生物化学第三章 核酸的结构与功能
- 格式:pdf
- 大小:144.96 KB
- 文档页数:4
生物化学核酸的结构与功能核酸是由多个核苷酸通过3’,5’-磷酸二酯键相连的多聚物,分为rna和dna。
核酸的一级结构是指构成核酸的多聚核苷酸链上的所有核苷酸或硷基的排列顺序。
每一条线形多聚核苷酸链都具有极性,有5’-端和3’-端。
书写核酸一级结构的惯例是,从左到右先写5’- 端,再写3’- 端。
核酸一级结构的意义是储存生物体的遗传资讯。
dna的二级结构主要是各种形式的螺旋,特别是b型双螺旋,此外还有a型双螺旋、z型双螺旋、三链螺旋和四链螺旋等。
其中最主要的形式为watson和crick于1953年提出的b型双螺旋,其核心内容是:dna由两条呈反平行的多聚核苷酸链组成,它们相互缠绕形成右手双螺旋;两条链通过at硷基和gc硷基对互补结合在一起;硷基对位于双螺旋的内部,并垂直于暴露在外的脱氧核糖磷酸骨架。
硷基对之间的疏水键和範德华力对双螺旋的稳定起一定的作用;双螺旋的表面含有大沟和小沟;相邻硷基对距离为,相差约36°。
螺旋直径为2nm,每一转完整的螺旋含有10个bp,其高度为3.4nm。
一定的条件下,双链dna可以从b型转变成其他螺旋构象,但在正常的细胞环境中能够存在的只有a、b、z。
引起dna双链构象改变因素有硷基组成和序列、盐的种类、盐浓度和相对溼度。
低溼度下,dna可形成a 型双螺旋。
dna与rna形成的杂交双链为a型双螺旋;嘌呤嘧啶相间排列的dna在高的盐浓度下可形成左旋的z-dna。
而体内m5c 上的甲基化被认为有利于b型向z 型的转变。
体内z-dna的形成可能与基因表达调控有关。
dna双螺旋结构的证据有x射线衍射资料、chargaff 规则和硷基的互变异构性质。
双螺旋稳定的因素有氢键、硷基堆积力和阳离子或带正电荷的化合物对磷酸基团的中和,其中起决定性作用的是硷基的堆积力。
三链螺旋结构即h-dna,它是dna的非标準二级结构,其形成需要至少dna 的一条链全部由嘌呤核苷酸组成。
在细胞内,h-dna经常出现在dna複製、转录和重组的起始位点或调节位点。
核酸的生物化学结构和功能解析核酸是构成生物体的重要分子之一,它在细胞内担负着存储和传递遗传信息的重要功能。
本文将深入探讨核酸的生物化学结构和功能,揭示核酸在生命活动中的重要作用。
一、核酸生物化学结构核酸是由核苷酸组成的大分子化合物。
核苷酸是由碱基、糖和磷酸基团组合而成。
碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶则包括胸腺嘧啶(T)、尿嘧啶(U)和胞嘧啶(C)。
糖分为核糖(在RNA中)和脱氧核糖(在DNA中)。
磷酸基团连接在糖的3'位和5'位,形成磷酸二酯键,从而将核苷酸链接成链状结构。
核酸的主要类型包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双链结构,由两条互补的核苷酸链缠绕而成,通过碱基配对形成稳定的螺旋结构。
RNA则是单链结构,可以形成类似DNA的二级结构,也可以形成各种不同的三维结构。
二、核酸的功能1. 存储遗传信息DNA是细胞中的遗传物质,它编码了细胞中合成蛋白质所需的遗传信息。
每个生物体细胞核内都包含一段完整的DNA,称为基因组。
基因组中的基因决定了生物的遗传特征,包括形态、功能和行为等。
2. 转录和翻译DNA通过转录过程生成RNA,而RNA通过翻译过程转化为蛋白质。
这一过程被称为中心法则。
在细胞内,DNA通过转录酶酶解,使其中的一条链作为模板,合成相应的RNA分子。
这一过程可以是一次性的(即合成的RNA直接用于蛋白质合成)或经过修饰后再转化为蛋白质。
通过这种机制,细胞可以根据需要合成特定的蛋白质,发挥不同的功能。
3. 调控基因表达RNA具有多种功能,其中包括调控基因表达。
在基因调控过程中,某些RNA分子可以与DNA的调控区结合,阻止或促进基因的转录。
这种调控方式可以调整细胞内基因的表达水平,对细胞功能的稳定和适应具有重要影响。
4. 催化反应核酸具有催化某些生物化学反应的能力。
在细胞中,一类特殊的RNA分子称为酶RNA(ribozyme),它能够催化化学反应,如自身剪切、肽键形成等。
1核酸的结构与功能一、名词解释1、生物化学:是运用化学原理和方法,研究生命有机体化学组成和化学变化的科学,即研究生命活动化学本质的学科。
(运用,研究,科学,学科)2、DNA 一级结构:由数量极其庞大的四种脱氧的单核昔酸按照一定的顺序,以3' ,5,一磷酸二酯键彼此连接而形成的线形或环形多核昔酸链。
3、增色效应:含DNA和RNA的溶液经变性或降解后对紫外线吸收的增加。
是由于碱基之间电子的相互作用的改变所致,通常在260nm测量。
4、减色效应:一种含有DNA或RNA的溶液与含变性核酸或降解核酸的相同溶液相比较,其紫外线吸收为低。
是山于DNA双螺旋结构使碱基对的n电子云发生重叠,因而减少了对紫外线的吸收。
5、DNA的变性:指核酸双螺旋的氢键断裂,变成单链,并不涉及共价键的断裂。
6、DNA的复性:变性DNA在适当条件下,又可使两条彼此分开的链重新缔合成为双螺旋结构,全过程为复性。
热变性后的复性又称为退火。
7、核酸分了杂交:应用核酸分了的变性和复性的性质,使来源不同的DNA (或RNA)片断按碱基互补关系形成杂交双链分子,这一过程称为核酸的分子杂交。
8、熔解温度:DNA变性的特点是爆发式的,变性作用发生在一个很窄的温度范围内。
通常把热变性过程中光吸收达到最大吸收(完全变性)一半(双螺旋结构失去一半)时的温度称为该DNA的熔点或熔解温度(melting temperature),用tm表示。
9、Chargaff定律:所有DNA中腺口票吟与胸腺唯嚏的摩尔含量相等,(A=T),鸟噱吟和胞啧嚏的摩尔含量相等(G = C),即噂吟的总含量与H密度的总含量相等(A+G = T+C)。
DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。
另外生长发育阶段、营养状态和环境的改变都不影响DNA的碱基组成。
二、填空1、核酸完全的水解产物是(碱基)、(戊糖)和(磷酸)。
其中(碱基)又可分为(噂吟)碱和仆密嚏)碱。
2、体内的噂吟主要有(腺n票吟)和(鸟喋吟);口密喘碱主要有(胞口密喘)、(胸腺口密嚏)和(尿嚅嚏)。
第三章核酸的结构与功能核酸(nucleic acid)是重要的生物大分子,是生物化学与分子生物学研究的重要对象和领域。
由于核酸的结构和功能比较复杂,分子很不稳定,在细胞中的含量又比较小,在四类生物大分子中,它的研究开始最晚。
现代生物化学建立于18世纪下半叶。
“蛋白质”一词最早于1838年,由J.J.Berzelius提出,“核酸”这个词出现要晚半个世纪。
1868年瑞士外科医师米歇(Friedrich Miescher)由脓细胞中分离提取出一种含磷量很高的酸性物质,称为核素(nuclein),继任者发展了制备不含蛋白质的核酸的方法,1889年R.Altmann最早提出“核酸”(nucleic acid)一词。
核酸的研究改变了整个生命科学的面貌,并由此诞生了分子生物学这一当今发展最迅速、最有活力的学科。
核酸分为两大类:脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)。
RNA根据其结构和功能的不同主要分为三类:信使RNA(messenger RNA,mRNA)、转运RNA(transfer RNA,tRNA)和核糖体RNA(ribosomal RNA,rRNA)。
DNA 是遗传信息的贮存和携带者,RNA主要是转录、传递DNA上的遗传信息,直接参与细胞蛋白质的的生物合成。
在真核细胞中,DNA绝大部分(约98%)存在于细胞核染色质中,其余分布于细胞器(如线粒体、叶绿体)中;RNA绝大部分(约90%)分布在细胞质中,其余分布在细胞核内。
第一节核酸的分子组成核酸是一种多聚核苷酸,它的基本结构是核苷酸(nucleotide)。
采用不同的降解法,可以将核酸降解成核苷酸,核苷酸还可以进一步降解为核苷和磷酸。
核苷再进一步分解生成含氮碱基(base)和戊糖。
碱基分两大类:嘌呤碱和嘧啶碱。
所以,核酸由核苷酸组成,而核苷酸又由碱基、戊糖与磷酸组成。
表3-1-1 两类核酸的基本化学组成一、核苷酸核苷酸可分为核糖核苷酸和脱氧核糖核苷酸两类。
核酸的结构与功能核酸是生物体内重要的生物大分子之一,它不仅参与到遗传信息的传递和转录过程中,还在细胞生理活动中发挥着重要的功能。
本文将重点介绍核酸的结构和功能。
一、核酸的结构核酸主要由核苷酸组成,而核苷酸又由糖基、碱基和磷酸残基构成。
1. 糖基:核酸中的糖基有两种,即脱氧核糖和核糖。
脱氧核糖是构成DNA的糖基,而核糖则是RNA的糖基。
2. 碱基:碱基是核苷酸的重要组成部分,它可分为两类,嘌呤和嘧啶。
嘌呤包括腺嘌呤(A)和鸟嘌呤(G),而嘧啶则包括胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。
3. 磷酸残基:磷酸残基是核苷酸的磷酸部分,通过醣苷酸的骨架连接在一起,形成了核酸的链状结构。
二、核酸的功能1. 遗传信息的传递:核酸承载着生物体的遗传信息,其中DNA是生物体遗传信息的主要媒介。
DNA分子通过编码自身的碱基序列,传递给下一代,从而实现了生物遗传的连续性。
2. 转录过程中的模板:DNA作为模板参与到转录过程中,转录酶根据DNA的碱基序列合成RNA,这个过程被称为转录。
RNA承载着从DNA传递过来的信息,进一步参与到蛋白质的合成中。
3. 蛋白质的合成:核酸在蛋白质的合成过程中发挥着重要的功能。
由DNA转录形成的RNA分子将遗传信息带到细胞质中的核糖体,核糖体根据RNA的信息合成特定的氨基酸序列,最终形成特定的蛋白质。
4. 能量传递:核酸有能量转移的功能。
在细胞生理活动中,ATP(腺苷三磷酸)作为一种常见的核苷酸,通过释放相应的磷酸,将化学能转化为细胞内能量。
5. 调节基因表达:核酸还通过一系列的调控机制来调节基因的表达。
例如,RNA干扰技术能够通过干扰特定基因的转录过程,实现对基因表达的调控。
结语:通过对核酸的结构与功能进行了解,我们深刻认识到核酸在生物体内的重要性。
作为遗传信息的承载者和调控蛋白质合成的关键参与者,核酸在维持生物体的正常功能和生理过程中起着不可忽视的作用。
进一步研究核酸的结构和功能有助于揭示生命活动的本质,并为生物技术领域的发展提供新的思路和路径。
教案《核酸结构与功能》一、教材分析本节课选自中职医学专业《 生物化学》教材,内容聚焦于核酸的结构与功能。
核酸作为生物体的遗传物质,其重要性不言而喻。
教材从核酸的基本组成单位、空间结构到功能特性,层层递进,系统阐述了核酸在生命活动中的作用。
通过本节课的学习,学生将建立起对核酸的深刻认识,为后续遗传学、分子生物学等课程的学习打下坚实基础。
二、学情分析本节课面向中职医学一年级学生,班级人数约45人,师生比例适中。
学生已初步掌握生物化学的基础知识,但对核酸这一复杂分子的认识尚浅。
学生普遍对实验操作感兴趣,具有较强的好奇心和探索欲,但理论知识记忆和理解能力有待提高。
部分学生习惯于被动接受知识,缺乏主动思考和解决问题的能力。
因此,在教学过程中,需采用多样化的教学手段,激发学生的学习兴趣,培养其自主学习能力。
三、教学三维目标知识目标:掌握核酸的基本组成单位、空间结构及其功能特性。
技能目标:能够运用所学知识解释核酸在遗传信息传递中的作用,并能进行简单的核酸实验操作。
情感目标:激发学生对生物化学的兴趣,培养严谨的科学态度和团队协作精神。
四、教学重难点教学重点:核酸的基本组成单位和空间结构。
教学难点:核酸的功能特性及其在遗传信息传递中的作用。
教学策略:采用直观教学法、案例分析法、互动问答法等,通过多媒体展示、实验操作、小组讨论等方式,帮助学生突破难点,掌握重点。
五、教法与学法教学方法:直观教学法、案例分析法、互动问答法。
学习方法:自主学习法、合作探究法、实践操作法。
六、教学准备教师准备:多媒体课件、核酸结构模型、教学视频、实验操作材料(如DNA提取试剂、离心管等)。
学生准备:预习核酸的基本概念和组成单位,准备笔记本和笔,以便记录课堂要点。
七、教学过程环节一:导入新课(5分钟)教学内容细化:在正式探索核酸的奥秘之前,教师选择了一段精心策划的科普视频,主题为“CRISPR-Cas9:基因编辑的革命”。
该视频不仅详细阐述了CRISPR-Cas9技术的工作原理,还通过动画形式展示了它如何像精准的剪刀一样,在DNA分子上剪切并修复错误的基因序列。
【生物化学】核酸的结构与功能考点总结●核酸的化学组成以及一级结构●核苷酸和脱氧核苷酸是构成核酸的基本组成单位核苷=核糖(脱氧核糖的化学稳定性优于核糖)+碱基核糖的C-1'原子和嘌呤的N-9原子或者嘧啶的N-1原子通过缩合反应形成了β-N-糖苷键●DNA是脱氧核糖核苷酸通过3‘,5’-磷酸二酯键聚合形成的线性大分子多聚脱氧核苷酸链只能从它的3‘端得以延长(5’→3‘)●RNA是脱氧核糖核苷酸通过3‘,5’-磷酸二酯键聚合形成的线性大分子●核酸的一级结构是核苷酸的排列顺序核酸分子的大小常用核苷酸数目(nt,用于单链RNA或DNA)或碱基对数目(bp 或kp,用于双链DNA)来表示长度低于50个核苷酸的核酸片段称为寡核苷酸●DNA的空间结构与功能●DNA的二级结构是双螺旋结构●DNA双螺旋结构模型的要点DNA由两条多聚脱氧核苷酸链组成:右手螺旋反向平行,螺距为 3.54nm DNA两条多聚脱氧核苷酸链之间形成互补碱基对(A2T、C3G)每一个螺旋有10.5个碱基对,碱基对平面之间的垂直距离为0.34nm 两条多聚脱氧核苷酸链的亲水性骨架将互补碱基对包埋在DNA双螺旋结构内部两个碱基对平面重叠产生了碱基堆积作用●DNA双螺旋结构的多样性环境湿度降低后DNA空间结构参数不同于B型-DNA,人们称其为A型-DNA Z型-DNA(左手螺旋)●DNA的多链结构真核生物染色体3’-端是一段高度重复的富含GT的单链,被称为端粒●DNA双链经过盘绕折叠形成致密的高级结构盘绕方向与双螺旋方向相同——正超螺旋、负超螺旋相反,自然条件下DNA主要是以负超螺旋存在,需要拓补异构酶●封闭环状的DNA具有超螺旋结构人mtDNA的长度是16569bp,编码37个基因●真核生物DNA被逐级有序地组装成高级结构●染色体的基本组成单位是核小体:核小体=一段双链DNA+4种碱性的组蛋白8个组蛋白分子(H2A*2,H2B*2,H3*2,H4*2)共同形成一个八聚体的核心组蛋白,长度约为146bp的DNA双核在核心组蛋白上盘绕1.75圈,形成核小体的核心颗粒。
第三章核酸的结构与功能
一、核酸的化学组成:
1.含氮碱:参与核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。
组成核苷酸的嘧啶碱主要有三种——尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。
组成核苷酸的嘌呤碱主要有两种——腺嘌呤(A)和鸟嘌呤(G),它们都是嘌呤的衍生物。
2.戊糖:核苷酸中的戊糖主要有两种,即β-D-核糖与β-D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。
3.核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。
通常是由核糖或脱氧核糖的C1’ β-羟基与嘧啶碱N1或嘌呤碱N9进行缩合,故生成的化学键称为β,N糖苷键。
其中由D-核糖生成者称为核糖核苷,而由脱氧核糖生成者则称为脱氧核糖核苷。
由“稀有碱基”所生成的核苷称为“稀有核苷”。
假尿苷(ψ)就是由D-核糖的C1’ 与尿嘧啶的C5相连而生成的核苷。
二、核苷酸的结构与命名:
核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。
最常见的核苷酸为5’-核苷酸(5’ 常被省略)。
5’-核苷酸又可按其在5’位缩合的磷酸基的多少,分为一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。
此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP),它们通常是作为激素作用的第二信使。
核苷酸通常使用缩写符号进行命名。
第一位符号用小写字母d代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母P代表磷酸。
三、核酸的一级结构:
核苷酸通过3’,5’-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。
核酸具有方向性,5’-位上具有自由磷酸基的末端称为5’-端,3’-位上具有自由羟基的末端称为3’-端。
DNA由dAMP、dGMP、dCMP和dTMP四种脱氧核糖核苷酸所组成。
DNA的一级结构就是指DNA分子中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。
RNA由AMP,GMP,CMP,UMP四种核糖核苷酸组成。
RNA的一级结构就是指RNA分子中核糖核苷酸的种类、数目、排列顺序及连接方式。
四、DNA的二级结构:
DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick 两位科学家于1953年提出来的一种结构模型,其主要实验依据是
Chargaff研究小组对DNA的化学组成进行的分析研究,即DNA分子中四种碱基的摩尔百分比为A=T、G=C、A+G=T+C(Chargaff原则),以及由Wilkins研究小组完成的DNA晶体X线衍射图谱分析。
天然DNA的二级结构以B型为主,其结构特征为:①为右手双螺旋,两条链以反平行方式排列;②主链位于螺旋外侧,碱基位于内侧;③两条链间存在碱基互补,通过氢键连系,且A-T、G-C(碱基互补原
则);④螺旋的稳定因素为氢键和碱基堆砌力;⑤螺旋的螺距为
3.4nm,直径为2nm。
五、DNA的超螺旋结构:
双螺旋的DNA分子进一步盘旋形成的超螺旋结构称为DNA的三级结构。
绝大多数原核生物的DNA都是共价封闭的环状双螺旋,其三级结构呈麻花状。
在真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体。
核小体结构属于DNA的三级结构。
六、DNA的功能:
DNA的基本功能是作为遗传信息的载体,为生物遗传信息复制以及基因信息的转录提供模板。
DNA分子中具有特定生物学功能的片段称为基因(gene)。
一个生物体的全部DNA序列称为基因组(genome)。
基因组的大小与生物的复杂性有关。
七、RNA的空间结构与功能:
RNA分子的种类较多,分子大小变化较大,功能多样化。
RNA通常以单链存在,但也可形成局部的双螺旋结构。
1.mRNA的结构与功能:mRNA是单链核酸,其在真核生物中的初级产物称为HnRNA。
大多数真核成熟的mRNA分子具有典型的5’-端的7-甲基鸟苷三磷酸(m7GTP)帽子结构和3’-端的多聚腺苷酸(polyA)尾巴结构。
mRNA的功能是为蛋白质的合成提供模板,分子中带有遗传密码。
mRNA分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。
2.tRNA的结构与功能:tRNA是分子最小,但含有稀有碱基最多的RNA。
tRNA的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为五个部分:①氨基酸臂:由tRNA的5’-端和3’-端构成的局部双螺旋,3’-端都带有-CCA-OH顺序,可与氨基酸结合而携带氨基酸。
②DHU臂:含有二氢尿嘧啶核苷,与氨基酰tRNA合成酶的结合有关。
③反密码臂:其反密码环中部的三个核苷酸组成三联
体,在蛋白质生物合成中,可以用来识别mRNA上相应的密码,故称为反密码(anticoden)。
④TψC臂:含保守的TψC顺序,可以识别核蛋白体上的rRNA,促使tRNA与核蛋白体结合。
⑤可变臂:位于TψC臂和反密码臂之间,功能不详。
3.rRNA的结构与功能:rRNA是细胞中含量最多的RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合成的场所。
原核生物中的rRNA 有三种:5S,16S,23S。
真核生物中的rRNA有四种:5S,5.8S,18S,28S。
八、核酶:
具有自身催化作用的RNA称为核酶(ribozyme),核酶通常具有特殊的分子结构,如锤头结构。
九、核酸的一般理化性质:
核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰为260nm。
十、DNA的变性:
在理化因素作用下,DNA双螺旋的两条互补链松散而分开成为单链,从而导致DNA的理化性质及生物学性质发生改变,这种现象称为DNA的变性。
引起DNA变性的因素主要有:①高温,②强酸强碱,③有机溶剂等。
DNA变性后的性质改变:①增色效应:指DNA变性后对260nm紫外光的光吸收度增加的现象;②旋光性下降;③粘度降低;④生物功能丧失或改变。
加热DNA溶液,使其对260nm紫外光的吸收度突然增加,达到其最大值一半时的温度,就是DNA的变性温度(融解温度,Tm)。
Tm的高低
与DNA分子中G+C的含量有关,G+C的含量越高,则Tm越高。
十一、DNA的复性与分子杂交:
将变性DNA经退火处理,使其重新形成双螺旋结构的过程,称为DNA 的复性。
两条来源不同的单链核酸(DNA或RNA),只要它们有大致相同的互补碱基顺序,以退火处理即可复性,形成新的杂种双螺旋,这一现象称为核酸的分子杂交。
核酸杂交可以是DNA-DNA,也可以是DNA-RNA 杂交。
不同来源的,具有大致相同互补碱基顺序的核酸片段称为同源顺序。
常用的核酸分子杂交技术有:原位杂交、斑点杂交、Southern杂交及Northern杂交等。
在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记,这种带有一定标记的已知顺序的核酸片段称为探针。
十二、核酸酶:
凡是能水解核酸的酶都称为核酸酶。
凡能从多核苷酸链的末端开始水解核酸的酶称为核酸外切酶,凡能从多核苷酸链中间开始水解核酸的酶称为核酸内切酶。
能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为限制性核酸内切酶(限制酶)。