隧道软弱围岩施工方法探讨
- 格式:pdf
- 大小:209.81 KB
- 文档页数:3
隧道软弱围岩和断裂带施工安全措施方案隧道施工中遇到软弱围岩和断裂带是常见情况,这些地质条件都会给工程施工带来一定的危险性。
为了保障隧道施工的安全,必须采取相应安全措施。
本文将针对隧道软弱围岩和断裂带施工安全措施方案进行详细介绍。
一、软弱围岩施工安全措施方案1. 确定软弱围岩区域。
通过对隧道周边地质进行勘探,找出软弱围岩区域,以便在施工时有针对性地采取安全措施。
2. 加强支护。
软弱围岩容易发生塌方现象,因此,在施工时必须加强支护。
可以采用钢筋混凝土喷射支护、搭设钢架支撑等方式,以增强围岩的稳定性。
3. 加强测量监控。
通过安装位移仪、测斜仪等设备进行监控,随时掌握软弱围岩的变形情况,及时采取措施保证施工安全。
4. 确定安全堵头范围。
软弱围岩区域容易发生塌方、滑坡等安全事故,因此在施工前必须将安全堵头范围确定,并在该范围内采取相应的堵头措施。
5. 加强作业人员安全教育。
对于处在软弱围岩区域工作的人员,必须进行安全教育,提高其安全意识,同时配备必要的安全防护用具。
二、断裂带施工安全措施方案1. 确定断裂带位置。
通过勘探分析,确定断裂带的具体位置,以便在施工时采取相应的安全措施。
2. 加强围岩加固。
断裂带处的岩石往往较松散,容易发生崩落。
因此,在施工时,必须加强对岩石的加固,以增强其稳定性。
3. 加强支护。
有些断裂带比较深,施工时要加强支撑。
在深度较大的断裂带处,可以采用搭设钢架、钢筋混凝土衬砌等方式加强支护。
4. 及时排水。
一些断裂带处可能十分潮湿,需要进行排水处理,以防止水流侵蚀岩石,导致其稳定性下降。
5. 实施岩锚技术。
岩锚是一种固结性支撑技术,可以增强断裂带处的承载能力,提高其稳定性。
因此,在一些较深断裂带处可以采用岩锚技术进行支撑。
6. 加强作业人员安全教育。
由于断裂带处的岩石较松散,对施工人员的个人安全造成威胁,因此在施工前必须对所有人员进行安全教育,强化安全意识,安排必要的防护措施。
总之,在施工过程中遇到软弱围岩和断裂带,必须认真采取相应安全措施,以确保施工安全。
软弱围岩中的隧道施工技术探讨摘要:本文通过工程实例分析了软弱围岩隧道的施工技术,阐述了软弱地质围岩地段隧道的施工方法、技术要领,为类似情况下的隧道施工标准提供参考和借鉴。
关键词:软岩隧道支护abstract: in this article, through the analysis on the actual case the weak rock tunnel construction technology, expounds the geological location of surrounding rock is weak tunnel construction method, technology essentials, for similar tunnel construction to provide reference for the standard.keywords: soft rock tunnel support中图分类号:tu74文献标识码:a文章编号:1 前言隧道和地下工程施工,遇到软弱围岩,通常是施工组织者和技术人员感到持久压力和伤脑筋的一件事。
软弱围岩隧道通常被列为重难点控制工程,对工期、安全、质量、投资均产生重大影响。
如何根据工程实际拿出最佳方案,是攻克软岩隧道施工的关键和前提,本文根据工程实例总结归纳,提出不同软岩特点不同地形条件针对性的施工方法,以供同行参考。
2 软岩隧道地质工程特点2.1 地质特点软岩,主要是指第四系全新、中更新、更新统的坡残积土部分。
范围包括江河湖岸和池塘冲积、淤积层,人工杂填土、水田、溶洞充填物、新老黄土、风积砂等。
普遍具有内磨擦角小,粘聚力弱及流滑、蠕变、膨胀、湿陷等不稳定的特点。
一般南方地区软土含水量偏大,扰动易液化呈液态流动,北方地区软土含水量较小,失水后易呈固态流动,扰动易崩坍。
北方地区软土浸水饱和,极易流失并很快失去承载力。
2.2 工程特性某隧道施工区位于陕北黄土高原沟谷区,冲沟发育,植被稀疏,地形起伏较大。
《隧道软弱围岩变形机制与控制技术研究》篇一一、引言随着我国隧道建设技术的不断发展,面对复杂的岩体地质条件,尤其是软弱围岩地区,其围岩变形控制成为了一项极具挑战性的任务。
本论文以“隧道软弱围岩变形机制与控制技术”为研究对象,旨在深入探讨其变形机制,并研究有效的控制技术。
二、软弱围岩的变形机制1. 地质背景与软弱围岩特性软弱围岩通常指那些强度低、稳定性差的岩体,如泥岩、砂岩和破碎带等。
在隧道施工中,软弱围岩由于受到工程活动的影响,其内部应力场和边界条件发生变化,进而引发围岩的变形和破坏。
2. 变形机制分析软弱围岩的变形机制主要受两方面影响:一是围岩本身的物理力学性质,如强度、弹性模量等;二是工程活动引起的应力场变化。
在隧道开挖过程中,由于空间效应和应力重分布,软弱围岩容易发生剪切、挤压和隆起等变形。
三、控制技术研究1. 支护结构优化设计针对软弱围岩的变形特性,支护结构的设计至关重要。
通过优化支护结构的形式、材料和参数,如采用钢筋混凝土支护、钢拱架支护等,可有效提高支护结构的承载能力和稳定性。
同时,结合数值模拟和现场试验,对支护结构进行优化设计,确保其适应不同地质条件和施工需求。
2. 施工方法与技术改进针对软弱围岩的施工方法和技术进行改进,如采用分步开挖、预留变形量等施工方法,以减小对围岩的扰动和破坏。
同时,引入新型施工技术和设备,如盾构机、TBM等,提高施工效率和安全性。
3. 监测与反馈控制技术在隧道施工过程中,对围岩变形进行实时监测,通过监测数据反馈控制技术,及时调整支护结构和施工参数。
采用地质雷达、位移计等监测设备,对围岩的变形进行实时监测和预警,确保隧道施工安全。
四、案例分析以某隧道软弱围岩工程为例,通过应用上述控制技术,有效控制了围岩的变形和破坏。
在施工过程中,结合地质条件和施工需求,优化了支护结构设计、改进了施工方法和技术、并实施了严格的监测与反馈控制措施。
经过实践验证,该控制技术有效地提高了隧道施工的安全性和稳定性。
顺层偏压软弱围岩隧道施工关键技术摘要:顺层偏压、软弱围岩严重影响着隧道的施工进度、施工安全及营运安全,并且极容易产生病害。
在施工时,应以施工安全和进度为前提,选择合适的开挖、支护方法。
综合考虑隧道水文地质条件、断面尺寸、施工机械、工期的可行性。
同时还应考虑围岩变化时施工方法的适用性。
施工以大断面少分块的方法,以减少对围岩的扰动。
本文以郑万高铁干溪沟隧道为例,对顺层偏压软弱围岩隧道施工技术稍作探讨。
关键词:三台阶法;软弱围岩;控制爆破;减振1.项目背景郑万高铁被誉为目前在建铁路标准最高、风险最大、地质最复杂的高速铁路,其中干溪沟隧道为Ⅱ级风险隧道。
干溪沟隧道既是全线重难点工程,也是全线控制性工程,主要难点为全隧共计5处浅埋、上跨沪蓉高速公路凤凰梁隧道施工、顺层及顺层偏压[1]、岩堆、滑坡等,安全风险极高。
干溪沟隧道位于重庆市奉节县白帝镇和朱衣镇辖区内,起讫里程为DK705+425~DK717+308,全长11883m,其中Ⅴ级围岩1353m、Ⅳ级围岩8210m、Ⅲ级围岩2320m,最大埋深约515m。
为满足施工工期、防灾救援、施工通风及排水等需要,设1#横洞、2#横洞、3#横洞和洞口段共四个工区组织施工。
隧址区不良地质为顺层及顺层偏压、岩堆、岩溶、滑坡等,特殊岩土为人工填土。
针对该隧道的具体情况,现场采用三台阶加临时仰拱开挖技术、控制爆破技术、大直径直线掏槽减振技术等技术组织施工。
技术特点:综合多种因素,在本隧道Ⅴ级围岩软质岩、顺层偏压、一般断层级破碎带、接触带、浅埋及上跨沪蓉高速段等地段选择了三台阶+临时仰拱[2]法+控爆开挖,该方法主要具备以下优点:①施工利用空间大,便于机械操作,可以多个作业面同时施工;②可以统筹安排施工,工效较高;③当地质条件发生变化时,可以及时转换施工工序,调整施工方法,避免窝工;④软弱围岩下利用上台阶预留核心土法开挖施工,利于减小对围岩的扰动,保证开挖作业面稳定;⑤在围岩变形较大或突变时,保证安全和满足设计要求的前提下,可尽快缩短施工时间,为初期支护工序在时间和空间上创造了条件。
浅析软弱围岩隧道快速施工方法摘要:随着科学技术和生产管理水平的进步,我国修筑长大软弱围岩隧道的能力不断提高。
这不但表现在克服各种软弱围岩复杂工程地质技术手段上,以及在施工软弱围岩的成洞速度和工程质量上。
现总结一下本人对隧道的施工经验,仅供同行参考。
关键词:软弱围岩快速施工一、洞口段施工一般来讲,洞口段围岩破碎松散,开挖后,围岩不能形成自然拱,易导致坍塌。
洞口段采用边坡、仰坡自上而下分层开挖,施工机械以挖掘机为主,尽量少采用爆破,保证不扰动原地层。
洞口段开挖及填筑将充分考虑洞内施工需要,修建供风、供水、供电设施及材料堆放场地和机械停放场地,合理布置。
二、洞身开挖1、围岩开挖方法在开挖过程中坚持“管超前、严注浆、短开挖、强支护、勤量测、早封闭”的施工原则,上部环形采用弱爆破施工,核心土采用弱爆破配合挖掘机开挖。
(1)部开挖非常重要,直接影响其它步骤的正常实施,开挖每次进尺不宜超过1.5m,开挖范围以同时满足人工开挖(1)部、施作初期支护(2)部、并正确使用挖掘机开挖核心土(3)的最小尺寸要求,最大限度发挥机械施工效率,减少人工开挖作业量,加快施工速度。
(1)部施工时要保留核心土(3)部,(3)部的作业即可作为(1)、(2)的作业平台,从力学角度讲,它可以对(2)部拱脚形成反压,稳定拱脚,减小拱部下沉。
2.钢架(格栅)根据围岩的工程地质特征,为施工安全,开挖后及时初喷砼5cm 尽早封闭岩面,并保证钢架(格栅)的砼保护层厚度。
安装时为尽量减少拱顶下沉,严禁基脚处超挖,且将该处进行适当夯实处理,围岩承载力较小时,加大钢板或木板,增加承压面积,钢架两基脚处加锁脚锚杆。
钢架(格栅)不仅是作为初期支护之前的施工支护,而且是复合式衬砌结构的一部分,应严格按设计实施。
3、开挖核心土(3)及中槽(4)为了(1)、(2)部的施工方便,(3)部的长度不宜超过3m。
为加快施工速度,采用反铲挖掘机开挖(3)部时,挖掘机大臂及挖斗严禁碰撞ii部;中槽(4)部可用挖掘机或装载机开挖,开挖长度控制在6m以内。
液压破碎锤开挖软弱围岩隧道施工工法液压破碎锤开挖软弱围岩隧道施工工法一、前言隧道工程中,遇到软弱围岩通常会给施工带来一系列问题,如掘进速度慢、安全风险高等。
而液压破碎锤作为一种高效、安全的开挖工具,广泛应用于软弱围岩隧道施工中。
本文将详细介绍液压破碎锤开挖软弱围岩隧道的施工工法,包括工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例。
二、工法特点液压破碎锤开挖软弱围岩隧道的工法具有以下特点:1)高效快速:液压破碎锤具有高频率、高能量的打击力,能够快速破碎围岩,提高掘进速度;2)安全可靠:采用液压控制系统,操作简便,减少了人工破碎的危险性;3)适应性强:能够适应各种软弱围岩,如黏土、软石等;4)对环境友好:噪音低、震动小,不会对周围环境和建筑物造成影响。
三、适应范围液压破碎锤开挖软弱围岩隧道的工法适用于软弱围岩较多的情况,如泥质岩、许多软固土、次生岩溶层等。
同时,该工法适用于直径较大的隧道掘进,可以满足高速、高效、安全的施工要求。
四、工艺原理液压破碎锤开挖软弱围岩隧道的工艺原理是通过液压破碎锤的高频率冲击力,将围岩破碎、锤击产生的破碎岩屑通过挖掘装置清理,实现隧道的掘进。
同时,还需要施工工法与实际工程之间的联系,采取相关技术措施,如合理的爆破设计、支护结构的选择等,以确保施工工法的理论依据和实际应用。
五、施工工艺液压破碎锤开挖软弱围岩隧道的施工工艺分为以下几个阶段:1)准备工作:包括现场勘察、材料准备、机具设备的调试等。
2)围岩爆破:根据围岩的特性,合理设计爆破方案,并采取必要的安全措施。
3)液压破碎锤开挖:根据实际施工情况,选用合适的液压破碎锤进行开挖,控制打击力度和频率。
4)岩屑清理:使用挖掘装置将破碎的岩屑清理出隧道,确保施工环境安全整洁。
5)支护工艺:根据隧道围岩的情况,选择合适的支护材料和结构进行支护,提供施工环境的稳定性和安全性。
6)施工验收:对施工质量进行验收,检查施工工艺的可行性和效果。
浅谈软弱围岩隧道进洞施工技术作者:刘洋来源:《中国科技纵横》2014年第03期【摘要】结合重庆渝湘高速公路曾家湾隧道等施工实践,论述在隧道施工过程中,洞口加固、双侧壁开挖进洞过程等几个关键环节的控制,保证顺利进洞,为今后隧道进洞施工积累经验。
【关键词】软弱围岩洞口加固隧道开挖进洞1 前言在隧道施工中,能否顺利进洞,是下步正洞施工的关键。
隧道进洞主要考虑洞口的稳定,为正洞的安全有序的施工创造条件。
由于隧道洞口段山体岩层通常为软弱且覆盖较薄,在进洞前必须做好洞口段的岩体调查来初步确定加固方法及进洞的开挖方法。
重庆渝湘高速公路曾家湾隧道进口段山体围岩破碎、大多为坡积土,有100余延长米全风化泥岩,围岩富含水、地下水位较高。
若不采用特殊的加固方法对洞口进行加固,在下一步的正洞施工中将面临较大的安全威胁。
经反复的方案比选与论证,确定了拱脚设钻孔桩基础的大管棚强支护施工方案。
作者结合重庆渝湘高速公路曾家湾隧道进洞施工,根据隧道进洞施工时所采用的施工方法谈些认识。
2 进洞方案设计隧道入口段100m埋置于全风化泥岩,为避免发生暗挖塌方事故,提高隧道暗挖安全系数和可靠性,参考以往类似施工经验,在管棚支护设计方案的基础上,加大管棚的支护能力,实际施工采用大管棚(钢管帷幕)强支护施工防护方案。
本方案以大直径钢管、延长管棚支护长度,扩大管棚的防护范围,提高管棚支护能力为主。
采用直径φ108mm钢管、间距30cm、长度50m管棚,管棚支护范围增加管棚至拱脚以下最宽处,管棚布置范围180度,管内压注水泥砂浆。
为了保证管棚钻机钻孔位置准确和提高洞门支撑能力、抗倾覆稳定性,加大型钢混凝土导向墙截面积和长度。
管棚导向墙长度增加至3米,导向墙向下延伸,拱脚增加直径1.5m钢筋混凝土桩基础。
钢筋混凝土桩置于管棚导向墙下,支撑桩与导向墙连接成一体,钢筋混凝土桩对导向墙起支撑作用,管棚的土壤握裹力对导向墙起到抗拔锚固作用。
洞口端部侧壁围岩得到支挡,提高了进洞安全性。
软弱围岩隧道大变形施工控制技术摘要:在我国西部山区,分布有大范围的软岩地层,其中千枚岩的分布极为广泛,如兰渝铁路线上的木寨岭隧道,318线上的鹧鸪山隧道以及在建的九绵高速等多条高速公路隧道等。
该类岩体具有强度低、性状差、遇水易软化等特点,加之穿越高地应力、高烈度区软岩隧道建设过程中大变形灾害问题凸显,严重危及了隧道施工安全。
因此,开展软弱围岩隧道施工技术与支护技术的深入探讨,对于保证工程施工的安全性与质量的来讲非常重要。
本文以白马隧道为例,通过对该隧道的施工总结分析了一套软岩大变形隧道施工控制方法,并进行了理论和实地测试,对其在变形地段中的运用进行了探讨。
关键词:软岩隧道;大变形;施工控制措施引言:当前,业界对软弱围岩隧道的受力机制和技术仍处在探索性和探索性试验中,对其进行大变形特性的分析和找出行之有效的防治技术是非常必要的。
根据隧道的实际监测和理论研究,对白马隧道的大变形进行了研究,并给出了相应的技术措施。
一、软弱围岩大变形控制理念(一)刚性控制采用刚性控制理念法,通过大钢拱架、大厚度喷射混凝土、超前大管棚、掌子面长锚等措施,采用“以刚克刚”的方法克服了隧道的围岩变形。
该技术主要用于在埋深浅、地应力较小的情况下,对围岩的变形进行了有效的处理。
适合于围岩破碎、力学性能较低、地表沉降和隧道变形要求较高的地区。
(二)柔性控制柔性控制理念主要是利用增大预留变形,使隧道产生位移,使围岩体的应力得到最大程度的缓解,从而使支护体的受力最小化。
其控制手段主要有分段综合控制、伸缩支护和多重支护等。
在地应力较小、埋深较小的情况下,采用刚性支撑理论进行围岩变形的方法是切实可行的。
但对于地下工程中的大深度和高地应力,宜采用柔性支护技术。
(三)刚柔结合控制理念刚柔结合的控制理念是以刚性的预支护法来有效地控制掘进过程中的围岩体的应力释放速率;采用柔性初期支护对早期隧道的早期变形进行了抑制,同时采取了超前和早期支护措施,使围岩的变形保持在一个较好的水平。
软弱围岩隧道初期支护施工技术方案1. 初期支护施工⑴系统锚杆初期支护布置锚杆,采用Φ22的砂浆锚杆,菱形布置。
在每次循环出碴完毕并初喷砼之后,开始布设锚杆。
施工方法:首先,根据设计资料,将锚杆孔位准确设在设计位置,然后采用凿岩机钻孔,用高压风清孔,用高压注浆泵向孔内注水泥砂浆。
往锚杆孔内注浆是否饱满是保证砂浆锚杆质量的关键,注浆时将拌好的砂浆装入注浆器,一人操纵手把和进风阀门,另一人将注浆管插入眼中,使管口离眼底10厘米间隙,待砂浆注入孔眼后,注浆管逐渐被砂浆向外挤,此时可将注浆管均匀向外退出,注到眼底的2/3以上时停止注浆,由插入的钢筋将孔内砂浆挤出填满为止。
注浆完成后,向孔内插入锚杆钢筋,锚杆钢筋在插入前除锈,并用水湿润,以保证和砂浆紧密结合,插入钢筋时不可左右摇晃,沿孔轴线缓缓推入。
如遇插入阻力大,可用锤子轻轻打入。
砂浆锚杆质量的关键是注浆要密实,尤其是拱部。
锚杆的外露长度与喷射砼厚度相等,作为喷砼厚度的标志。
钢筋锚杆施工工艺流程见下图35示。
图15 锚杆施工工艺流程⑵挂钢筋网①施工方法针对开挖断面的形状,确定场外制作或现场制作网片,若断面形状较规则,平整,采用场外制作网片,然后现场拼接;若断面形状不规则,起伏较大,则采用现场制作网片,现场拼接,与岩壁紧贴安装。
挂网利用简易台车进行。
②工艺流程③施工要求a.按图纸标定的位置提供钢筋网。
b.钢筋网制作时其末端各方向定型的间距不少于100mm。
c.钢筋网使用前清除锈蚀。
d.钢筋网绑扎固定于先期施工的锚杆上,并用混凝土块衬垫在钢筋和岩石之间,以保证钢筋和岩面之间保持30-50mm的间隙。
e.制作网片:有钢支撑的地段,网片的宽度按钢支撑的间距预制;其他地段宽度根据径向锚杆布置情况确定。
网片重量控制在100kg左右,用在墙部的网片上侧带钩,以方便挂设,将钢筋网焊接在锚杆上(如下图37所示)。
④作业组织网片制作(每班):电焊工1人,钢筋工3人,合计4人。