2014年乌鲁木齐市中考数学试题及答案(图片版)
- 格式:doc
- 大小:8.70 MB
- 文档页数:8
2014年陕西中考数学试题及答案一、选择题(本大题共12小题,每小题3分,共36分)1. 设正实数 x的值不能符合不等式 |x - 2| < 5,那么 x 的取值范围是A. (2,7)B. (2,7]C. [2,7)D. [2,7]2. AB是⊙O的直径,P是半圆弧AB上的一点,PA延长线与⊙O 再交于点C,若∠PAC = 60°,则∠PBC 的度数是A. 20°B. 30°C. 40°D. 50°3. 不等式 4x - 1 < 7 + x 的解集是A. x < 4B. x > 4C. x > -2/3D. x < -2/34. 一动画片长108分钟,小芳看完1/6,小明看完1/4,则小明比小芳多看了多少分钟?A. 12B. 18C. 24D. 365. 图中的矩形 ABCD ,若长边 AD = 6,面积是 8.4 ,则它的长边BC 的长是A. 12B. 10C. 6D. 46. 将x = -3带入方程组2x + y = 5- 3x + 2y = a得到 y 和 a 的值的和为A. -1B. 0C. 1D. 27. 在一张长方形纸板上,四条边长的和是8,面积是3,则边长乘积是A. 2B. 3C. 4D. 68. 一个菱形的一条对角线长8,另一条对角线长6,则这个菱形的面积是A. 12B. 18C. 24D. 289. 化简:0.8×(-0.55)×100÷(-4)×(-0.5)A. 5.5B. 2.2C. -2.2D. -5.510. 已知∠AOC 的度数是120°,⊙O 的半径为6,那么圆心角BOA 的弧度数是A. π/3B. π/4C. π/6D. π/1211. 已知函数 y = a(x - 1)² + b 的图象顶点为(1, 2),则 a 和 b 的值分别是A. a = 1, b = 3B. a = 1, b = 2C. a = 2, b = 1D. a = 3, b = 112. 画出下列几何图形中任意两对相似三角形的相应角,并说明理由。
2015年新疆乌鲁木齐市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求,请在答题卡的相应位置填涂正确选项。
2.(4分)(2015•乌鲁木齐)如图,直线a ∥b ,∠1=108°,则∠2的度数是( )B5.(4分)(2015•乌鲁木齐)在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是S 甲2=0.35,S 乙2=0.15,S 丙2=0.25,S 丁2=0.27,这4人中成绩发挥6.(4分)(2015•乌鲁木齐)圆锥的侧面展开图是一个弧长为12π的扇形,则这个圆锥底面7.(4分)(2015•乌鲁木齐)如图,△ABC 的面积等于6,边AC=3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,点P 在直线AD 上,则线段BP 的长不可能是( )8.(4分)(2015•乌鲁木齐)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是=﹣B=﹣20 =+=+209.(4分)(2015•乌鲁木齐)如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P 的对应点的坐标是()(,﹣)210.(4分)(2015•乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C.当以CD为边的正方形的面积为时,k的值是()二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卡的相应位置处。
11.(4分)(2015•乌鲁木齐)不等式组的解集为.12.(4分)(2015•乌鲁木齐)等腰三角形的一个外角是60°,则它的顶角的度数是.13.(4分)(2015•乌鲁木齐)掷一枚质地均匀的正方体骰子(六个面上分别刻有1到6的点数),向上一面出现的点数大于2且小于5的概率为.14.(4分)(2015•乌鲁木齐)若菱形的周长为8,相邻两内角之比为3:1,则菱形的高是.15.(4分)(2015•乌鲁木齐)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am ﹣b);其中所有正确的结论是.(填写正确结论的序号)三、解答题(本大题包括Ⅰ-Ⅴ题,共2小题,共90分)解答时应在答题卡的相应位置处写出文字说明、证明过程或演算过程。
目录2014年全国各地中考数学真题分类解析汇编:32 点直线与圆的位置关系.doc 2014年全国各地中考数学真题分类解析汇编:33 圆与圆的位置关系.doc2014年全国各地中考数学真题分类解析汇编:34 正多边形与圆.doc2014年全国各地中考数学真题分类解析汇编:35 弧长与扇形面积.doc2014年全国各地中考数学真题分类解析汇编:36 投影与视图.doc2014年全国各地中考数学真题分类解析汇编:37 尺规作图.doc2014年全国各地中考数学真题分类解析汇编:38 规律探索.doc2014年全国各地中考数学真题分类解析汇编:39 操作探究.doc2014年全国各地中考数学真题分类解析汇编:40 方案设计.doc2014年全国各地中考数学真题分类解析汇编:41 开放性问题.doc2014年全国各地中考数学真题分类解析汇编:42 动态问题.doc2014年全国各地中考数学真题分类解析汇编:43 阅读理解.doc2014年全国各地中考数学真题分类解析汇编:44 综合性问题.doc2014年全国各地中考数学真题分类解析汇编:45 跨学科结合与高中衔接问题2014年全国各地中考数学真题分类解析汇编:46 与函数有关的选择题压轴题2014年全国各地中考数学真题分类解析汇编:47 与特殊四边形有关的填空压轴题2014年全国各地中考数学真题分类解析汇编:48 与圆有关的压轴题2014年全国各地中考数学真题分类解析汇编:49 运动变化类的压轴题.doc点直线与圆的位置关系一、选择题1.(2014年天津市,第7题3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20° B.25° C.40° D.50°考点:切线的性质.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.点评:本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.2.(2014•邵阳,第8题3分)如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°考点:切线的性质专题:计算题.分析:根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°.解答:解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选A.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.3. (2014•益阳,第8题,4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()(第1题图)A.1 B.1或5 C.3 D. 5考点:直线与圆的位置关系;坐标与图形性质.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.解答:解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.4.(2014年山东泰安,第18题3分)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O 相切,切点为C,点D是⊙上一点,连接P D.已知PC=PD=B C.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个分析:(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB;(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故此选项正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故此选项正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A.点评:此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.二.填空题1. (2014•广西玉林市、防城港市,第16题3分)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.考点:切线的性质;等边三角形的判定与性质;特殊角的三角函数值.专题:计算题.分析:连结OM,OM的反向延长线交EF与C,由直线MN与⊙O相切于点M,根据切线的性质得OM⊥MF,而EF∥MN,根据平行线的性质得到MC⊥EF,于是根据垂径定理有CE=CF,再利用等腰三角形的判定得到ME=MF,易证得△MEF为等边三角形,所以∠E=60°,然后根据特殊角的三角函数值求解.解答:解:连结OM,OM的反向延长线交EF与C,如图,∵直线MN与⊙O相切于点M,∴OM⊥MF,∵EF∥MN,∴MC⊥EF,∴CE=CF,∴ME=MF,而ME=EF,∴ME=EF=MF,∴△MEF为等边三角形,∴∠E=60°,∴cos∠E=cos60°=.故答案为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理、等边三角形的判定与性质和特殊角的三角函数值.2.(2014•温州,第16题5分)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=A B.⊙O 经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是.考点:切线的性质;矩形的性质.分析:过点G作GN⊥AB,垂足为N,可得EN=NF,由EG:EF=:2,得:EG:EN=:1,依据勾股定理即可求得AB的长度.解答:解:如图,过点G作GN⊥AB,垂足为N,∴EN=NF,又∵EG:EF=:2,∴EG:EN=:1,又∵GN=AD=8,∴设EN=x,则,根据勾股定理得:,解得:x=4,GE=,设⊙O的半径为r,由OE2=EN2+ON2得:r2=16+(8﹣r)2,∴r=5.∴OK=NB=5,∴EB=9,又AE=AB,∴AB=12.故答案为12.点评:本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径.3.(2014•四川自贡,第14题4分)一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.考点:切线的性质;垂径定理;圆周角定理;弦切角定理分析:连接OC,并过点O作OF⊥CE于F,根据等边三角形的性质,等边三角形的高等于底边高的倍.题目中一个边长为4cm的等边三角形ABC与⊙O等高,说明⊙O的半径为,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连接OC,并过点O作OF⊥CE于F,且△ABC为等边三角形,边长为4,故高为2,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得FC=,即CE=3.故答案为:3.点评:本题主要考查了切线的性质和等边三角形的性质和解直角三角形的有关知识.题目不是太难,属于基础性题目.4.(2014•浙江湖州,第9题3分)如图,已知正方形ABCD,点E是边AB的中点,点O 是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是()A.S1>S2+S3 B.△AOM∽△DMN C.∠MBN=45° D.MN=AM+CN分析:(1)如图作MP∥AO交ON于点P,当AM=MD时,求得S1=S2+S3,(2)利用MN是⊙O的切线,四边形ABCD为正方形,求得△AMO∽△DMN.(3)作BP⊥MN于点P,利用RT△MAB≌RT△MPB和RT△BPN≌RT△BCN来证明C,D 成立.解:(1)如图,作MP∥AO交ON于点P,∵点O是线段AE上的一个动点,当AM=MD时,S梯形ONDA=(OA+DN)•ADS△MNO=MP•AD,∵(OA+DN)=MP,∴S△MNO=S梯形ONDA,∴S1=S2+S3,∴不一定有S1>S2+S3,(2)∵MN是⊙O的切线,∴OM⊥MN,又∵四边形ABCD为正方形,∴∠A=∠D=90°,∠AMO+∠DMN=90°,∠AMO+∠AOM=90°,∴∠AOM=∠DMN,在△AMO 和△DMN 中,,∴△AMO ∽△DMN .故B 成立,(3)如图,作BP ⊥MN 于点P ,∵MN ,BC 是⊙O 的切线,∴∠PMB =∠MOB ,∠CBM =∠MOB , ∵AD ∥BC ,∴∠CBM =∠AMB ,∴∠AMB =∠PMB , 在Rt △MAB 和Rt △MPB 中,∴Rt △MAB ≌Rt △MPB (AAS )∴AM =MP ,∠ABM =∠MBP ,BP =AB =BC , 在Rt △BPN 和Rt △BCN 中,∴Rt △BPN ≌Rt △BCN (HL )∴PN =CN ,∠PBN =∠CBN ,∴∠MBN =∠MBP +∠PBN ,MN =MN +PN =AM +CN .故C ,D 成立,综上所述,A 不一定成立,故选:A .点评:本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.5.(2014·浙江金华,第16题4分)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA ,OB ,OC 抽象为线段,有OA =OB =OC ,且∠AOB =120°,折线NG —GH —HE —EF 表示楼梯,CH ,EF 是水平线,NG ,HE 是铅垂线,半径相等的小轮子⊙A ,⊙B 与楼梯两边相切,且AO ∥GH . (1)如图2①,若点H 在线段OB 上,则BHOH的值是 ▲ . (2)如果一级楼梯的高度()HE 832cm =+,点H 到线段OB 的距离d 满足条件d 3cm ≤,那么小轮子半径r 的取值范围是 ▲ .【答案】(1)3;(2)1133r 8-≤≤. 【解析】∴23r d d 2323MI3IJ d MI r d,HM 3r 2d cos 33t 3030an 33=︒-==⇒=-==-︒.考点:1. 直角三角形的构造;2.锐角三角函数定义;3.特殊角的三角函数值;4. 矩形的判定和性质;5.切线的性质;6.二次根式化简.6. (2014•湘潭,第14题,3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,P A切⊙O于A点,则P A=4.(第1题图)考点:切线的性质;勾股定理.分析:先根据切线的性质得到OA⊥P A,然后利用勾股定理计算P A的长.解答:解:∵P A切⊙O于A点,∴OA⊥P A,在Rt△OP A中,OP=5,OA=3,∴P A==4.故答案为4.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.三.解答题1. (2014•广东,第24题9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.考点:切线的判定;弧长的计算.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OP A,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OP A=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OP A,∵∠OP A+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.2. (2014•珠海,第18题7分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.考点:切线的性质;扇形面积的计算;平移的性质专题:计算题.分析:(1)连结OG,先根据勾股定理计算出BC=5,再根据平移的性质得AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,由于EF与半圆O相切于点G,根据切线的性质得OG⊥EF,然后证明Rt△EOG∽Rt△EFD,利用相似比可计算出OE=,所以BE=OE﹣OB=;(2)求出BD的长度,然后利用相似比例式求出DH的长度,从而求出△BDH,即阴影部分的面积.解答:解:(1)连结OG,如图,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,∵EF与半圆O相切于点G,∴OG⊥EF,∵AB=4,线段AB为半圆O的直径,∴OB=OG=2,∵∠GEO=∠DEF,∴Rt△EOG∽Rt△EFD,∴=,即=,解得OE=,∴BE=OE﹣OB=﹣2=;(2)BD=DE﹣BE=4﹣=.∵DF∥AC,∴,即,解得:DH=2.∴S阴影=S△BDH=BD•DH=××2=,即Rt△ABC与△DEF重叠(阴影)部分的面积为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了平移的性质、勾股定理和相似三角形的判定与性质.3. (2014•广西贺州,第25题10分)如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥C D.BO=6cm,CO=8cm.(1)求证:BO⊥CO;(2)求BE和CG的长.考点:切线的性质;相似三角形的判定与性质.分析:(1)由AB∥CD得出∠ABC+∠BCD=180°,根据切线长定理得出OB、OC平分∠EBF 和∠BCG,也就得出了∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°.从而证得∠BOC是个直角,从而得出BO⊥CO;(2)根据勾股定理求得AB=10cm,根据RT△BOF∽RT△BCO得出BF=3.6cm,根据切线长定理得出BE=BF=3.6cm,CG=CF,从而求得BE和CG的长.解答:(1)证明:∵AB∥CD∴∠ABC+∠BCD=180°∵AB、BC、CD分别与⊙O相切于E、F、G,∴BO平分∠ABC,CO平分∠DCB,∴∠OBC=,∠OCB=,∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,∴∠BOC=90°,∴BO⊥CO.(2)解:连接OF,则OF⊥BC,∴RT△BOF∽RT△BCO,∴=,∵在RT△BOF中,BO=6cm,CO=8cm,∴BC==10cm,∴=,∴BF=3.6cm,∵AB、BC、CD分别与⊙O相切,∴BE=BF=3.6cm,CG=CF,∵CF=BC﹣BF=10﹣3.6=6.4cm.∴CG=CF=6.4cm.点评:本题主要考查了直角梯形的性质和切线长定理的综合运用.属于基础题.4. (2014•广西玉林市、防城港市,第23题9分)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)连结OD,根据切线的性质得OD⊥DE,则∠2+∠ODC=90°,而∠C=∠ODC,则∠2+∠C=90°,由OC⊥OB得∠C+∠3=90°,所以∠2=∠3,而∠1=∠3,所以∠1=∠2;(2)由OF:OB=1:3,⊙O的半径为3得到OF=1,由(1)中∠1=∠2得EF=ED,在Rt△ODE 中,DE=x,则EF=x,OE=1+x,根据勾股定理得32+t2=(t+1)2,解得t=4,则DE=4,OE=5,根据切线的性质由AG为⊙O的切线得∠GAE=90°,再证明Rt△EOD∽Rt△EGA,利用相似比可计算出AG.解答:(1)证明:连结OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠2+∠ODC=90°,∵OC=OD,∴∠C=∠ODC,∴∠2+∠C=90°,而OC⊥OB,∴∠C+∠3=90°,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2;(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠1=∠2,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+t2=(t+1)2,解得t=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴=,即=,∴AG=6.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理和相似三角形的判定与性质.5.(2014年四川资阳,第21题9分)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接A D.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)根据圆周角定理由AB是⊙O的直径得到∠ADB=90°,则∠B+∠BAD=90°,再根据切线的性质得AC为⊙O的切线得∠BAD+∠DAE=90°,则∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,则∠CAD=∠CDE,加上∠ECD=∠DCA,根据三角形相似的判定方法即可得到△CDE∽△CAD;(2)在Rt△AOC中,OA=1AC=2,根据勾股定理可计算出OC=3,则CD=OC﹣OD=2,然后利用△CDE∽△CAD,根据相似比可计算出CE.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.6.(2014•新疆,第21题10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.考点:切线的判定.专题:证明题.分析:(1)连结OC,由=,根据圆周角定理得∠F AC=∠BAC,而∠OAC=∠OCA,则∠F AC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=4,所以⊙O的半径为4.解答:(1)证明:连结OC,如图,∵=,∴∠F AC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠F AC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=4,∴⊙O的半径为4.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.7.(2014•毕节地区,第26题14分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O 交AB于点D,连接C D.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.考点:切线的判定分析:(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.解答:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.点评:此题主要考查了切线的判定,以及圆周角定理,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.8.(2014·云南昆明,第22题8分)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D .(1)求证:AC 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)考点: 切线的判定;阴影部分面积.分析: (1)连接OD ,求出∠A =∠DOC ,推出∠ODC =90°,根据切线的判定推出即可;(2)先求出ODC Rt ∆的面积,再求出扇形ODC 的面积,即可求出阴影部分面积. 解答: (1)证明:如图,连接OD∵OD OB =,∴21∠=∠,∴∠12∠=DOC ,∵12∠=∠A ,∴DOC A ∠=∠,∠ABC =90°, 90=∠+∠∴C A∴90=∠+∠C ODC , 90=∠∴ODC∵OD 为半径,∴AC 是⊙O 的切线;(2)解: 60=∠=∠DOC A ,2=OD∴在ODC Rt ∆中,OD DC =60tan 323260tan =⨯== OD DC∴323222121=⨯⨯=⋅=∆DC OD S ODC Rt 第22题图E O C B A 1Dπππ3236026036022=⨯⨯==r n S ODE 扇形 π3232-=-=∴∆ODE ODC Rt S S S 扇形阴影 点评: 本题考查了等量代换、切线的判定、三角形面积、扇形面积等知识点的应用,主要考查学生的推理能力..9. (2014•株洲,第23题,8分)如图,PQ 为圆O 的直径,点B 在线段PQ 的延长线上,OQ =QB =1,动点A 在圆O 的上半圆运动(含P 、Q 两点),以线段AB 为边向上作等边三角形AB C .(1)当线段AB 所在的直线与圆O 相切时,求△ABC 的面积(图1);(2)设∠AOB =α,当线段AB 、与圆O 只有一个公共点(即A 点)时,求α的范围(图2,直接写出答案);(3)当线段AB 与圆O 有两个公共点A 、M 时,如果AO ⊥PM 于点N ,求CM 的长度(图3).(第1题图)考点: 圆的综合题;等边三角形的性质;勾股定理;切线的性质;相似三角形的判定与性质;特殊角的三角函数值.分析: (1)连接OA ,如下图1,根据条件可求出AB ,然后AC 的高BH ,求出BH 就可以求出△ABC 的面积.(2)如下图2,首先考虑临界位置:当点A 与点Q 重合时,线段AB 与圆O 只有一个公共点,此时α=0°;当线段AB 所在的直线与圆O 相切时,线段AB 与圆O 只有一个公共点,此时α=60°.从而定出α的范围.(3)设AO与PM的交点为D,连接MQ,如下图3,易证AO∥MQ,从而得到△PDO∽△PMQ,△BMQ∽△BAO,又PO=OQ=BQ,从而可以求出MQ、OD,进而求出PD、DM、AM、CM 的值.解答:解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥A B.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB===.∵△ABC是等边三角形,∴AC=AB=,∠CAB=60°.∵sin∠HAB=,∴HB=AB•sin∠HAB=×=.∴S△ABC=AC•BH=××=.∴△ABC的面积为.(2)①当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;②当线段A1B所在的直线与圆O相切时,如图2所示,线段A1B与圆O只有一个公共点,此时OA1⊥BA1,OA1=1,OB=2,∴cos∠A1OB==.∴∠A1OB=60°.∴当线段AB与圆O只有一个公共点(即A点)时,α的范围为:0°≤α≤60°.(3)连接MQ,如图3所示.∵PQ是⊙O的直径,∴∠PMQ=90°.∵OA⊥PM,∴∠PDO=90°.∴∠PDO=∠PMQ.∴△PDO∽△PMQ.∴==∵PO=OQ=PQ.∴PD=PM,OD=MQ.同理:MQ=AO,BM=A B.∵AO=1,∴MQ=.∴OD=.∵∠PDO=90°,PO=1,OD=,∴PD=.∴PM=.∴DM=.∵∠ADM=90°,AD=A0﹣OD=,∴AM===.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥A B.∵AM=,∴BM=,AB=.∴AC=.∴CM===.∴CM的长度为.点评:本题考查了等边三角形的性质、相似三角形的性质与判定、直线与圆相切、勾股定理、特殊三角函数值等知识,考查了用临界值法求角的取值范围,综合性较强.10. (2014•泰州,第25题,12分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b 为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(第2题图)(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.考点:圆的综合题分析:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,解答:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).点评:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系.11 (2014•扬州,第25题,10分)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.(第3题图)考点:切线的性质;弧长的计算.分析:(1)要证明DE∥BC,可证明∠EDA=∠B,由弧DE的长度为4π,可以求得∠DOE 的度数,再根据切线的性质可求得∠EDA的度数,即可证明结论.(2)根据90°的圆周角对的弦是直径,可以求得EF,的长度,借用勾股定理求得AE与CF 的长度,即可得到答案.解答:解:(1)证明:连接OD、OE,∵OD是⊙O的切线,∴OD⊥AB,∴∠ODA=90°,又∵弧DE的长度为4π,∴,∴n=60,∴△ODE是等边三角形,∴∠ODE=60°,∴∠EDA=30°,∴∠B=∠EDA,∴DE∥B C.(2)连接FD,∵DE∥BC,∴∠DEF=90°,∴FD是⊙0的直径,由(1)得:∠EFD=30°,FD=24,∴EF=,又因为∠EDA=30°,DE=12,∴AE=,又∵AF=CE,∴AE=CF,∴CA=AE+EF+CF=20,又∵,∴BC=60.点评:本题考查了勾股定理以及圆的性质的综合应用,解答本题的关键在于900的圆周角对的弦是直径这一性质的灵活运用.12.(2014•滨州,第21题8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.考点:扇形面积的计算;等腰三角形的性质;切线的判定;特殊角的三角函数值.专题:几何综合题;压轴题.分析:(1)连接O C.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.解答:(1)证明:连接O C.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=90°.∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形BOC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.点评:此题综合考查了等腰三角形的性质、切线的判定方法、扇形的面积计算方法.13.(2014•德州,第22题10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.考点:切线的判定;勾股定理;圆周角定理.分析:(1)①连接BD,先求出AC,在RT△ABC中,运用勾股定理求AC,②由CD平分∠ACB,得出AD=BD,所以RT△ABD是直角等腰三角形,求出AD,②连接OC,(2)由角的关系求出∠PCB=∠ACO,可得到∠OCP=90°,所以直线PC与⊙O相切.解答:解:(1)①如图,连接BD,∵AB是直径,∴∠ACB=∠ADB=90°,在RT△ABC中,AC===8,②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形,∴AD=AB=×10=5cm;(2)直线PC与⊙O相切,理由:连接OC,∵OC=OA,∴∠CAO=∠OCA,∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE,∵CD平分∠ACB,∴∠ACE=∠ECB,∴∠PCB=∠ACO,∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.点评:本题主要考查了切线的判定,勾股定理和圆周角,解题的关键是运圆周角和角平分线及等腰三角形正确找出相等的角.14.(2014•菏泽,第18题10分)如图,AB是⊙O的直径,点C在⊙O上,连接BC,AC,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若=,求cos∠ABC的值.考点:切线的判定;勾股定理.分析:(1)如图,连接O C.欲证DE是⊙O的切线,只需证得OC⊥DE;(2)由=,可设CE=2k(k>0),则DE=3k,在Rt△DAE中,由勾股定理求得AE==2k.则tanE==.所以在Rt△OCE中,tanE==.在Rt△AOD中,由勾股定理得到OD==k,故cos∠ABC=cos∠AOD==.解答:(1)证明:如图,连接O C.∵AD是过点A的切线,AB是⊙O的直径,∴AD⊥AB,∴∠DAB=90°.∵OD∥BC,∴∠1=∠2,∠3=∠4.∵OC=OB,∴∠2=∠4.∴∠1=∠3.在△COD和△AOD中,,∴△COD≌△AOD(SAS)∴∠OCD=∠DAB=90°,即OC⊥DE于点C.∵OC是⊙O的半径,∴DE是⊙O的切线;(2)解:由=,可设CE=2k(k>0),则DE=3k,∴AD=DC=k.∴在Rt△DAE中,AE==2k.∴tanE==.∵在Rt△OCE中,tanE==.∴=,∴OC=OA=.∴在Rt△AOD中,OD==k,∴cos∠ABC=cos∠AOD==.点评:本题考查了切线的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.圆与圆的位置关系一、选择题1. (2014•扬州,第5题,3分)如图,圆与圆的位置关系没有()(第1题图)A.相交B.相切C.内含D.外离考点:圆与圆的位置关系分析:由其中两圆有的位置关系是:内切,外切,内含、外离.即可求得答案.解答:解:∵如图,其中两圆有的位置关系是:内切,外切,内含、外离.∴其中两圆没有的位置关系是:相交.故选A.点评:此题考查了圆与圆的位置关系.注意掌握数形结合思想的应用.2.(2014•济宁,第10题3分)如图,两个直径分别为36cm和16cm的球,靠在一起放在同一水平面上,组成如图所示的几何体,则该几何体的俯视图的圆心距是()A.10cm.B.24cm C.26cm D.52cm考点:简单组合体的三视图;勾股定理;圆与圆的位置关系.分析:根据两球相切,可得球心距,根据两圆相切,可得圆心距是半径的和,根据根据勾股定理,可得答案.解答:解:球心距是(36+16)÷2=26,两球半径之差是(36﹣16)÷2=10,俯视图的圆心距是=24cm,故选:B.点评:本题考查了简单组合体的三视图,利用勾股定理是解题关键.二.填空题1.(2014年四川资阳,第14题3分)已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是相离.考点:圆与圆的位置关系;根与系数的关系.分析:由⊙O1与⊙O2的半径r1、r2分别是方程x2﹣5x+5=0的两实根,根据根与系数的关系即可求得⊙O1与⊙O2的半径r1、r2的和,又由⊙O1与⊙O2的圆心距d=6,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两圆的半径分别是方程x2﹣5x+5=0的两个根,∴两半径之和为5,解得:x=4或x=2,∵⊙O1与⊙O2的圆心距为6,∴6>5,∴⊙O1与⊙O2的位置关系是相离.故答案为:相离.点评:此题考查了圆与圆的位置关系与一元二次方程的根与系数的关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.三.解答题1. (2014年江苏南京,第26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.(第1题图)考点:圆的性质、两圆的位置关系、解直角三角形分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解答:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,。
选择题1.2-的相反数是( ). (A )2- (B )12-(C )12(D )2 2.下列运算正确的是( ).(A )623a a a ÷= (B )532a a -= (C )326236a a a = (D )()22124a a--=3.右图是某几何体的三视图,则该几何体的体积是( ). (A )π (B )2π (C )3π (D )4π4.若关于x 的方程20x x a -+=有实根,则a 的值可以是( ).(A )2 (B )1 (C )0.5 (D )0.255.如图,半圆O 与等腰直角三角形两腰CA CB ,分别切于D E ,两点,直径FG 在AB 上,若1BG =,则ABC △的周长为( ).(A )4+ (B )6(C )2+ (D )46.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w (吨)与时间t (小时)之间的函数关系如图所示,则这批物资从开始调进到全部调出所需要的时间是( ).(A )8.4小时 (B )8.6小时 (C )8.8小时 (D )9小时7.种菜能手李大叔种植了一批新品种黄瓜,为了考察这种黄瓜的生产情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到右面的条形图.则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是( ). (A )13.5,20 (B )15,5(C )13.5,14 (D )13,148.对平面上任意一点()a b ,,定义f g ,两种变换:()()f a b a b =-,,.如()12f ,()12=-,;()()g a b b a =,,.如()()1221g =,,,据此得()()59g f -=,( ). (A )()59-, (B )()95--, (C )()59, (D )()95,9.如图所示的数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的.第n 行有n 个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( ).(A )160(B )1168(C )1252 (D )128010.已知m n k ,,为非负实数,且121m k k n -+=+=,则代数式2286k k -+的最小值为( ).(A )-2 (B )0 (C )2 (D )2.5 填空题11.某次知识竞赛共有20道题,每一题答对得10分.答错或不答都扣5分,娜娜得分要超过90分,设她答对了x 道题,则根据题意可列不等式 .12.如图,AB GH CD ∥∥,点H 在BC 上,AC 与BD 交于点G .23AB CD ==,,则GH 的长为 .13.在一个不透明的口袋中装有仅颜色不同的红、白两种小球.其中红球3只,白球n 只,若从袋中任取一个球,摸出白球的概率是34,则n = . 14.如图,反比例函数()30y x x=>的图象与矩形OABC 的边AB BC ,分别交于点E F ,,且AE BE =,则OEF △的面积的值为 .15.如图,ABC △中,AD 是中线,AE 是角平分线,CF AE ⊥于F ,5AB =,2AC =,则DF 的长为 .解答题16计算:221222-⎛⎫----- ⎪⎝⎭17.先化简:2344111x x x x x -+⎛⎫-+÷⎪++⎝⎭,然后从12x -≤≤中选一个合适的整数作为x 的值代入求值.18.在水果店里,小李买了5kg 苹果,3kg 梨,老板少要2元,收了50元;老王买了11kg 苹果、5kg 梨,老板按九折收钱,收了90元.该店的苹果和梨的单价各是多少元?19.如图,在ABC △中,90ACB CD AB =⊥∠°,于D ,AE 平分BAC ∠,分别与BC CD ,交于E F ,,EH AB ⊥于H ,连接FH20.国家环保部发布的《环境空气质量标准》规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某市环保部门随机抽取了一居民区去年若干天PM2.5的24小时平均浓度的监测数据,并统计如下:(1)求出表中a b c ,,的值,并补全频数分布直方图;(2)从样本里PM2.5的24小时平均浓度不低于50微克/立方米的天数中,随机抽取两天,求出“恰好有一天PM2.5的24小时平均浓度不低于75微克/立方米”的概率;(3)求出样本平均数,从PM2.5的年平均浓度考虑,估计该居民区去年的环境是否需要改进?说明理由.21.九(1)班数学兴趣小组为了测量河对岸的两座古塔A B ,的距离.他们在河这边沿着与AB 平行的直线l 上取相距20m 的C D ,两点,测得15120ACB BCD ==∠°,∠°,30ADC =∠°,如图所示,求古塔A B ,的距离.22.如图,点A B C D ,,,在O 上,AC BD ⊥于点E ,过点O 作OF BC ⊥于点.F求证:(1)AEB OFC △∽△; (2)2AD FO =.23.某公司销售一种进价为20元/个的计算器,其销售量y (万个)与销售价格x (元/个)的变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数、反比例函数或二次函数的有关知识写出y (万个)与x (元/个)的函数解析式;(2)求出该公司销售这种计算器的净得利润z (万元)与销售价格x (元/个)的函数解析式,销售价格为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24.如图,在平面直角坐标系中,ABCD 的顶点A B ,在x 轴上.连接OD BD ,,BOD △的外心I 在中线BF 上,BF 与AD 交于点E . (1)求证:OAD EAB △≌△;(2)求过点O E B ,,的抛物线所表示的二次函数解析式;(3)在(2)中的抛物线上是否存在点P ,其关于直线BF 的对称点在x 轴上?若有,求出点P 的坐标;(4)连接.OE 若点M 是直线BF 上一动点,且BMD △与OED △相似,求点M 的坐标.参考答案1.A2. D3.A4.D5.A6.C7.C8.D9.B 10.D11. 105(20)90x x -->(答案不唯一)12.6513.9 14.94 15.1.5 16.解:原式()442=---+4分)6.=-(6分)17.解:原式=()()()()()2223122211112x x x x x x x x x ⎛⎫---+-+ ⎪÷= ⎪+++-⎝⎭2.2x x+=-(6分) 当0x =时,结果为1.(当1x =时,结果为3)(8分)18.解:设苹果的单价为x 元/千克,梨的单价为y 元/千克,根据题意有53502115900.9x y x y +=+⎧⎨+=÷⎩,, 即5352115100.x y x y +=⎧⎨+=⎩,(5分) 解得59.x y =⎧⎨=⎩,答:苹果的单价为5元/千克,梨的单价为9元/千克.(7分) 19.证明:∵AE 平分BAC ∠,∴CAE EAH ∠=∠,而90ACB CD AB =⊥∠°,,∴90CEA CAE AFD EAH +=+=∠∠∠∠°,又AFD CFE =∠∠ ∴CFE CEF =∠∠,∴.CF CE =(4分)又∵AE 平分BAC ∠,90ACB EH AB =⊥∠°,,∴.CE EH =(7分) ∴CF EH CE ==,∵CD AB EH AB ⊥⊥,, ∴CF EH ∥,∴四边形CFHE 是菱形.(10分) 20. 解:(1)1030.15a b c ===,,;(3分)补图略.(5分)(2)样本中PM2.5的24小时平均浓度不低于50微克/立方米的天数总计5天,设PM2.5的24小时平均浓度在50≤x <75内的3天记为123b b b ,,,PM2.5的24小时平均浓度在75≤x <100内的2天记为12d d ,,所以从5天随机抽取两天的结果为:12131112bb bb b d b d ,,,,232122313212b b b d b d b d b d d d ,,,,,共10种.其中恰好有一天PM2.5的24小时平均浓度不低于75微克/立方米的结果有:111221223132b d b d b d b d b d b d ,,,,,共6种,则恰好有一天PM2.5的24小时平均浓度不低于75微克/立方米的概率为:63.105P ==(9分)(3)去年该居民区PM2.5的年平均浓度为:()12.5537.51062.5387.522040⨯+⨯+⨯+⨯÷=(微克/立方米).因为40>35.所以去年该居民区PM2.5的年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.(12分) 21.解:过点A 作AE DC ⊥于E ,过点C 作CF AB ⊥于F ,故AE CF ∥,又AB CD ∥, ∴四边形AECF 是矩形.∵15120ACB BCD ==∠°,∠°,∴45.ACE =∠° 于是有AE CE =,∴矩形AECF 是正方形.(4分)设()0AE x x =>,在Rt AED △中,3020ADC CD ==∠°,,∴220AD x ED x ==+,,于是()()222220x x x =++,即2202000x x --=,解得10x =+AECF 的边长为10+(8分)∵4515ACF ACB ==∠°,∠°, ∴30BCF =∠°.在Rt CFB △中,tan 10BF CF BCF ==+∠∴3AB AF BF =-=即古塔A B ,的距离为m.3(11分) 22.证明:(1)连接OB ,则12BAC BOC =∠∠,而OF BC ⊥, ∴1.2COF BOC =∠∠∴BAC COF =∠∠,又90BEA CFO ==∠∠°,∴AEB OFC △∽△;(4分)(2)∵CBD CAD =∠∠,90BEC AED ==∠∠°,∴AED BEC △∽△, ∴AE AD BE BC =,由(1)知AE OF BE CF =,∴.AD OFBC CF = 又∵OF BC ⊥于F ,∴2BC CF =,∴2.AD FO =(10分)23.解:(1)1810y x =-+;(3分) (2)()()22112040102005050.1010z x y x x x =--=-+-=--+ 故当销售单价为50元/个时净得利润最大,最大值为50万元;(7分) (3)当净得利润为40万元时,即21102004010x x -+-=,解得124060.x x ==, 通过观察函数211020010z x x =-+-的图象(如图). 可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:4060x ≤≤. 而y 与x 的函数关系式为:18.10y x =-+∵1010-<,∴y 随x 的增大而减小. 若还需考虑销售量y (万个)尽可能大,故销售价格应定为40元/个.(12分)24. 解:(1)证明:连接ID IO ,,∵I 是BOD △的外心,∴.ID IO = 又F 是OD 的中点,∴IF OD ⊥,∴90DEF FDE AEB EBA +=+=∠∠∠∠°,又DEF AEB =∠∠,∴FDE EBA =∠∠,而DA BA =且OAD EAB =∠∠, ∴OAD EAB △≌△;(3分)(2)由(1)知IF OD ⊥,而BF是中线,∴2BO BD ===,∴()20B ,.∴2OA OB AB =-=又OAD EAB △≌△,故2EA OA ==∴(2.E 设过点O E B ,,的抛物线的函数解析式为2y ax bx =+,由(((2420222.a b a b +=⎧⎪⎨+=⎪⎩,即(2021a b a b +=⎧⎪⎨+=⎪⎩,,解得2a b ⎧=-⎪⎨⎪=⎩∴此抛物线的函数解析式为2y x =;(6分) (3)存在;此问题即为“在x 轴上是否存在点,其关于直线BF的对称点在抛物线22y x =-上”.由(1)知,x 轴上的点关于直线BF 的对称点在直线BD 上. ∵()(202B D ,,,可得直线BD 的解析式为 2.y x =-+设22P x x ⎛⎫-+ ⎪ ⎪⎝⎭,,它也在直线BD 上,∴222x x -=-+,即()()222x x x --=--,解得122x x =, ∴()120P ,(即点B ),2P ;(10分) (4)∵45DBO BD BO BF OD ==⊥∠°,,,∴22.5EBA =∠°,由(1)知22.5ODA =∠°.故67.5DOA =∠°,又∵OA EA =,∴4522.5EOA DOE =∴=∠°,∠°,即OED △是顶角为135°的等腰三角形.若BMD △与OED △相似,则BMD △必须是等腰三角形,而在直线BF 上能使BMD△为等腰三角形的M 点有四个,分别记为1234M M M M ,,,(如图),其中符合题意的是13.M M ,∵145135BDC BDM ==∠°,∠°, ∴点1M 在直线CD 上.∵122DM DB OA ===,∴(1.M∵33BM DM =,点I 为BOD △的外心,∴点3M 与点I 重合. 由(1)知()(202B E ,,,故直线BE的解析式为(12y x =-+∵I 是BOD △的外心,∴点I 是OB 的垂直平分线1x =与OD 的垂直平分线BE 的交点,∴()1I ,即()31.M故符合题意的M点的坐标为(()1.(14分)。
2014中26题专项训练训练目标1.熟悉题型结构,辨识题目类型,调用解题方法;2.书写框架明晰,踩点得分(完整、快速、简洁)。
题型结构及解题方法压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。
答题规范动作1.试卷上探索思路、在演草纸上演草。
2.合理规划答题卡的答题区域:两栏书写,先左后右。
作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。
3.作答要求:框架明晰,结论突出,过程简洁。
23题作答更加注重结论,不同类型的作答要点:几何推理环节,要突出几何特征及数量关系表达,简化证明过程;面积问题,要突出面积表达的方案和结论;几何最值问题,直接确定最值存在状态,再进行求解;存在性问题,要明确分类,突出总结。
4.20分钟内完成。
实力才是考试发挥的前提。
若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。
下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。
课程名称:2013中考数学难点突破之动点1、图形运动产生的面积问题2、存在性问题3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题)3、2013中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存在性、四边形的存在性、压轴题综合训练)一、图形运动产生的面积问题一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态:①由起点、终点确定t 的范围;②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.3. 分段画图,选择适当方法表达面积. 二、精讲精练已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积.(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.1题图 2题图如图,等腰梯形ABCD 中,AB ∥CD ,AB= CD高CE=,对角线AC 、BD 交于点H .平行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒.AB C M N QPAB CHD CBAAB CDH H D CBAA B C DMN R QF G HE HD C B A H DC BA(1)填空:∠AHB =____________;AC =_____________;(2)若213S S ,求x .如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2).(1)t 为何值时,点Q' 恰好落在AB 上?(2)求S 与t 的函数关系式,并写出t 的取值范围.(3)S 能否为98?若能,求出此时t 的值;若不能,请说明理由.如图,在△ABC 中,∠A =90°,AB =2cm ,AC =4cm ,动点P 从点A 出发,沿AB 方向以1cm/s 的速度向点B 运动,动点Q 从点B 同时出发,沿BA 方向以1cm/s 的速度向点A 运动.当点P 到达点B 时,P ,Q 两点同时停止运动.以AP 为边向上作正方形APDE ,过点Q 作QF ∥BC ,交AC 于点F .设点P 的运动时间为t s ,正方形APDE 和梯形BCFQ 重叠部分的面积为S cm 2.(1)当t =_____s 时,点P 与点Q 重合; (2)当t =_____s 时,点D 在QF 上;(3)当点P 在Q ,B 两点之间(不包括Q ,B 两点)时, 求S 与t 之间的函数关系式.如图,在平面直角坐标系中,已知点A (0,1)、D (-2,0),作直线AD 并以线段AD 为一边向上作正方形ABCD .(1)填空:点B 的坐标为________,点C 的坐标为_________.(2)若正方形以每秒5个单位长度的速度沿射线DA 向上平移,直至正方形的顶点C 落在y 轴上时停止运动.在运动过程中,设正方形落在y 轴右侧部分的面积为S ,求S 关于平移时间t (秒)的函数关系式,并写出相应的自变量t 的取值范围.CBAABCPRQ Q'lABC如图,在平面直角坐标系xOy 中,已知直线l 1:y =12x 与直线l 2:y =-x +6相交于点M ,直线l 2与x 轴相交于点N .(1)求M ,N 的坐标.(2)已知矩形ABCD 中,AB =1,BC =2,边AB 在x 轴上,矩形ABCD 沿x 轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD 与△OMN 重叠部分的面积为S ,移动的时间为t (从点B 与点O 重合时开始计时,到点A 与点N 重合时计时结束).求S 与自变量t 之间的函数关系式,并写出相应的自变量t 的取值范围.一、知识点睛解决“二次函数中存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.③验证取舍.结合点的运动范围,画图或推理,对结果取舍. 二、精讲精练如图,已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧..部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于A 、B 两点. 若以AB 为直角边的△PAB 与△OAB 相似,请求出所有符合条件的点P 的坐标.尽兴,爽快;“淋、抛物线134y x =--+与y 轴交于点A ,顶点为B ,对称轴BC 与x 轴交于点C .点P 在抛物线上,直线PQ //BC 交x 轴于点Q ,连接BQ .(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C 重合,直角顶点D 在BQ 上,另一个顶点E 在PQ 上,求直线BQ 的函数解析式;(2)若含30°角的直角三角板的一个顶点与点C 重合,直角顶点D 在直线BQ 上(点D 不与点Q 重合),另一个顶点E 在PQ 上,求点P 的坐标.yOyxOOxy y x O O x y y x O O x y x AB C DNMOy如图,矩形OBCD 的边OD 、OB 分别在x 轴正半轴和y 轴负半轴上,且OD =10,OB =8.将矩形的边BC 绕点B 逆时针旋转,使点C 恰好与x 轴上的点A 重合.(1)若抛物线c bx x y ++-=231经过A 、B 两点,求该抛物线的解析式:______________;(2)若点M 是直线AB作MN ⊥x 轴于点N .是否存在点M ,使△AMN与△ACD 相似?若存在,求出点M 的坐标; 若不存在,说明理由.已知抛物线2=23y x x --经过A 、B 、C 三点,点P (1,k)在直线BC :y=x -3上,若点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的四边形为平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.抛物线2212-+=x x y 与y 轴交于点C ,与直线y =x 交于A (-2,-2)、B (2,2)两点.如图,线段MN 在直线AB上移动,且MN =M 的横坐标为m ,过点M 作x 轴的垂线与x 轴交于点P ,过点N 作x 轴的垂线与抛物线交于点Q .以P 、M 、Q 、N为顶点的四边形否为平行四边形?若能,请求出m 的值;若不能,请说明理由.COyBA xxA ByO C C O yBAx三、二次函数与几何综合一、知识点睛“二次函数与几何综合”思考流程:整合信息时,下面两点可为我们提供便利:①研究函数表达式.二次函数关注四点一线,一次函数关注k 、b ;②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.二、精讲精练1. 如图,抛物线y =ax 2-5ax +4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A在x 轴上,点C 在y2. B 的坐标为(-1,0),与y 轴的负半轴交于点C ,顶点为D .连接AC 、CD ,∠ACD =90°.(1)求抛物线的解析式;(2)点E 在抛物线的对称轴上,点F 在抛物线上,且以B 、A 、F 、E 四点为顶点的四边形为平行四边形,求点F 的坐标.3. 如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8. (1)求该抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E .设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.4. 已知,抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围.5. 已知抛物线2y ax bx c =++的对称轴为直线2x =,且与x 轴交于A 、B 两点,与y 轴交于点C ,其中A (1,0),C (0,-3).(1)求抛物线的解析式;(2)若点P 在抛物线上运动(点P 异于点A ),①如图1,当△PBC 的面积与△ABC 的面积相等时,求点P 的坐标;②如图2,当∠PCB =∠BCA 时,求直线CP 的解析式.1.如图,在直角梯形OABC 中,AB ∥OC ,BC ⊥x 轴于点C ,A (1,1),B (3,1).动点P 从点O 出发,沿x 轴正方向以每秒1个单位长度的速度移动.过点P 作PQ ⊥OA ,垂足为Q .设点P 移动的时间为t 秒(0<t <4),△OPQ 与直角梯形OABC 重叠部分的面积为S .2.如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线的解析式及点D 的坐标.(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标.(3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由.3.(11分)如图,已知直线112y x =-+与坐标轴交于A ,B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D ,C 的抛物线与直线的另一个交点为E .(1)请直接写出C ,D 两点的坐标,并求出抛物线的解析式;(2AB 下滑,直至顶点D 落在x 轴上时停止,设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C ,E 两点间的抛物线弧所扫过的面积.4.(11分)如图,抛物线y =ax 2+bx +c 交x 轴于点A (-3,0),点B (1,0),交y 轴于点E (0,-3).点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线l 过点F 且与y 轴于点D .(1)求抛物线的解析式;(2)点K 为线段AB 上一动点,过点K 作x 轴的垂线,交直 线CD 于点H ,交抛物线于点G ,求线段HG 长度的最大值; (3)在直线l 上取点M ,在抛物线上取点N ,使以A ,C ,M , N 为顶点的四边形是平行四边形,求点N 的坐标.5.(11分)如图,在平面直角坐标系中,直线3342y x=-与 抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B (1)求抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E .①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.②连接P A ,以P A 为边作图示一侧的正方形APFG .随着点P 正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 直接写出对应的点P 的坐标.6.(11分)如图1,点A 为抛物线C 1:2122y x =-的顶点,点B 的坐标为 (1,0),直线AB 交抛物线C 1于另一点C . (1)求点C 的坐标;(2)如图1,平行于y 轴的直线x =3交直线AB 于点D ,交抛物线C 1于点E ,平行于y 轴的直线x =a 交直线AB 于点F ,交抛物线C 1于点G ,若FG :DE =4:3,求a 的值;(3)如图2,将抛物线C 1向下平移m (m >0)个单位得到抛物线C 2,且抛物线C 2的顶点为P ,交x 轴负半轴于点M ,交射线AB 于点N ,NQ ⊥x 轴于点Q ,当NP 平分∠MNQ 时,求m 的值.图1 图2附:参考答案一、图形运动产生的面积问题1. (1)当t =32时,四边形MNQP 平方厘米.(2) 当0<t ≤1时,+2S =;当1<t ≤2时,2S =;当2<t <3时,2S =+2.(1)90°;4 (2)x =2. 3.(1)当t =125时,点Q' 恰好落在AB 上. (2)当0<t ≤125时,23-+38S t t =;当125<t ≤6时,29(8-)56S t =(3)由(2)问可得,当0<t ≤125时,239-388t t += ;当125<t ≤6时,299(8-)568t =;解得,8t =4t =98S =.4.(1)1 (2)45(3)当1<t ≤43时,29-24S t t =;当43<t <2时,29-10-84S t t =+. 5.(1)(﹣1,3),(﹣3,2) (2)当0<t ≤12时,25S t =;当12<t ≤1时,55-4S t =;当1<t ≤32时,225-515-4S t t =+. 6.(1)M (4,2) N (6,0)(2)当0≤t ≤1时,24t S =;当1<t ≤4时,1-24t S =; 当4<t ≤5时,231349--424S t t =+;当5<t ≤6时,13-2S t =+; 当6<t ≤7时,()217-2S t =二、二次函数中的存在性问题1.解:由题意,设OA =m ,则OB =2m ;当∠BAP =90°时,△BAP ∽△AOB 或△BAP ∽△BOA ; ① 若△BAP ∽△AOB ,如图1,可知△PMA ∽△AOB ,相似比为2:1;则P 1(5m ,2m ),代入x x y 32+-=,可知2513=m ,)2526,513(1P ② 若△BAP ∽△BOA ,如图2,可知△PMA ∽△AOB ,相似比为1:2;则P 2(2m ,2m),代入x x y 32+-=,可知811=m ,)1611,411(2P当∠ABP =90°时,△ABP ∽△AOB 或△ABP ∽△BOA ;③ 若△ABP ∽△AOB ,如图3,可知△PMB ∽△BOA ,相似比为2:1;则P 3(4m ,4m ),代入x x y 32+-=,可知21=m ,)2,2(3P ④ 若△ABP ∽△BOA ,如图4,可知△PMB ∽△BOA ,相似比为1:2;则P 4(m ,m 25), 代入x x y 32+-=,可知21=m ,415(,)24P2.解:(1)由抛物线解析式()21134y x =--+可得B 点坐标(1,3)要求直线BQ 的函数解析式,只需求得点Q 坐标即可,即求CQ 长度.过点D 作DG ⊥x 轴于点G ,过点D 作DF ⊥QP 于点F .则可证△DCG ≌△DEF .则DG =DF ,∴矩形DGQF 为正方形.则∠DQG =45°,则△BCQ 为等腰直角三角形.∴CQ =BC =3,此时,Q 点坐标为(4,0)可得BQ 解析式为y =-x +4.(2)要求P 点坐标,只需求得点Q 坐标,然后根据横坐标相同来求点P 坐标即可.而题目当中没有说明∠DCE =30°还是∠DCE =60°,所以分两种情况来讨论.① 当∠DCE =30°时,a )过点D 作DH ⊥x 轴于点H ,过点D 作DK ⊥QP 于点K .则可证△DCH ∽△DEK .则DH DC DK DE==在矩形DHQK 中,DK =HQ,则DHHQ=在Rt △DHQ 中,∠DQC =60°.则在Rt △BCQ中,BCCQ=∴CQQ 点坐标为(,0)则P 点横坐标为代入()21134y x =--+可得纵坐标.∴P (b )又P 、Q 为动点,∴可能PQ 由对称性可得此时点P 坐标为(194) ② 当∠DCE =60°时,a) 过点D 作DM ⊥x 轴于点M ,过点D 作DN ⊥QP 于点N .则可证△DCM ∽△DEN .则DMDC DN DE == 在矩形DMQN 中,DN =MQ ,则DM MQ =. 在Rt △DMQ 中,∠DQM =30°.则在Rt △BCQ 中,BC CQ =∴CQ =Q 点坐标为(1+0)则P 点横坐标为1+代入()21134y x =--+可得纵坐标.∴P (1+154-).b )又P 、Q 为动点,∴可能PQ 在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P 坐标为(1-154-) 综上所述,P 点坐标为(94),(194),(1+154-)或(1-154-).3.解:(1)∵AB =BC =10,OB =8 ∴在Rt △OAB 中,OA =6 ∴ A (6,0)的快乐”“要敢于说不化学教案不要害怕拒绝他4.解:满足条件坐标为:1(3M 2(3M 3(1-+M 4(1-M思路分析:A 、M 、N 、P 四点中点A 、点P 为顶点,则AP 可为平行四边形边、对角线;(1)如图,当AP 为平行四边形边时,平移AP ;∵点A 、P 纵坐标差为2 ∴点M 、N 纵坐标差为2; ∵点M 的纵坐标为0 ∴点N 的纵坐标为2或-2 ①当点N 的纵坐标为2时 解:2232--=x x 得16=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为: 1(36,0)-M 、2(36,0)+M ②当点N 的纵坐标为-2时解:2232--=-x x 得12=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为: 3(12,0)-+M 、4(12,0)--M (2)当AP 为平行四边形边对角线时; 设M 5(m ,0) MN 一定过AP 的中点(0,-1)则N 5(-m ,-2),N 5在抛物线上 ∴2232+-=-m m12=-±m (负值不符合题意,舍去)∴12=-+m ∴5(12,0)-+M 综上所述:符合条件点P 的坐标为:1(36,0)-M 2(36,0)+M 3(12,0)-+M 4(12,0)--M5.解:分析题意,可得:MP ∥NQ ,若以P 、M 、N 、Q 为顶点的四边形为平行四边形,只需MP =NQ 即可。
2014 年中考数学二轮精品复习试卷:圆学校: ___________姓名: ___________班级: ___________考号: ___________1、半径为 3 的圆中,一条弦长为4,则圆心到这条弦的距离是A . 3B. 4C.D.2、两个圆的半径分别为 2 和 3,当圆心距d=5 时,这两个圆的位置关系是【】A .内含B.内切C.相交D.外切3、如图,四边形 ABCD 是菱形,∠ A=60°, AB=2 ,扇形 BEF 的半径为 2,圆心角为 60°,则图中阴影部分的面积是A.B.C.D.4、如图,已知线段 OA 交⊙ O 于点 B ,且 OB = AB ,点 P 是⊙ O 上的一个动点,那么∠ OAP 的最大值是A . 90°B. 60°C.45°D. 30°5、如图, AB 是半圆的直径,点 D 是弧 AC 的中点,∠ ABC = 500,则∠ DAB 等于A . 55°B. 60°C.65°D. 70°6、如图, ABCD 的顶点 A 、B 、D 在⊙ O 上,顶点 C 在⊙ O 的直径 BE 上,∠ ADC=54°,连接AE ,则∠ AEB 的度数为A . 36°B . 46°C. 27°D. 63°7、一条排水管的截面如图所示,已知排水管的半径OB=10 ,水面宽 AB=16 ,则截面圆心O到水面的距离OC 是【】A.4B. 5C.6D.88、如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为 45°,则“蘑菇罐头”字样的长度为【】A .cm B.cm C.cm D. 7π cm9、已知和的半径分别为和,圆心距为,则和的位置关系是【】A .外离B.外切C.相交D.内切10、如图,点 A ,B ,C 在⊙ O 上,∠ A=50°,则∠ BOC 的度数为【】A . 40°B. 50°C.80°D. 100 °11、如图,⊙ O 的半径 OD ⊥弦 AB 于点 C,连结 AO 并延长交⊙ O 于点 E,连结 EC.若 AB=8 ,CD=2 ,则 EC 的长为【】A.B.8C.D.12、如图,半圆O 的直径 AB=10cm ,弦 AC=6cm , AD 平分∠ BAC ,则 AD 的长为【】A .cm B.cm C.cm D. 4 cm13、如图,圆心在y 轴的负半轴上,半径为 5 的⊙ B 与 y 轴的正半轴交于点A( 0,1)。
新疆生产建设兵团2014年中考数学试卷一、选择题(本大题共9题,每题5分,共45分)2.如图是由四个相同的小正方体组成的立体图形,它的俯视图为()BB抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()8.“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组9.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()B二、填空题(本大题共6题,每题5分,共30分)10.不等式组的解集是.11.若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).12.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是.13.如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)14.(5分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.15.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.三、解答题(一)(本大题共4题,共32分)16.(6分)计算:(﹣1)3++(﹣1)0﹣.17.(8分)解分式方程:+=1.18.(8分)如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?19.(10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?四、解答题(二)(本大题共4小题,共43分)20.(10分)如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.21.(10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.22.(11分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站飞路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?23.(12分)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP 的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q 的坐标.参考答案=.),的顶点坐标是(﹣,×=252由题意得,.=2,EF=DH=二、填空题(本大题共6题,每题5分,共30分)10.(5分)(2014•新疆)不等式组的解集是﹣5<x<﹣2.y==1,,C=(tanB=AC=OA=AC==,即=,解得AD=.故答案为:.<<[1+2﹣.=,==BOC=×,AC=2CD=4,AC==4,解得,x=答:客、货两车经过小时相遇.,则﹣x+8=0AB==×(××﹣﹣<﹣+20=;OAB=,=,t=,OAB==,t=,的值为×=,×)×=,的坐标为()t=秒时,以点坐标为(,。
2024年乌鲁木齐市天山区九年级质量监测数学试卷注意事项:1.本卷满分150分,考试时间120分钟.2.本卷由试题卷和答题卷两部分组成,其中试题卷4页,答题卷2页,要求在答题卷上答题.3.答题前,请先在答题卷上认真填写座位号、姓名和准考证号.4.答题时,选择题答案必须使用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹的签字笔书写,要求字体工整,笔迹清楚.5.请按照题号顺序在各题目的答题区域内作答,超出答题区书写的答案无效;在草稿纸、问卷上答题无效.答题时不允许使用计算器.一、选择题(本大题共9小题,每小题4分,共36分,请按答题卷中的要求作答)1. 下面四个数中,最小的数是( )A. B. 0 C. 2 D. 2. 如图是某几何体的三视图,该几何体是( )A. 三棱锥B. 三棱柱C. 长方体D. 圆锥3. 截至2月10日8时,中央广播电视总台2024年春节联欢晚会在新媒体端直播用户规模达7.95亿人.将数据7.95亿用科学记数法表示为( )A. B. C. D. 4. 如图,与是位似图形,点O 为位似中心,且,若的周长为8,则的周长为( )A. 4B.C. 16D. 325. 下列运算正确的是()1-80.79510⨯87.9510⨯90.79510⨯97.9510⨯ABC DEF :1:2OA OD =ABC DEFA B. C. D. 6. 如图,中,.用尺规作图法作出射线,交于点D ,,P 为上一动点,则的最小值为( )A. 2B. 3C. 4D. 57. 我国古代数学名著《孙子算经》中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x 尺,根据题意可列方程为( )A. B. C. D. 8. 如图,、是的切线,B 、C 为切点,D 是上一点,连接、,若,,则的半径长为( )A. 1.5B.C.D. 9. 如图,二次函数的图象与x 轴负半轴交于,顶点坐标为,有以下结论:①;②;③若点,,,均在函数图象上,则;④对于任意m 都有;⑤点M ,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得,则a 的范围为.其中结论正确的有( ).236a a a ⋅=330a a ÷=()428=a a ()22ab ab =Rt ABC △90C ∠=︒AE AE BC 2CD =AB PD ()1 4.512x x -=-21 4.5x x -=+()1 4.512x x +=-()1 4.512x x +=+AB AC O O BD CD 60BDC ∠=︒3AB =O 23()20y ax bx c a =++≠1,02⎛⎫- ⎪⎝⎭()1,n <0abc 30a c +>()12,y -()20,y ()33,y 132y y y >>2a b am bm +≤+PM PN ⊥23a ≥A. 5个B. 4个C. 3个D. 2个二、填空题(本大题共6小题,每小题4分,共24分)10. 不等式的解集是____________.11. 如图,是由旋转得到,若,则____________.12. 已知一元二次方程的两个实数根为,,则的值是____________.13. 《义务教育劳动教育课程标准》(2022年版)首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有5名学生已经学会炒的菜品的种数依次为:3,4,3,5,5.则这组数据的方差是____________.14. 如图,平行于主光轴的光线和经过凹透镜的折射后,折射光线的反向延长线交于主光轴上一点P .,则的度数是________.15. 如图,已知矩形的对线中点与点都经过反比例函数的图象,且,则____________.30x +>ADE V ABC 125∠=︒2∠=2310x x -+=1x 2x 121222x x x x ++MN AB CD BE DF ,MN 140150ABE CDF ∠=︒∠=︒,EPF ∠ABCD BD E A k y x=4ABCD S =矩形k =三、解答题(本大题共8小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤.)16. 计算:(1;(2).17. (1)解方程:;(2)计算:;(3)先化简,再求值:,其中.18. 如图,在中,.(1)尺规作图:过A 作于点D ,并延长到点E ,使.连接,(保留作图痕迹,不写作法);(2)在(1)所作图形中,求证:四边形菱形.19. 某公司计划购入语音识别输入软件来提高办公效率.市面上有、两款语音识别输入软件,该公司准备择优购买.为了解两款软件的性能,测试员小敏随机选取了个句子,其中每句都含个字.他用标准普通话以相同的语速朗读每个句子来测试这两款软件,并将语音识别结果进行了整理、描述和分析,下面给出了部分信息:款软件每个句子中识别正确的字数记录为:,,,,款软件每个句子中识别正确的字数折线统计图为:是+113π-⎛⎫+ ⎪⎝⎭211x x=+22(1)(2)(2)x x x +-+-1122a a a a -⎛⎫++ ⎪-+⎝⎭1a =-ABC AB AC =AD BC ⊥AD DE AD =BE CE ABEC A B 2010A 55666B,,,,,,,,,,,,、两款软件每个句子中识别正确的字数的统计表软件平均数众数中位数识别正确达到个字的句子所占百分比款款根据以上信息,解答下列问题:(1)上述中的____________,____________,____________;(2)若会议记录员用、两款软件各识别了个句子,每个句子有个文字,请估计两款软件一字不差地识别正确的句子共有多少个?(3)该公司现派三人采购小组前去购进一批语音识别输入软件,估计他们三人都同意购买款软件的概率是多少?20. 达坂城风力发电站位于乌鲁木齐市区与达坂城区之间的公路旁,风区风能资源十分丰富,光热条件优异,由上百座巨大的发电风车组成,是中国最大的风能基地,有中国“风谷”之称.如图,某校学生测量其中一座风车的轮载高度(风轮旋转中心到基地平面的垂直距离),先在点C 处用测角仪测得其风车顶端A 的仰角为,再由点C 走米到点E 处,测得风车顶端A 的仰角为.已知B 、E 、C 三点在一条直线上,测角仪的高度米,求该座风车的轮载高度.(参考数据:,.,结果保留整数)21.阳春三月,正是踏青的好时节,某品牌运动鞋很受顾客的喜爱,一家商场正在火热售卖该品牌运动鞋,每日销售量y (双)与销售单价x (元/双)之间存在一次函数关系,如下表所示.已知该品牌运动鞋的成本为元/双.销售单价x (元/双)66677899991010101010A B 10A 7.7a 7.525%B 7.78b c=a b =c =A B 50010A AB 32︒5045︒1.5CD EF ==AB sin 320.53︒≈cos320.85︒≈tan 320.63︒≈150180190200销售量y (双)(1)求出y 与x 函数关系式(要求写出自变量x 的取值范围);(2)当销售单价为多少元时,每日销售利润最大.此时最大利润为多少?22. 如图,以的边为直径做交于点A ,连接并延长交于点B ,连接、,且.(1)求证:是切线;(2)若,求线段的长(保留根号).23. 【问题情境】(1)如图1,在正方形中,E 、F 、G 分别是、、上的点,于点Q .求证:;【尝试应用】(2)如图2,正方形网格中,点A 、B 、C 、D 为格点,交于点O .求值;【拓展提升】(3)如图3,点P 是线段上的动点,分别以、为边在的同侧作正方形与正方形,连接分别交线段、于点M 、N .求的度数.的的的160140120DCE △DC O DE AO O AC BC CED CAB ∠=∠CE O DE =3tan 5B =CE ABCD BC AB CD FG AE ⊥AE FG =AB CD sin AOC ∠AB AP BP AB APCD PBEF DE BC PC BME ∠。
多边形与平行四边形一、选择题1. (2014•福建泉州,第4题3分)七边形外角和为()2. (2014•广东,第5题3分)一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据多边形的外角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.3. (2014•广东,第7题3分)如图,▱ABCD中,下列说法一定正确的是()A.A C=BD B.A C⊥BD C.A B=CD D.A B=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.4.(2014•新疆,第4题5分)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()5.(2014•毕节地区,第9题3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()6.(2014·台湾,第24题3分)下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断哪一个为平行四边形?( )A.B.C.D.分析:利用平行四边形的判定定理、等腰梯形的判定及梯形的判定方法分别对每个选项判断后即可确定答案.解:A.上、下这一组对边平行,可能为等腰梯形;B.上、下这一组对边平行,可能为等腰梯形,但此等腰梯形底角为90°,所以为平行四边形;C .上、下这一组对边平行,可能为梯形;D .上、下这一组对边平行,可能为梯形; 故选B .点评:本题考查了平行四边形的判定定理、等腰梯形的判定及梯形的判定方法,掌握这些特殊的四边形的判定方法是解答本题的关键.7.(2014·云南昆明,第7题3分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定四边形ABCD 为平行四边形的是A . AB ∥CD ,AD ∥BC B . OA =OC ,OB =OD C . AD =BC ,AB ∥CD D . AB =CD ,AD =BC8.(2014•浙江湖州,第10题3分)在连接A 地与B 地的线段上有四个不同的点D 、G 、K 、Q ,下列四幅图中的实线分别表示某人从A 地到B 地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( )A .B .ODCBAC.D.分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断.解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B选项延长AF、BH交于S1,作FK∥GH,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.8. (2014•湘潭,第7题,3分)以下四个命题正确的是()9. (2014•益阳,第7题,4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()(第2题图)10. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()11.(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()absinαabcosα,==×asin absinabsin absin二.填空题1. (2014•安徽省,第14题5分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.2. ( 2014•广东,第13题4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= 3 .考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.3.(2014•毕节地区,第19题5分)将四根木条钉成的长方形木框变形为平行四边形ABCD 的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为 30 度.==AB4.(2014•襄阳,第17题3分)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于12或20 .=2==3=2==35.(2014•四川自贡,第13题4分)一个多边形的内角和比外角和的3倍多180°,则它的边数是9 .6. (2014•泰州,第9题,3分)任意五边形的内角和为540°.7. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1=67.5°.(第2题图)×135°=67.5°.三.解答题1. (2014•安徽省,第23题14分)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= 60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP 于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3A.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.2. (2014•广西贺州,第21题7分)如图,四边形ABCD是平行四边形,E、F是对角线BD 上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.点评:此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质等知识,得出△ABE≌△CDF是解题关键.3.(2014年云南省,第22题7分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2C D.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=D C.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.4.(2014•温州,第24题14分)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.时和当<OB,+3=,(=,即==,,==,==<或<<),在范围内,<,<),<5.(2014•舟山,第23题10分)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.解答:,==2,,+2=3==26.(2014年广东汕尾,第20题9分)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.点评:此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FDE=S平行四边形ABCD是解题关键.7.(2014•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB 上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.(第1题图)BD×6=3,==2,=2=6。
2014年全国中考数学真题分类解析汇编(8套) 2014年全国中考数学真题分类解析汇编(8套)2014年全国中考数学真题分类解析汇编(二次根式)点击查看2014年全国中考数学真题分类解析汇编(分式与分式方程)点击查看2014年全国中考数学真题分类解析汇编(不等式(组)点击查看2014年全国中考数学真题汇编(二元一次方程(组)及其应用)点击查看2014年全国中考数学真题分类汇编(一元一次方程及其应用)点击查看2014年全国中考数学真题分类解析汇编(整式与因式分解)点击查看2014年全国中考数学真题分类解析汇编(实数)点击查看2014年全国中考数学真题分类解析汇编(有理数)点击查看。