基于ANSYS的重力坝三维静动态结构分析
- 格式:docx
- 大小:2.07 MB
- 文档页数:22
第1章 静力分析1.1 力的概念力在我们的生产和生活中随处可见,例如物体的重力、摩擦力、水的压力等,人们对力的认识从感性认识到理性认识形成力的抽象概念。
力是物体间的机械作用,这种作用可以使物体的机械运动状态或者使物体的形状和大小发生改变。
从力的定义中可以看出力是在物体间相互作用中产生的,这种作用至少是两个物体,如果没有了这种作用,力也就不存在,所以力具有物质性。
物体间相互作用的形式很多,大体分两类,一类是直接接触,例如物体间的拉力和压力;另一类是“场”的作用,例如地球引力场中重力,太阳引力场中万有引力等。
同时力有两种效应:一是力的运动效应,即力使物体的机械运动状态变化,例如静止在地面物体当用力推它时,便开始运动;二是力的变形效应,即力使物体大小和形状发生变化,例如钢筋受到横向力过大时将产生弯曲,粉笔受力过大时将变碎等。
描述力对物体的作用效应由力的三要素来决定,即力的大小、力的方向和力的作用点。
力的大小表示物体间机械作用的强弱程度,采用国际单位制,力的单位是牛顿(N )(简称牛)或者千牛顿(kN )(简称千牛),1kN =103N 。
力的方向是表示物体间的机械作用具有方向性,它包括方位和指向。
力的作用点表示物体间机械作用的位置。
一般说来,力的作用位置不是一个几何点而是有一定大小的一个范围,例如重力是分布在物体的整个体积上的,称体积分布力,水对池壁的压力是分布在池壁表面上的,称面分布力,同理若分布在一条直线上的力,称线分布力,当力的作用范围很小时,可以将它抽象为一个点,此点便是力的作用点,此力称为集中力。
由力的三要素知,力是矢量,记作F ,本教材中的黑体均表示矢量,可以用一有向线段表示,如图1-1所示,有向线段AB 的大小表示力的大小;有向线段AB 的指向表示力的方向;有向线段的起点或终点表示力的作用点。
1.2 静力学基本原理所谓静力学基本原理是指人们在生产和生活实践中长期积累和总结出来并通过实践反复验证的具有一般规律的定理和定律。
大连理工大学研究生院网络学刊NETWORK JOURNAL OF GRADUATE SCHOOL OF DUT基于WORKBENCH的重型板式给料机结构静力学与模态分析沈庆杰(大连理工大学机械工程学院,辽宁大连 116024)摘要:本文基于有限元方法,利用ANSYS/WORKBENCH软件对重型板式给料机结构进行静力学与模态分析。
得到了给料机主体钢结构的应力、变形以及前6阶固有频率和振型,可为进一步的结构优化和轻量化设计提供理论依据,具有一定的实际工程意义。
关键词:重型板式给料机;有限元;静力分析;模态分析;ANSYS/WORKBENCH中图分类号:TH228 文献标识码:A0 引言作为典型物流设备的重型板式给料机应用于矿山行业,主要承担运输作业,主体钢结构作为重型板式给料机的承载和支撑部件,其强度、弹性变形和动态特性直接影响设备的可靠性。
钢结构性能研究是一项非常繁琐的过程,其结构复杂、原件集合尺寸差异大,单纯的经验设计难以保证结构的可靠性,潜伏问题难以发现,因而传统的设计已经不能完全满足设计的需求。
随着计算机软件的不断开发,现代重要的结构设计大都采用弹性力学有限元法,使设计水平得到显著的提高[1]。
本文以某企业自移式破碎站的重型板式给料机主体钢结构为研究对象,对其进行静力与模态分析,对验证给料机主体钢结构强度和刚度要求;推断未测或难测部位的应力和变形状态;找出结构的薄弱环节并改进具有重要的理论参考和实践意义。
1有限元模型的建立本文研究的重型板式给料机主要承受两种工况:一种工况为给料机负载平稳运输物料且没有落料冲击链板;另一种工况为给料机在运输物料过程中落料冲击链板。
本文主要对第一种工况下的重型板式给料机主体钢结构进行静力学分析以及模态分析。
1.1三维模型的建立三维模型的建立是数值模拟分析中重要、关键的环节。
UG软件能够方便地建立复杂的三维模型,企业提供的初始的板式给料机三维模型主体钢结构是由不同厚度的钢板焊接而成,模型钢板之间存在较多的焊缝,导致模型存在不同大小的间隙,给后继有限元分析带来困难,而且模型结构复杂,且为三维实体,建立有限元模型的过程中,要在符合结构力学特性的前提下建立模型,有必要对结构做合理的简化。
ANSYS结构分析指南第二章结构线性静力分析2.1 静力分析的定义静力分析计算在固定不变载荷作用下结构的响应,它不考虑惯性和阻尼影响--如结构受随时间变化载荷作用的情况。
可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)的作用。
静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。
固定不变的载荷和响应是一种假定,即假定载荷和结构响应随时间的变化非常缓慢。
静力分析所施加的载荷包括:外部施加的作用力和压力稳态的惯性力(如重力和离心力)强迫位移温度载荷(对于温度应变)能流(对于核能膨胀)关于载荷,还可参见§2.3.4。
2.2 线性静力分析与非线性静力分析静力分析既可以是线性的也可以是非线性的。
非线性静力分析包括所有类型的非线性:大变形、塑性、蠕变、应力刚化、接触(间隙)单元、超弹性单元等。
本章主要讨论线性静力分析。
对非线性静力分析只作简单介绍,其详细论述见《ANSYS Structural Analysis Guide》§8。
2.3 静力分析的求解步骤2.3.1 建模首先用户应指定作业名和分析标题,然后通过PREP7 前处理程序定义单元类型、实常数、材料特性、模型的几何元素。
这些步骤是大多数分析类型共同的,并已在《ANSYS Basic Analysis Guide》§1.2 论述。
有关建模的进一步论述,见《ANSYS Modeling and Meshing Guide》。
2.3.1.1 注意事项在进行静力分析时,要注意如下内容:1、可以采用线性或非线性结构单元。
2、材料特性可以是线性或非线性,各向同性或正交各向异性,常数或与温度相关的:必须按某种形式定义刚度(如弹性模量EX,超弹性系数等)。
对于惯性载荷(如重力等),必须定义质量计算所需的数据,如密度DENS。
基于Ansys对于坝体的研究分析报告坝体及相关建筑在使用过程中,会承受如重力、净水压力、淤泥荷载、浪压力、扬压力等各种作用,而我们在设计、建造这个建筑之前,要分析其产生的应力、应变进而选取材料和校核材料的安全性。
为分析所需,基于Ansys软件建立相应的模型,并施加荷载和作用,在三种工况下校核结构的安全性。
一:分析对象1:坝体的几何参数:2:基岩的几何参数:二:作用及荷载(1) 约束基岩左右两端受x 方向的位移约束,基岩下端受x 、y 两个方向的位移约束。
(2)静水压力正常蓄水位高程91.75m ,防洪高水位97m ,校核洪水位101m 。
对应下游水位分别为15m ,20m 和25m 。
(3)泥沙荷载坝前泥沙淤积高程: 25m 。
坝前泥沙浮容重:6.0kN/m 3,淤沙内摩擦角:12°。
坝面上单位宽度上的泥沙压力为221(45)22s sk sb s p h tg ϕγ=︒- 式中: sk p ——淤沙压力标准值(KN/m );sb γ——泥沙的浮容重,取6kN/m 3;s h ——泥沙淤积深度(m );s ϕ——淤沙的内摩擦角,12°。
(4)浪压力50年一遇计算风速21m/s ,多年平均最大风速14m/s ,有效吹程1km 。
(5)扬压力取渗透压力强度系数α=0.25,帷幕中心线坐标X=10m 。
三:选用单元及划分网格1) 单元选择:Solid –Quad 4node 422) 材料参数:坝体和基岩分别设置,见上图。
3) 划分网格:坝体部分-外围线按1m 每格划分,整体按自由网格划分。
基岩部分-靠近坝体网格密集,坝基面水平线上基岩外围线按20份、4的比率划分;垂直地表的按20份、0.25的比率划分;基底均分。
整体基岩自由网格划分。
四:三种工况的具体Ansys设置1)正常蓄水位(其中括号内为承载能力极限状态时的分项系数)上游水位高程为91.75m,下游水位高程为15m。
(1)上下游静水压力(分项系数为1.0)gradient 斜率为-9810 沿y轴方向,分别取91.75m和15m在各自位置。
第33卷第3期2 0 18年8月青岛大学学报(工程技术版)JOURNAL OF QINGDAO UNIVERSITY (E&T)Vol. 33 No. 3Aug. 2 0 18文章编号 # 1006 - 9798(2018)03 -0120 - 05; DO * 10.13306/1 1006 - 9798.2018.03.022基于ANSYS 的某型压力容器静态与动态特性分析黄妮,戴作强(青岛大学机电工程学院,山东青岛266071)摘要:针对压力容器容易发生强度失效和稳定失效等问题,本文基于A N S Y S 软件对某型压力容 器的静态与动态特性进行研究,获取了其应力集中危险位置。
在三维建模软件S o lid W o rk s 中,建 立压力容器的三维几何模型,使用自由边划分中面进行网格划分,并给出了载荷及边界条件,将前 处理完成的压力容器模型以c d b 格式导人A N S Y S 软件中进行求解,并在空罐状态下对压力容器 进行动力学特性分析。
分析结果表明,该压力容器的静强度具有一定的余量,不会发生强度失效;在空罐状态下,压力容器筒体和封头容易发生共振,可以在筒体位置适当增加阻尼和约朿,以加强 其稳定性,或者在振型最大处增大厚度以提高刚度,防止和避免共振带来的危害。
该研究保障了压 力容器在操作工况下安全可靠。
关键词:压力容器;A N S Y S #静强度分析;模态分析中图分类号:T H 49文献标识码:A压力容器是化工生产中极为重要的一类储运设备[1],随着存储介质质量和种类的变化,压力容器产生失效事 故的可能性在不断增加,所以对压力容器进行静态和动态特性研究,分析其结构可靠性具有重要意义。
近年来, 对压力容器可靠性的研究有许多。
郑云虎等人)]采用静强度和模态分析结合的方法,对立式圆柱薄壁容器的振 动特性进行了研究,获得了压力容器的强度和刚度薄弱位置;张自斌等人)]对压力容器的宏观力学响应进行了分 析,并作出应力安全评定,同时运用子模型技术对压力容器接管区域进行了更为精确的应力分析;赵积鹏等人)] 采用特征值屈曲分析方法,得出了压力容器屈曲模态形状和临界外压,提出了压力容器安全使用的临界条件;朱 国樑)]应用A N S Y S 分析了立式厚壁压力容器筒体与封头的应力分布特点,提出了优化措施;马言等人)]针对压 力容器分层缺陷的扩展问题,从动力学角度对压力容器进行模态分析,找到了分层缺陷扩展的原因。
基于ANSYS的重力坝抗震性能分析【摘要】建立一个120m重力坝模型,利用ANSYS分析软件,分析此重力坝挡水坝段在静,动力作用下应力变化规律,并对坝体的抗震安全性能进行评估,为类似工程设计、施工提供理论依据。
【关键词】重力坝;ANSYS;反应谱;地震重力坝是世界上最早出现的一种坝型之一。
依据其相对安全可靠,耐久性好,对不同的地形和地质条件适应性强等特点,重力坝在各个国家都很流行。
由于重力坝大多都建在高烈度或地震多发地区,一旦失事,损失不可估量,因此在大坝时对其进行抗震安全分析十分必要。
ANALYSIS OF SEISMIC PERFORMANCE OF GRAVITY DAMBASED ON ANSYS【Abstract】Establish a 120m gravity dam model and using ANSYS analysis software, analysis of the gravity dam retaining dam in static and dynamic effect of the stress change rules, and on the dam seismic safety performance assessment, to provide a theoretical basis for the design and construction of similar projects.【Keywords】gravity dam;Ansys;response spectrum;earthquake 1 有限元模型1.1 计算基本假定(1)假定库水为不可压缩流体,库水对坝体的动力相互作用以坝面附加质量的形式计入;(2)坝体材料假定为线弹性,并假定不同部位材料有不同的弹性常数;(3)采用无质量地基方案,近似考虑坝体结构和地基间的动力相互作用;(4)地基为均匀弹性体,并于坝体紧密联系在一起。
基于ANSYS的混凝土重力坝有限元分析——2D与3D工况分析之比较第一部分引言目前,ANSYS作为一种大型的商业有限元分析软件,已经广泛应用于土木工程、地质矿产、水利、铁道、汽车交通、国防军事等科学的研究之中。
在关于混凝土材料和结构的分析中,主要有混凝土基本力学性能的分析、钢筋混凝土梁板的分析、混凝土坝的分析等,但是,把混凝土坝的二维建模和三维建模进行对比分析很少见。
鉴于此,本文对混凝土坝进行了2D和3D有限元分析,以期为混凝土坝的设计和施工提供一些参考。
混凝土实体重力坝为当前采用较多的坝型之一,结构简单,施工方便,工作可靠。
在水压力作用下,依靠自重产生的抗滑力维持稳定,基本剖面呈三角形。
这种坝体断面尺寸大,材料用量多,坝体应力较低,使得材料强度不能充分发挥,因此,重力坝结构设计是重力坝设计的一项重要内容,它的任务是根据安全经济和应用等条件,通过分析计算,选择一个既满足稳定和强度要求,又使体积最小和施工方便的剖面形态和轮廓尺寸。
第二部分 大坝二维建模利用ANSYS 对坝体工程进行模拟分析,包括坝体工程力学问题的简化、前处理、加载与求解、后处理和计算结果的分析等。
2.1、简化求解方法问题的简化包括力学简化和位移简化,通过简化可以把三维的问题转化为二维求解。
通常处理的手段是根据弹性力学理论,将这种纵向比较长而横断面比较小的坝体结构简化为平面应变的模式进行分析,即认为坝体结构在纵向上是不变形的,没有位移,只在横断面方向产生位移,但是在纵向和横向都有应力产生,并且认为在横断面方向所产生的位移和应力是相等的。
这样进行的处理是近似处理。
由于边界条件的影响,在两侧河岸处的位移实际上比坝体中段要小。
不过在坝中段采用这样的力学简化是完全合理的。
位移边界的简化是将基础端视为固定端,因坝体嵌入岩基内,这样的简化是合理的。
2.2、坝体二维建模与内力分析假设某坝体的横断面尺寸如图1所示。
坝体材料参数E=2.25×104MPa ,泊松比3.0=μ。
ANSYSWORKBENCH静力结构分析ANSYS WORKBENCH 11.0培训教程(DS)第四章静力结构分析序言在DS中关于线性静力结构分析的内容包括以下几个方面:–几何模型和单元–接触以及装配类型–环境(包括载荷及其支撑)–求解类型–结果和后处理本章当中所讲到的功能同样适用与ANSYS DesignSpace Entra及其以上版本.–本章当中的一些选项可能需要高级的licenses,但是这些都没有提到。
–模态,瞬态和非线性静力结构分析在这里没有讨论,但是在相关的章节当中将会有所阐述。
线性静力分析基础在线性静力结构分析当中,位移矢量{x} 通过下面的矩阵方程得到: 在分析当中涉及到以下假设条件:–[K] 必须是连续的假设为线弹性材料?小变形理论可以包括部分非线性边界条件–{F} 为静力载荷不考虑随时间变化的载荷不考虑惯性(如质量,阻尼等等)影响在线性静力分析中,记住这些假设是很重要的。
非线性分析和动力学分析将在随后的章节中给予讨论。
[]{}{}F x K =A. 几何结构在结构分析当中,可以使用所有DS 支持的几何结构类型.对于壳体,在几何菜单下厚度选项是必须要指定的。
梁的截面形状和方向在DM已经指定并且可以自动的传到DS模型当中。
–对于线性体,仅仅可以得到位移结果.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional xStructural xMechanical/Multiphysics x…Point MassPoint Mass 在“Geometry”分支在模拟没有明确建模的重量–只有面实体才能定义point mass–可以用以下方式定义point mass位置:在任意用户定义坐标系中(x, y, z)坐标选择点/边/面来定义位置–重量/质量大小在“Magnitude”中输入–在结构静力分析中,point mass只受“加速度”,“标准重力加速度,”和“旋转速度”的作用.–质量和所选面相连通时它们之间没有刚度. 这不是一个刚度区域假设而是一个类似与分布质量的假设–没有旋转惯性项出现.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…Point Masspoint mass 将会以灰色圆球出现–前面提到,只有惯性力才会对point mass 起作用。
第5章ANSYS水利工程应用实例分析本章重点水利工程ANSYS重力坝抗震性能分析步骤ANSYS重力坝抗震性能用实例分析本章典型效果图5.1 水利工程概述虽然我国水利资源非常丰富,但河流在地区和时间分配上很不均衡,许多地区在枯水季节容易出现干早,而在洪水季节又往往由于水量过多而形成洪涝灾害。
为了解决这一矛盾,人们修建了许多水利工程来到达防洪、灌溉、发电、供水、航运等目的,促进国民经济建设的开展。
水利工程中各种建筑物按其在水利枢纽中所起的作用,可以分为以下几类:(1)挡水建筑物用以拦截河流,形成水库,如各种坝和水闸以及抵御洪水所用的堤防等。
(2)泄水建筑物用以宣泄水库〔或渠道)在洪水期间或其它情况下的多余水量,以保证坝(或渠道)的平安,如各种溢流坝、溢流道、泄洪隧道和泄洪涵管等。
(3)输水建筑物为灌溉、发电或供水,从水库(或河道)向库外(或下游)输水用的建筑物,如引水隧道、引水涵管、渠道和渡槽等。
(4)取水建筑物是输水建筑物的首部建筑,如为灌溉、发电、供水而建的进水闸、扬水站等。
(5)整治建筑物用以调整水流与河床、河岸的相互作用以及防护水库、湖泊中的波浪和水流对岸坡的冲刷,如丁坝、顺坝、导流堤、护底和护岸等。
由于破坏后果的灾难性,大型水利工程建设的首要目标是平安可靠,其次才是经济合理。
所以说研究大坝等水工建筑物的平安分析、评价和监控,是工程技术人员需要解决的课题,正确分析大坝性态已经成为当务之急。
当前对各种水利工程评价主要采用有限元分析方法,借助各种有限元软件对这些水利工程建筑物进行平安评价,其中应用比拟广泛的是ANSYS软件。
目前,ANSYS软件在水利工程中主要应用以下几个方面:(1)应用各种坝体工程的设计和施工利用ANSYS软件,模拟各种坝体施工过程以及坝体在使用阶段受到各种载荷〔如水位变化对坝体的压力、地震荷载等〕下结构的平安性能进行评价,模拟坝体的温度场和应力场,借助模拟结果修改设计或对坝体采取加固措施。
基于ANSYS的重力坝三维静动态结构分析 目录 1 引言............................................................................................................................ 1 2 工程概况.................................................................................................................... 1 3 基本资料.................................................................................................................... 1 3.1 反应谱............................................................................................................. 1 3.2 材料参数......................................................................................................... 2 3.3 规范要求......................................................................................................... 2 4 分析简介.................................................................................................................... 4 4.1 分析模型......................................................................................................... 4 4.2 边界条件......................................................................................................... 6 4.3 荷载工况......................................................................................................... 6 5 计算成果.................................................................................................................... 7 5.1 工况一............................................................................................................. 7 5.2 工况二............................................................................................................. 8 5.3 工况三........................................................................................................... 10 5.4 工况四........................................................................................................... 11 5.5 工况五........................................................................................................... 12 5.6 工况六........................................................................................................... 14 5.7 结果总结及分析........................................................................................... 15 6 结论及建议.............................................................................................................. 17 7 分析命令流.............................................................................................................. 17 1 引言 重力坝是我国高坝中的主要坝型,在防洪、发电、灌溉、城镇供水、航运、养殖和旅游等方面发挥了巨大的作用,取得了显著的经济效益和社会效益。众所周知,重力坝主要依靠其自身的重力来维持稳定,其坝体体积大,稳定性好。但由于各种原因,仍有可能失事。因此,重力坝的应力应变状态和坝基稳定性一直都是设计和施工十分重视的问题。此外,大坝多建于地震频发的地区,因而对重力坝进行地震荷载作用下的安全评估也十分必要。本次作业采用有限元方法,运用大型通用有限元分析软件ANSYS,对简化的三维重力坝的线弹性模型在静动力工况下进行有限元计算,并对结果加以分析,最后给出安全评价结论及建议。 2 工程概况 某水电站是以发电为主,兼有防洪,航运等综合效益的水电枢纽工程。该工程枢纽总体布置采用砼重力坝挡水,大坝基本坝剖面为上游坝坡铅直,下游坝坡为1:0.75。坝顶总长270m,坝高180m,坝顶宽18m,坝底宽139.5m,正常蓄水位170m。重力坝坝低至坝高100m之间使用坝体混凝土Ⅱ,坝高100m至坝顶之间使用坝体混凝土Ⅰ。上游正常蓄水位为170m,下游无水。
3 基本资料 3.1 反应谱 谱分析是一种将模态分析的结果与一个已知的谱联系起来计算结构的位移和应力的分析技术。在土木工程动力响应分析中,谱分析代替时间-历程分析,特别是抗震分析,主要用来确定结构对随机荷载或随时间变化荷载的动力响应。
图3.1大坝设计反应谱 2
根据如图3.1所示的大坝设计的反应谱曲线图,可得大坝反应谱曲线方程: max0.60max110.....................00.1..........................0.1*()..............,,,gg
TTTTTTTT
本次重力坝抗震性能分析中,max取值为2,gT取值为0.3。本次谱分析采用的SV-FREQ曲线谱值点见表3.1。 表3.1 SV-FREQ曲线谱值点 序号 周期 频率 谱值 1 0 1e5 1 2 0.01 100 1.1 3 0.1 10 2 4 0.3 3.33333333 2 5 0.4 2.5 1.68293272 6 0.6 1.66666667 1.31950791 7 0.8 1.25 1.11032152 8 1 1 0.97118675 9 1.2 0.83333333 0.87055056 10 1.4 0.71428571 0.79364435 11 1.6 0.625 0.73253901 12 2 0.5 0.6407443 13 3 0.33333333 0.50237729
3.2 材料参数 该重力坝坝体采用两种混凝土材料,具体材料参数见表3.2。其中混凝土动力分析弹性模量是静力分析弹性模量的1.5倍。计算时考虑为完全沉降后作用,故不考虑基岩密度。 表3.2坝体混凝土材料属性 参数 混凝土 材料编号 密度 (kg/m3) 弹性模量 (Pa) 泊松比
坝体混凝土Ⅰ 1 2400 2.6E10 0.167 坝体混凝土Ⅱ 2 2400 2.85E10 0.167 基岩 3 0 2.9E10 0.3 3.3 规范要求 如未特殊说明,本次分析参照的规范均指《混凝土重力坝设计规范》 NB/T 35026-2014,以下为本次分析需用到的部分重要章节。 1)正常使用极限状态 按材料力学方法进行坝体上、下游面混凝土拉应力验算;必要时进行坝体及结构变形计算、复杂地基局部渗透稳定验算。 正常使用极限状态作用效应采用下列设计表达式: ,,,0KKKkSGQfaC
对正常使用极限状态验算时,作用分项系数、材料性能分项系数都取1.0 ,结构重要性系数不变。 该规范提出了重力坝对正常使用极限状态的要求,规定坝踵及坝体上游面不产生垂直拉应力,施工期坝趾处垂直正应力可容许有不大于0.1MPa的拉应力,下游坝面主拉应力不大于0.2MPa 2)承载能力极限状态 承载能力极限状态,对坝体结构及坝基岩体进行强度和抗滑稳定计算,必要时进行抗浮、抗倾验算:抗震设防应满足DL5073 的有关规定。
,,,01KGKQKKKdmfSGQaRa
作用分项系数:0.95G1Q1.1u
结构重要性系数:01 设计状况系数:1 0.85(地震) 结构系数:1.8d 1.5(地震) 材料性能分项系数:1.5m 3)抗滑稳定验算 坝体混凝土与基岩接触面的抗滑稳定极限状态。 作用效应函数为: RSP
抗滑稳定抗力函数为: