与其他蛋白因子以及引物酶一起组装形成引发体。
图10-22 引发体形成1.dnaA结合于复制起始点(oric)2.dnaA与DNA形成复合物引起DNA的解链3.dnaA在dnaC的辅助下推动DNA双链解开三、复制的延长(一)聚合子代DNA:1. 需要引物参与DNA复制的DNA聚合酶,必须以一段具有3’端自由羟基(3’-OH)的RNA 作为引物(primer) ,才能开始聚合子代DNA链。