卤素测试方法ASTM D 7359
- 格式:pdf
- 大小:142.10 KB
- 文档页数:6
塑胶卤素测试标准1.范围本标准规定了塑胶材料中卤素的测试方法。
本标准适用于所有涉及塑胶材料的卤素测试。
2.规范性引用文件下列文件对于本标准的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本标准。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。
3.术语和定义3.1卤素:指氟、氯、溴、碘等元素。
3.2塑胶材料:由高分子化合物(如聚乙烯、聚丙烯、聚氯乙烯等)制成的材料。
4.试验方法4.1试验原理本试验方法采用燃烧法测定塑胶材料中卤素的含量。
将样品置于燃烧炉中,在高温下燃烧,释放出的卤素被捕获并导入到吸收液中。
通过测量吸收液中卤素的浓度,可以计算出样品中卤素的含量。
4.2试剂或材料4.2.1燃烧炉:能提供高温环境的设备。
4.2.2吸收液:用于捕获燃烧释放出的卤素的溶液。
4.2.3标准品:已知含量的卤素标准物质。
4.3仪器和设备4.3.1分析天平:用于称量样品和标准品。
4.3.2容量瓶:用于定容吸收液。
4.3.3分光光度计:用于测量吸收液中卤素的浓度。
4.4试验步骤4.4.1样品处理:将样品粉碎至颗粒状,称取适量样品进行测试。
4.4.2燃烧:将样品置于燃烧炉中,在高温下燃烧,释放出的卤素被捕获到吸收液中。
4.4.3测量:用分光光度计测量吸收液中卤素的浓度,对比标准品,计算样品中卤素的含量。
5.结果计算和表示5.1结果计算:根据测量结果和对比标准品,计算样品中卤素的含量。
结果以质量百分比表示。
5.2结果表示:结果应包括每个样品的名称、编号、测试方法、样品质量、测量的卤素含量以及不确定度等。
6.精密度和准确度6.1精密度:同一试验室、同一试验人员、同一仪器下多次测量的结果之间的差异应符合规定要求。
6.2准确度:使用已知含量的标准品进行测试,其误差应符合规定要求。
卤素检测卤素测试IEC 61249-2-21:2003 IPC-4101B卤素简介:包括氟(F)、氯(Cl)、溴(Br)、碘(I)、砹(At),简称卤素。
由于砹为放射性元素,所以人们常说的卤素只是指:氟、氯、溴和碘。
卤素广泛应用于阻燃剂,制冷剂,溶剂,有机化工原料,农药杀虫剂,漂白剂,羊毛脱脂等。
卤素单质很少直接用在人们的日常生活中,一般都作为工业原料来合成不同用途的含卤化合物。
工业上应用的卤素化合物多为有机卤素化合物,而很多有机卤素化合物被列为对人类和环境有害的化学品,禁止或限量使用,是世界各国重点控制的污染物。
阻燃剂卤素化合物在电子行业有着广泛的应用,如氯化石蜡可用做塑料材料的增塑剂,二氟二氯甲烷作为发泡剂用在ABS、PS、PVC及PU等各种塑料中。
然而,卤素化合物作为阻燃剂的应用最为普遍。
常见的卤素阻燃剂有PBB、PBDE、TBBP-A及HBCDD等溴系阻燃剂和短链氯化石蜡及PCB等氯系阻燃剂。
使用阻燃剂可起到阻燃效果,而且卤系阻燃剂对所阻燃基材的固有物理机械性能影响较少。
但是使用卤系阻燃剂也有不利的一面:一旦发生火灾,卤化阻燃剂的不完全燃烧会产生大量的致癌物质;而且使用了卤系阻燃剂的材料在燃烧时会产生大量的烟雾和有毒的腐蚀性气体,从而妨碍救火和人员疏散,腐蚀仪器和设备。
了解其他相关及检测请进个人主页卤素限用标准:1:国际电工委员会IEC 61249-2-21:2003印刷电路板(PCB)基材中的溴不超过900ppm,氯不超过900ppm,总卤素(溴+氯)则不得超过1500ppm。
2:国际电子工业连接协会IPC-4101B2006年6月修正IPC-4101B,规定无卤规范,其规范限值与IEC 61249-2-21:2003相同。
3:日本电子电路工业会JPCA-ES-01-1999日本电子电路工业会(JPCA)制定的JPCA-ES-01-1999中即确定了“无卤”的定义和标准,要求印制电路板(PCB)中溴元素的总量不得超过900ppm,氯元素总量不得超过900ppm。
卤素检测标准卤素是指氟、氯、溴、碘等元素,它们在生活和工业生产中具有重要的应用价值。
然而,由于卤素具有一定的毒性,因此在实际应用中需要对其进行严格的检测,以确保产品质量和人体健康安全。
卤素检测标准是指对产品中卤素含量进行检测的相关规定和要求,下面将对卤素检测标准进行详细介绍。
首先,卤素检测标准的制定是为了保障产品质量和消费者的健康安全。
不同的产品对卤素含量有着不同的要求,比如食品行业对卤素含量有着严格的限制,而化工行业对卤素含量的要求也有所不同。
因此,制定相应的卤素检测标准可以帮助生产企业更好地控制产品质量,保障消费者的健康。
其次,卤素检测标准的制定需要考虑到检测方法的准确性和可操作性。
目前,常见的卤素检测方法包括离子色谱法、原子荧光光谱法、电化学法等。
这些方法各有优势和局限性,因此在制定卤素检测标准时需要综合考虑各种因素,确保检测结果的准确性和可靠性。
另外,卤素检测标准还需要考虑到国际间的统一性和一致性。
随着全球化的发展,各国之间的贸易往来日益频繁,因此需要制定统一的卤素检测标准,以便产品在国际市场上的流通。
同时,国际间的卤素检测标准的一致性也有利于促进技术交流和合作,推动卤素检测技术的进步和发展。
最后,卤素检测标准的制定还需要考虑到相关法律法规的要求。
在我国,食品安全法、化工产品安全生产法等法律法规对产品中卤素含量都有着明确的规定,生产企业需要严格遵守这些法律法规的要求,否则将面临相应的法律责任。
因此,卤素检测标准的制定需要与相关法律法规相衔接,确保检测结果的合法有效。
综上所述,卤素检测标准的制定是为了保障产品质量和消费者的健康安全,需要考虑到检测方法的准确性和可操作性,国际间的统一性和一致性,以及相关法律法规的要求。
只有制定科学合理的卤素检测标准,才能更好地推动卤素检测技术的发展,促进产业的健康发展。
卤素离子是指存在在溶液中的氯离子、碘离子、溴离子和氟离子等各种卤素元素的离子,是影响水质的重要污染物。
检测卤素离子的方法以微量化学法为主,其中常用的检测方法有铜离子缓冲滴定法、碘试剂滴定法、四苯基硅烷比色法和电感耦合等离子色谱法。
铜离子缓冲滴定法是一种检测卤素离子的有效方法,它利用滴定过程中铜离子的缓冲作用来检测测试样品中的卤素离子含量。
在实验中,将测试样品加入铜离子缓冲液,然后再加入滴定剂,当滴定剂的浓度足够时,滴定反应就会发生,根据反应的动力学规律,可以测出卤素离子的含量。
碘试剂滴定法是一种常用的卤素离子检测方法。
在实验中,将测试样品中的卤素离子与碘试剂缓冲液发生反应,当反应发生时,会产生一定数量的碘离子,根据碘离子的浓度变化,可以准确测定测试样品中卤素离子的含量。
四苯基硅烷比色法是一种卤素离子检测的快速方法,它利用检测样品中的卤素离子与四苯基硅烷发生反应,从而产生一定数量的色素,根据色素的浓度变化,可以准确测定测试样品中卤素离子的含量。
电感耦合等离子色谱法是一种高灵敏度的卤素离子检测方法,它利用测试样品中的卤素离子与电感耦合等离子色谱仪发生化学反应,从而测出样品中卤素离子的类型和含量,这种方法检测效率高,准确率高,几乎可以检测出任何类型的卤素离子。
总之,卤素离子是影响水质的重要污染物,检测卤素离子的方法有很多,其中铜离子缓冲滴定法、碘试剂滴定法、四苯基硅烷比色法和电感耦合等离子色谱法等是最常用的方法。
这些方法不仅具有较高的准确度,而且实验简便,操作简单,检测效率高,因此在检测卤素离子含量时均有较好的应用效果。
卤素的检测标准
卤素是指氟、氯、溴、碘等元素。
这些元素在工业和日常生活中有着广泛的应用,因此对于它们的检测标准非常重要。
卤素的检测标准通常包括以下方面:
1. 检测方法:卤素的检测方法包括滴定法、光谱法、色谱法等。
不同的方法具有不同的优缺点,需要根据具体的应用场景和需求选择合适的方法。
2. 检测精度:卤素的检测精度要求较高,需要精确控制检测过程中的误差,以确保结果的准确性。
3. 检测范围:卤素的检测范围通常为微量到常量级别,因此需要选择合适的标准曲线和校准方法来保证检测的准确性。
4. 样品处理:卤素检测前需要对样品进行处理,以去除干扰物质并提取出卤素元素。
不同的样品需要采用不同的处理方法,如消解、萃取等。
5. 仪器设备:卤素检测需要使用专业的仪器设备,如分光光度计、原子吸收光谱仪、气相色谱仪等。
设备的性能和精度对检测结果有很大影响,因此需要定期进行校准和维护。
6. 人员素质:卤素检测需要专业的人员进行操作,人员的技术水平和经验对检测结果也有很大影响。
因此,从事卤素检测的人员需要经过专业培训并取得相应的资格证书。
7. 安全防护:卤素具有一定的毒性,长期接触会对人体健康造
成影响。
因此,在进行卤素检测时需要采取安全防护措施,如佩戴手套、口罩等。
总之,卤素的检测标准需要严格控制,以确保结果的准确性和可靠性。
同时,也需要根据实际需求选择合适的检测方法和标准,以满足不同的应用需求。
Designation: D 3359 – 02名称: D 3359-02Standard Test Methods forMeasuring Adhesion by Tape Test1ASTM D3359-09 标准试验方法胶带法测量附着力This standard is issued under the fixed designation D 3359; the number immediatelyfollowing the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.这个标准是D 3359确定了以后发行的。
数字代表名称最初通过的时间,或者修订情况,和最新版本。
括号内的数字代表最新重新审批时间。
上标代表最新版本的变化或重新审批。
This standard has been approved for use by agencies of the Department of Defense.该标准已经被国防机构部门批准使用。
1. Scope 范围1.1 These test methods cover procedures for assessing the adhesion of coating films to metallic substrates by applying and removing pressure-sensitive tape over cuts made in the film.本标准提出的试验方法是规定通过在漆膜切割区施加和撕离压敏胶带的方式,对漆膜与金属底材之间的附着力进行评定的程序1.2 Test Method A is primarily intended for use at job sites while Test Method B is more suitable for use in the laboratory. Also, Test Method B is not considered suitable forfilms thicker than 5 mils (125µm).试验方法A主要是供工作场所用,而试验方法B更适合实验室使用。
锡膏卤素的测定
试验标准:IPC-TM-650
1 定性分析:取一滴焊锡膏涂在一块干燥的铬酸银试纸上保持15s,将试纸浸入异丙醇中保持15s,试纸干燥10min后用肉眼检查试纸颜色变化,有白色或淡黄色斑则有卤素。
附:试纸的制作:将2~5cm 宽折滤纸浸入0.01N铬酸钾溶液中,30分钟后取出自然干燥,再浸入0.01N硝酸银溶液中,30分钟后用去离子水清洗。
此时纸带出现均匀的桔红--咖啡色,即得铬酸银试纸。
将试纸放在黑暗处干燥,放入棕色瓶中避光保存备用。
2 定量分析:
1..离子色谱法测卤素
2. 化学滴定法测卤素,现介绍一下化学滴定法:
称取2g(精确到0.0001g)的样品放入到250ml的三角烧杯中,加入25mL异丙醇,充分溶解后,移到125ml分液漏斗中,量取25mL氯仿分几次清洗烧杯,将清洗液倒入漏斗中,摇匀。
用75mL去离子水萃取三次(每次25mL)。
将萃取液置于250mL中,并加热(不超过80℃)冷却至室温,加数滴0.03N酚酞指示剂,用0.5N的NaOH溶液滴至溶液变红,然后滴加0.2N的HNO3溶液至红色消失。
然后滴加数滴0.1N的K2Cr2O7溶液,最后用0.1NAgNO3的标准溶液滴定至褐色为终点。
计算:Cl(%)=(0.0355VN/M)×100
式中:M——试样质量g ;
V——AgNO3耗量(mL);
N——AgNO3的浓度(N);。
卤素ROHS方法1. 简介卤素ROHS方法是一种用于检测产品中卤素含量的测试方法,主要用于判断产品是否符合ROHS指令(Restriction of Hazardous Substances Directive)的要求。
ROHS指令是欧盟制定的一项法规,旨在限制电子电气设备中有害物质的使用,保护人类健康和环境。
本文将详细介绍卤素ROHS方法的原理、操作步骤以及相关注意事项。
2. 原理卤素ROHS方法基于化学分析技术,其原理主要包括样品前处理、萃取和分析三个步骤。
2.1 样品前处理样品前处理是为了将待测产品中的卤素物质从复杂的基体中分离出来,以便后续的萃取和分析。
常用的样品前处理方法包括溶解、研磨、消解等。
2.2 萃取萃取是将样品中的目标物质从基体中提取出来,并进行富集。
常用的萃取方法有溶剂萃取、固相萃取等。
在卤素ROHS方法中,通常采用溶剂萃取法将卤素物质从样品中提取出来。
2.3 分析分析是对萃取得到的卤素物质进行定量或定性测定。
常用的分析方法包括电化学法、光谱法、色谱法等。
在卤素ROHS方法中,常用的分析方法是离子色谱法(IC)。
3. 操作步骤卤素ROHS方法的操作步骤如下:3.1 样品准备将待测产品按照标准要求进行样品切割或取样,确保样品代表性。
3.2 样品前处理根据实际需要选择合适的样品前处理方法,如溶解、研磨、消解等。
3.3 萃取将经过样品前处理的样品与适当的溶剂混合,进行萃取。
可以使用离心机等设备加速萃取过程。
3.4 分析将萃取得到的溶液进行离子色谱分析,测定卤素物质的含量。
根据标准要求,可以选择不同的检测条件和参数。
3.5 结果判定根据测试结果和ROHS指令中规定的卤素限制值,判断产品是否符合要求。
如果卤素含量低于限制值,则产品合格;反之,则不合格。
4. 注意事项在进行卤素ROHS方法的测试过程中,需要注意以下事项:•样品的选择应代表性,确保测试结果准确可靠。
•样品前处理和萃取过程中要注意操作规范,避免污染和损失。
卤素环保检测。
--189—618—391-78--0510-820—316—02任工卤素介绍:卤素包括氟(F)氯(Cl) 、溴(Br)碘(I)、砹(At)。
其中砹(At)为放射性元素,产品中几乎不存在砹(At),氟(F)氯(Cl) 、溴(Br)碘(I)四种元素在产品中特别是在聚合物材料中以有机化合物形式存在。
目前应用于产品中的卤素化合物主要为:阻燃剂:多溴联苯(PBB) ,多溴二苯醚(PBDE),四溴双酚A(TBBPA),PCB ,六溴十二烷,三溴苯酚,短链氯化石蜡;PBB ,PBDE ,TBBPA 等溴化阻燃剂是目前使用较多的阻燃剂,主要应用在电子电器行业,包括:电路板、电脑、燃料电池、电视机和打印机等等。
这些含卤阻燃剂材料在燃烧时产生二恶英,且在环境中能存在多年,甚至终身累积于生物体,无法排出。
因此,不少国际大公司在积极推动完全废止含卤素材料,如禁止在产品中使用卤素阻燃剂等。
用于做冷冻剂、隔热材料的臭氧破坏物质:CFCs 、HCFCs 、HFCs 等。
无锡容大检测公司,在化学测试领域拥有广泛的实验室网络,此类化学实验室配备尖端的设备和顶级的化学家,来进行化学品的测试。
化学品、染料和油漆在许多工业中是构成原料的主要部分。
通过对各类材料的化学评估可帮助用户在所要使用的工艺中确定正确的原料。
我们专注欧盟环保认证检测,在化学测试方面有多年的实战经历与SGS权威的技术支持。
拥有国内首家一站式网上服务平台,从咨询、申请、受理、支付、查询到下载与管理,均可通过网上办理。
更多详情欢迎来电咨询在塑料等聚合物产品中添加卤素(氟,氯,溴,碘)用以提高燃点,其优点是:燃点比普通聚合物材料高,燃点大约在300℃。
燃烧时,会散发出卤化气体(氟,氯,溴,碘),迅速吸收氧气,从而使火熄灭。
但其缺点是释放出的氯气浓度高时,引起的能见度下降会导致无法识别逃生路径,同时氯气具有很强的毒性,影响人的呼吸系统,此外,含卤聚合物燃烧释放出的卤素气在与水蒸汽结合时,会生成腐蚀性有害气体(卤化氢),对一些设备及建筑物造成腐蚀。
Designation:D7359–08Standard Test Method forTotal Fluorine,Chlorine and Sulfur in Aromatic Hydrocarbons and Their Mixtures by Oxidative Pyrohydrolytic Combustion followed by Ion Chromatography Detection(Combustion Ion Chromatography-CIC)1This standard is issued under thefixed designation D7359;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.1.Scope1.1This test method covers the individual determination of totalfluorine,chlorine and sulfur in aromatic hydrocarbons and their mixtures.Samples containing0.1to50mg/kg of each element can be analyzed.1.2This method can be applied to sample types outside the range of the scope by dilution of the sample in an appropriate solvent to bring the total concentrations offluorine,chlorine and sulfur within the range covered by the test method. However,it is the responsibility of the analyst to verify the solubility of the sample in the solvent and that the diluted sample results conform to the precision and accuracy of the method.1.3In determining the conformance of the test results using this method to applicable specifications,results shall be rounded off in accordance with the rounding-off method of Practice E29.1.4The values stated in SI units are to be regarded as standard.No other units of measurement are included in this standard.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.See Section8.2.Referenced Documents2.1ASTM Standards:2D1193Specification for Reagent WaterD6809Guide for Quality Control and Quality Assurance Procedures for Aromatic Hydrocarbons and Related Ma-terialsE29Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications2.2Other Documents:OSHA Regulations29CFR paragraphs1910.1000and 1910.120033.Summary of Test Method3.1A sample of known weight or volume is placed into a sample boat and introduced at a controlled rate into a high temperature combustion tube.There the sample is combusted in an oxygen rich pyrohydrolytic environment.The gaseous by-products of the combusted sample are trapped in an absorption medium where the hydrogen halides(HX)formed during combustion disassociate into their respective ions,X-while the sulfur oxides(SO X)formed are further oxidized to SO42-in the presence of an oxidizing agent.An aliquot of known volume of the adsorbing solution is then automatically injected into an ion chromatograph(IC)by means of a sample injection valve.The halide and sulfate anions are separated into individual elution bands on the separator column of the IC.The conductivity of the eluent is reduced with an anion suppression device prior to the ion chromatograph’s thermal conductivity detector,where the anions of interest are measured.Quantifi-cation of thefluorine,chlorine and sulfur in the original combusted sample is achieved byfirst calibrating the system with a series of standards containing known amounts of fluorine,chlorine and sulfur and then analyzing unknown samples under the same conditions as the standards.The combined system of pyrohydrolytic combustion followed by1This test method is under the jurisdiction of ASTM Committee D16on Aromatic Hydrocarbons and Related Chemicals and is the direct responsibility of Subcommittee D16.04on Instrumental Analysis.Current edition approved Oct.15,2008.Published November2008.2For referenced ASTM standards,visit the ASTM website,,orcontact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from ernment Printing Office Superintendent of Documents, 732N.Capitol St.,NW,Mail Stop:SDE,Washington,DC20401,http:// .1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.ion chromatographic detection is referred to as Combustion Ion Chromatography(CIC).4.Significance and Use4.1The totalfluorine,chlorine and sulfur contained in aromatic hydrocarbon matrices can contribute to emissions,be harmful to many catalytic chemical processes,and lead to corrosion.This test method can be used to determine total sulfur and halogens aromatic hydrocarbon matrices,infinished products and can be used for compliance determinations when acceptable to a regulatory authority using performance based criteria.5.Interferences5.1Substances that co-elute with the anions of interest will interfere.A high concentration of one anion can interfere with other constituents if their retention times are close enough to affect the resolution of their peak.6.Apparatus6.1Autosampler(Optional),capable of accurately deliver-ing10to80µL of sample into the sample boat.The autosampler may be used as long as the accuracy and perfor-mance of the method is not degraded.N OTE1—Multiple rinsing with clean solvent between sample injections and/or sampling between different sample vials to minimize carryover contamination from previous samples is recommended.A solventflush from a vial separate from the solvent wash,providing clean,uncontami-nated solvent may also be used.These features may be used as long as they do not degrade the performance and accuracy of the method.6.2Balance,analytical,with sensitivity to0.0001g.6.3Boat Inlet System—The system provides a sampling port for the introduction of liquid and solid samples into the sample boat and is connected to the inlet of the Pyrohydrolytic Combustion Tube.The system is swept by a humidified inert carrier gas and shall be capable of allowing the quantitative delivery of the material to be analyzed into the pyrohydrolytic oxidation zone at a controlled and repeatable rate.6.4Boat Inlet Cooler(Optional)—Sample volatility and injection volume may require an apparatus capable of cooling the sample boat prior to sample introduction.Thermoelectric coolers(peltier)or recirculating refrigerated liquid devices are strongly recommended.Switching sample boats between each analysis may prove effective,provided sample size is not too large.6.5Flow Control—The apparatus must be equipped with flow controllers capable of maintaining a constant supply and flow of oxygen and argon gas.6.6Furnace which can maintain a minimum temperature of 900°C.6.7Gas Adsorption Unit,having an adsorption tube of either10or20mL which is automaticallyfilled with a known volume of absorption solution by a built-in burette or other similar device.The Gas Adsorption Unit is interfaced to the Ion Chromatograph and injects an aliquot of the adsorption solu-tion into the Ion Chromatograph after the sample is combusted and the by-products of combustion are absorbed.The Gas Adsorption Unit rinses out the gas lines with Type I reagent water(7.2)from the pyrohydrolytic combustion tube after the completion of the sample combustion to ensure all the com-bustion by-products(HX and SO2)are absorbed.The Gas Adsorption Unit rinses the gas lines and adsorption tube with Type I reagent water(7.2)prior to sample combustion and after the absorption solution is injected into the Ion Chromatograph to minimize cross contamination from the previous analysis.6.8Gas-Tight Sampling Syringe,capable of accurately de-livering10to80µL of standard or sample.6.9Pyrohydrolytic Combustion Tube made of quartz and constructed such that when the sample is combusted in the presence of humidified oxygen,the by-products of combustion are swept into the humidified pyrohydrolytic combustion zone. The inlet end shall allow for the stepwise introduction and advancement of a sample boat into the heated zone and shall have a side arm for the introduction of the humidified carrier gas and oxygen.The pyrohydrolytic combustion tube must be of ample volume,and have a heated zone with quartz wool or other suitable medium providing sufficient surface area so that the complete pyrohydrolytic combustion of the sample is ensured.6.10Humidifier Delivery System,capable of delivering Type1reagent water(7.2)to the combustion tube at a controlled rate sufficient to provide a pyrohydrolytic environ-ment.6.11Ion Chromatograph(IC)4,equipped with:6.11.1High Performance inert PEEK-(polyetheretherketone)flow path system is required.6.11.2High Pressure eluent pump,capable of delivering 0.0to5mL/min(without eluent generator;0.1to3mL/min (with eluent generator),in0.01mL/min increments.Flow rate accuracy of<1%of the set value and precision of<2%is required.6.11.3Conductivity Detector,capable of an operating range of0to15000µS with a linearity correlation coefficient of 0.999and%RSD<5%at800µS.Detector cell constructed of PEEK and capable of maintaining an operating temperature of 30to55°C.6.11.4Injection valve,2position electrically actuated with wetted component material of PEEK(polyetheretherketone).6.11.5Anion Separator Column AS11HC(4x250mm)or equivalent,with sufficient capacity for disparate analyte con-centrations and constructed of PEEK.Capacity of>290µEquivalents/column with alkanol quartenary ammonium functional groups.6.11.6Guard Column AG11HC(4X50mm)or equivalent, packed with same material for protection of the anion separator column and constructed of PEEK.6.11.7Post-Column Chemical Suppression Device,capable of reducing the absolute conductivity of eluent concentrations of up to200mM KOH(or NaOH).Delivery of hydronium ions for suppression by electrolysis of recycled eluent through a cation exchange membrane.4Many different companies manufacture automatic ion chromatographs.Consult the manufacturer for details in setup and operation.Other systems may be used as long as precision is shown to be as good as or better than the precision in themethod. 26.11.8Eluent Generator(Optional),an eluent generator capable of producing eluents of10to100mM KOH with continuous eluent purification can be employed.6.11.9Data Acquisition System,such as an integrator or computer data handling system capable of integrating the peak areas of ion chromatograph.6.12Quartz or Ceramic Sample Boats of sufficient size to hold10to80µL or mg of sample.7.Reagents and Materials7.1Purity of Reagents—Reagent grade chemicals shall be used in all tests.Unless otherwise indicated,it is intended that all reagents shall conform to the specification of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available.5Other grades may be used,provided that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determi-nation.7.2Purity of Water—Unless otherwise indicated,references to water shall be understood to mean Type1conforming to Specification D1193.7.3Quartz Wool,(fine grade)or other suitable medium. 7.4Argon,carrier gas minimum99.9%purity.N OTE2—Purification scrubbers to ensure the removal of containments are recommended such as moisture(molecular sieve)and hydrocarbon trapfilters(activated charcoal or equivalent)are recommended.7.5Oxygen,combustion gas minimum99.6%purity.7.6Gas Regulators,two-stage,gas regulators capable of regulating the pressures to40to60psi must be used for the carrier and combustion gases.7.7Calibration Standards,certified calibration standards from commercial sources or calibration standards prepared in the laboratory containing the elements of interest at the concentrations of interest.N OTE3—Other calibration standard sources and diluents may be used if precision and accuracy are not degraded.N OTE4—Calibration standards are typically re-mixed and re-certified on a regular basis depending upon frequency of use and age.Calibration standards can have a useful life of about6to12months if properly stored in a cool,dark place.N OTE5—A correction for chemical impurity can be used if deemed necessary.7.8Dibenzothiophene,FW184.26,17.399%S.7.9Flurobenzoic Acid,FW96.10,13.56%F.7.102,4,5Trichlorophenol,FW197.46,53.87%Cl.7.11Hydrogen Peroxide30%,FW34.01H2O2(see Section 8regarding Hazards).7.12Potassium Hydroxide,for eluent preparation(see Sec-tion8regarding Hazards).7.13Toluene,Xylene,Isooctane or Methanol,Reagent grade.(Other solvents similar to those occurring in samples to be analyzed are also acceptable.)Correction for contaminate levels of elements of interest must be corrected for(solvent blank).Alternatively,using a solvent with non-detectable contamination relative to the sample makes the blank correc-tion unnecessary.7.14Volumetric Flasks-Type Class A,at the volume speci-fied to use in this method to prepare standards,reagents and solutions.7.15Stock Standard Solutions of approximately-1000ug/ mL—Prepare a stock standard solution by accurately weighing to within10%of the target weights for any or all of the target standard compound(s)listed in7.15.1,7.15.2,and7.15.3into a100mL class A volumetricflask.Dilute to volume with the selected solvent described in7.13.Calculate the actual con-centration of the stock standard solution(s)for each element by using the equation below with the actual recorded weight of the target compound used for each element.This stock standard solution can be further diluted to other desired concentrations. Other suitable materials,weights and volumes may be substi-tuted in preparing stock calibration standards as long as the performance of the method is not degraded.Target Standard Compound(s)7.15.1Flurobenzoic Acid,(Fluorine),0.7375g target weight.7.15.22,4,5Trichlorophenol,(Chlorine),0.1856g target weight.7.15.3Dibenzothiophene,(Sulfur),0.5748g target weight.Calculation FormulaStock Standard Solution~µg/ml!5~A!~B!~106!/~C!~K!(1) where:A=weight of the target compound actually weighed in grams,g,B=%concentration of the elements in the respective target compounds listed in7.8,7.9,and7.10,C=final diluted volume,mL,andK=100(factor correction for%).7.16Phosphate Stock Solution(1.00mL= 1.00mg Phosphate)—Weigh to within10% 1.433g of potassium dihydrogen phosphate(KH2PO4)in water and dilute to1L with water in a class A volumetricflask and mix well.7.17Absorbing Solution—Dilute the Phosphate Stock So-lution with water in a class A volumetricflask to afinal concentration of approximately1.00ppm.The concentration of phosphate in the absorbing solutions is used as an internal standard by the Ion Chromatograph.8.Hazards8.1Consult the current version of OSHA regulations,sup-plier’s Material Safety Data Sheets,and local regulations for all materials used in this test method.8.2High temperature andflammable hydrocarbons occur in the test e materials that are rated for containing these hydrocarbons in all sample containers and sample trans-fer apparatus.Exercise extra care when usingflammable materials near the oxidative furnace.5Reagent Chemicals,American Chemical Society Specifications,American Chemical Society,Washington,DC.For suggestions on the testing of reagents not listed by the American Chemical Society,see Analar Standards for Laboratory Chemicals,BDH Ltd.,Poole,Dorset,U.K.,and the United States Pharmacopeia and National Formulary,U.S.Pharmacopeial Convention,Inc.(USPC),Rockville,MD.38.3Potassium hydroxide is a caustic alkali,which in an anhydrous or strong solution form,is a hazardous material.In contact with the skin it produces burns that may be quite serious unless promptly treated.Its action is insidious since it produces no immediate stinging or burning sensation and damage to the skin may result before its presence is realized.Eyes are particularly vulnerable to severe damage from alkalis.8.4Hydrogen peroxide is a strong oxidizer and hazardous material.In contact with the skin it produces burns that may be quite serious unless promptly treated.Its action is insidious since it produces no immediate stinging or burning sensation and damage to the skin may result before its presence is realized.Eyes are particularly vulnerable to severe damage.8.5Use safety goggles or face shields and rubber gloves when handling alkalis and avoid spillage on clothing.These materials rapidly attack wool and leather.8.6Use all appropriate safety precautions to clean up and discard in accordance with all federal,state,and local health and environmental regulations.9.Sampling9.1Analyze samples as soon as possible after sampling from bulk supplies to prevent loss due to volatiles which may be present in some samples and to avoid contamination due to exposure to air or prolong contact with sample containers.9.2Thoroughly mix the sample in its container prior to withdrawing a sample for analysis if the sample is not analyzed immediately after sampling.10.Preparation of Apparatus10.1Assemble and check the apparatus for leaks according to manufacturer’s instructions.A typical diagram of a CIC system is shown in Fig.1.10.2Typical apparatus condition for the Furnace and Gas adsorption unit are listed in Table 1.10.3Typical apparatus conditions for an Ion Chromato-graphic System are listed in Table 2.11.Calibration and Standardization11.1Prepare a series of calibration standards covering the range of samples to be analyzed by diluting the stock solution to the desired final concentrations.N OTE 6—It is recommended to calibrate the instrument with a mini-mum of three different concentration standards.Other numbers of con-centration of calibration standards can be used as long as the accuracy and precision of the method is not degraded.11.2Flush the microlitre syringe several times with the standard prior to analysis.If bubbles are present in the liquid column,flush the syringe and withdraw a new sample.11.3Quantitatively inject 10to 80µL of the first calibration standard covering the analytical range of the samples into the sample boat for analysis.N OTE 7—Injection of a constant or similar sample size for all materials analyzed promotes consistent combustion conditions.11.3.1The volumetric measurement of the injected material can be obtained by filling the syringe to the selected level.Retract the plunger so that air is aspirated and the lower liquid meniscus falls on the 10%scale mark and record the volume of liquid in the syringe.After injection,again retract the plunger so that the lower liquid meniscus falls on the 10%scale mark and record the volume of liquid in the syringe.The difference between the two volume readings is the volume of sample injected.N OTE 8—An automatic sampling and injection device or autosampler can be used in place of the described manual injection procedure as long as the accuracy and performance of the method is not degraded.Alternatively:11.3.2Fill the syringe as described in 11.2.Weigh the syringe before and after injection into the sample boat to determine the amount of sample injected.The sample may also be weighed directly into a sample boat and placed into the boat drive system.This procedure can provide greater precision than the volume delivery method,provided a balance with a precision of 60.01mg is used.11.4After the sample has been injected into the analyzer,promptly start the analyzer to deliver the sample into the furnace.Once the boat has returned to the home position,allow a minimum of two minutes for cooling the boat before introducing the nextsample.FIG.1Combustion IC DiagramTABLE 1Typical Operating Conditions for Furnace and GasAdsorption UnitBoat Inlet Drive Rate 120–130mm/min Furnace Temperature 950625°C Inlet O 2Setting 400mL/min Inlet Carrier Setting 200mL/min Inlet Humidifier Setting150mL/min Absorption Solution Volume 3.5mL Sample Loop Injection100µLTABLE 2Typical Operating Conditions for Ion ChromatographicUnit AColumn AS11HC (4x250),AG11HC (4x50)Eluent23mM KOH (using eluent generator andautomatic continuous purification)Flow Rate1.2mL/min Injection Volume 100µLDetection Suppressed conductivitySuppressorASRS Ultra II A in recycle anode(70mA of applied current)AAS11HC (4x250),AG11HC (4x50),and ASRS Ultra II are trademarks of Dionex Corporation,Sunnyvale,CA.4N OTE9—Slowing the boat speed or pausing the boat in front of the furnace may be necessary if analyzing different aromatics samples to ensure complete sample combustion.N OTE10—The level of boat cooling required is directly related to the volatility of the sample analyzed.The use of a thermoelectrically cooled sample introduction area may be required to prevent premature volatil-ization of the sample before entering the combustion area.11.5The retention time for each anion is determined by injecting a series of standard solutions containing each element of interest into the boat and bracketing the analytical range of the samples to be evaluated.After each standard concentration has been combusted,an aliquot of absorbing solution is introduced into the IC for separation and quantification.Re-tention times vary with operating conditions.The standards, therefore,must be analyzed by the ion chromatograph in the same manner as the sample solutions.11.6After the standards have been analyzed,a calibration curve is determined for each anion using a“best-fit”regression by plotting concentration versus the ratio of the anion area counts versus the internal phosphate area counts for the peaks of the anions used in the standards.If the IC is equipped with an integrator or computer operated,data handling software, calibration should be done according to manufacturer’s instruc-tions for using multi-level external standard calibrations.If an integrator or computer is not used,calibration curves can be created manually by calculating the average slope and intercept for each anion in the calibration standards by using least square linear regression on the calibration data or generate a calibra-tion curve on graph paper and by drawing a“best-fit”straight line through the data points.N OTE11—A typical calibration would include a series of three to four standards containing the elements of interest and bracketing the concen-trations that are in the samples.The calibration curve should be at least 0.999.12.Procedure12.1Obtain a test specimen using the procedure described in Section9.The concentrations in the test specimen must be less than the concentration of the highest standard and greater than the lowest standard used in the calibration.If required a dilution or concentration of the sample can be performed on the sample.12.1.1Gravimetric Dilution—Record the mass of the test specimen and the total mass of the test specimen and solvent.12.1.2Volumetric Dilution—Record the mass of the test specimen and the total volume of the test specimen and solvent.N OTE12—Samples larger than80µL or80mg can be quantitatively absorbed before injecting the absorbing solution into the IC by analyzing multiple injections of sample,combusting each individually and effec-tively concentrating the elements of interest in the absorbing solution prior to injection into the Ion Chromatograph.The net result of larger sample sizes is an increase in sensitivity and precision of the analysis while lowering the absolute detection limit of the CIC system.12.2Measure the response for the test specimen solution using the same procedure as for the standardizations described in11.3through11.6.13.Post Analysis Steps13.1Inspect the combustion tube and otherflow path components to verify complete oxidation of the test specimen after analysis.13.2Increase the residence time for the boat in the furnace if coke or soot is observed on the boat after combustion. Decrease the boat drive introduction rate or hold times in the furnace,or both,if coke or soot is observed on the exit end of the combustion tube.13.3Cleaning and Recalibration—Clean any coke or soot as per the manufacturer’s instructions.After any cleaning or adjustment,assemble and leak check the apparatus.Run a check standard to determine if the instrument needs to be recalibrated.14.Calculation14.1If the Ion Chromatograph has a Computer Based Data Handling Software,follow manufacturer procedures for calcu-lation of sample concentration.14.2For analyzers calibrated manually,calculate the con-centration for the anion of interest of the test specimen in mg/Kg(ppm)using the anion peak area ratio(area of anion peak/area of internal phosphate standard peak)from the sample chromatogram as follows:Element of Interest~F,CI,or S!mg/Kg5~A2Y!S3M3Kg(2) orElement of Interest~F,CI or S!mg/Kg5~A2Y!~1000!S3V3Kv(3) where:D=density of test specimen,g/mL,A=average ratio of the area of anion peak versus the area of the phosphate peak derived from the chro-matogram of the sample concentrated in the absorb-ing solution,area counts anion/area counts phos-phate,Kg=gravimetric dilution factor,mass of test specimen/ mass of test specimen plus solvent,g/g,Kv=volumetric dilution factor,mass of test specimen/ volume of test specimen plus solvent,g/mL,M=mass of test specimen injected,either measured directly or calculated from measured volume in-jected and density,V3D,g,S=slope of standard curve,(area counts anion/area counts phosphate),V=volume of test specimen solution injected,either measured directly or calculated from measuredmass injected and density,M/D,µL,Y=y-intercept of standard curve,(area ratio/µg/mL)of anion peak,and1000=factor to convertµL to mL.15.Precision and Bias15.1Repeatability—A ruggedness study was performed by analyzing three toluene samples10replicates each and one toluene sample33replicates over a two day period.The calculated average values and the repeatability are shownin 5Table 3.This is a temporary precision statement and reproduc-ibility will be determined within five years time.15.1.1Repeatability Limit (r)—The value below which the absolute difference between two test results of separate and consecutive test determinations,carried out on the same sample in the same laboratory by the same operator using the same apparatus on samples taken at random from a single quantity of homogeneous material,may be expected to occur with a probability of approximately 95%.15.2Reproducibility —To be determined.15.2.1Reproducibility Limit (R)—The value below which the absolute difference between two test results,carried out in different laboratories using samples taken at random from a single quantity of material that is as nearly homogeneous as possible,may be expected to occur with a probability of approximately 95%.15.3Bias —Since there is no accepted reference material suitable for determining the bias in this test method for measuring Total Fluorine,Chlorine and Sulfur by Combustion Ion Chromatography (CIC),bias has not been determined.16.Quality Guidelines16.1Refer to Guide D 6809for suggested QA/QC activities that can be used as a part of this method.It is recommended that the operator of this method select and perform relevant QA/QC activities like the ones in Guide D 6809to help ensure the quality of data generated by this method.17.Keywords17.1analysis;anions;aromatics;chloride;chlorine;CIC;combustion;combustion ion chromatography;fluoride;fluo-rine;hydrolysis;ion chromatography;oxidative pyrohydrolytic combustion;petroleum;pyrohydrolytic;sulfurASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@ (e-mail);or through the ASTM website ().TABLE 3Precision StatementReplicates Sample (Toluene)Fluorine Avg.mg/kg r Chlorine Avg mg/kg.r Sulfur Avg.mg/kg r 10~0.791mg/kg 0.7810.3530.7510.0750.7880.05810~0.395mg/kg 0.4400.1100.3970.0140.4530.01410Toluene mg/kg 0.0700.0210.0510.0460.0600.00933~58mg/kg59.92.660.01.959.32.06。