新型手性配体
- 格式:pptx
- 大小:14.44 MB
- 文档页数:28
新型手性磷化合物的合成及其作为配体催化剂在某些不对称合
成反应中的应用
周正洪;杨卓鸿;李康应;刘建兵;唐除痴
【期刊名称】《高等学校化学学报》
【年(卷),期】2001(022)0z1
【摘要】从L-氨基酸、D-樟脑、(-)-假麻黄碱、(-)-α-苯乙胺、(S)-(-)-联萘二酚等旋光源出发,合成了26个三配位及四配位手性磷化合物.作为配体催化剂,试验了它们在潜手性酮及亚胺的不对称硼烷还原反应、醛与二乙基锌的不对称烷基化反应以及醛的不对称硅腈化反应中的催化活性.发现其中有些催化剂有很好的立体选择性.
【总页数】6页(P71-76)
【作者】周正洪;杨卓鸿;李康应;刘建兵;唐除痴
【作者单位】南开大学元素有机化学研究所,;南开大学元素有机化学研究所,;南开大学元素有机化学研究所,;南开大学元素有机化学研究所,;南开大学元素有机化学研究所,
【正文语种】中文
【中图分类】O624
【相关文献】
1.手性膦配体催化剂在不对称合成中的应用研究 [J], 耿启金
2.新型手性羟基噁唑啉配体的合成及其在N-二苯基次磷酰亚胺的不对称乙基锌加
成反应中的应用 [J], 闫革新;吴勇;林文清;张晓梅
3.不对称合成中手性磷配体催化剂的研究进展(Ⅰ)(待续) [J], 李康应;周正洪;唐除痴
4.不对称合成中手性磷配体催化剂的研究进展(Ⅱ)(续完) [J], 李康应;周正洪;唐除痴
5.手性磷酰胺类配体不对称催化串联反应合成手性3-取代苯酞化合物 [J], 郭庆君因版权原因,仅展示原文概要,查看原文内容请购买。
有机合成中的不对称催化不对称催化是一种在有机合成中广泛应用的重要方法。
它通过引入手性配体,使得对称的反应转化为具有手性产物的反应。
在这篇文章中,将介绍不对称催化的原理、应用以及发展趋势。
一、不对称催化的原理不对称催化的原理基于手性配体和手性催化剂的应用。
手性配体是具有手性结构的有机化合物,可以与金属离子配位形成手性配位化合物。
这些手性配体能够通过选择性吸附、空间位阻等方式影响反应的立体选择性,从而实现对称反应的不对称性转化。
而手性催化剂则是由手性金属配合物和手性有机分子组成的复合物,能够通过催化作用使反应产生手性产物。
二、不对称催化的应用1. 不对称还原反应不对称还原反应是不对称催化中的一种重要应用。
通过引入手性配体和催化剂,可以实现对不对称有机物的还原,得到具有手性的醇、胺等化合物。
这种方法在医药、农药、香料等领域中有广泛的应用。
2. 不对称氧化反应不对称氧化反应是不对称催化的另一种重要应用。
通过引入手性配体和催化剂,可以使对称的氧化反应转化为不对称的氧化反应,得到手性醛、酮等化合物。
这种方法在合成有机中间体和天然产物的过程中起着重要的作用。
3. 不对称烯烃化反应不对称烯烃化反应是一种在不对称催化中较具挑战性的应用。
通过引入手性配体和催化剂,可以实现对不对称烯烃化反应的控制,得到具有手性的烯醇、烯醛等化合物。
这种方法在生物活性分子的合成中具有广阔的应用前景。
三、不对称催化的发展趋势随着合成化学的发展,不对称催化在有机合成中的应用越来越重要。
未来,不对称催化的发展趋势主要体现在以下几个方面:1. 发展更多的手性配体和催化剂为了提高不对称催化的效率和选择性,需要开发更多的手性配体和催化剂。
这些新型配体和催化剂能够应对更广泛的反应类型,提高催化剂的稳定性和反应活性。
2. 开发新的反应类型目前,大多数不对称催化反应都是针对特定的反应类型。
未来,需要发展更多新的反应类型,探索更广泛的不对称催化反应。
这将有助于拓宽不对称催化的应用范围,并提供更多的合成路线。
手性合成方法在药物合成中的应用手性化学是现代有机化学中的一个重要分支,随着医药行业的不断发展,手性合成方法在药物合成中的应用也越来越广泛。
手性合成是指生成手性化合物的合成方法,通俗来讲就是合成单一手性异构体的化学合成方法。
手性合成在药物合成中的应用已经成为许多药物合成的首选方法,本文将介绍手性合成方法在药物合成中的应用以及其优缺点。
手性化学的重要性手性化合物因其空间结构的不对称性,在药物学中具有重要的作用。
许多药物分子都是手性分子,它们的生物活性和药效都是由其立体结构决定的。
以最广泛的手性药物——阿司匹林为例,阿司匹林是由丙酸和水合氧化铁经过一系列化学反应后得到的,其中丙酸分子里有一个手性碳中心,总共有两种立体异构体,其中一种具有丰富的生物活性,而另一种则没有生物活性。
因此,如果我们想让阿司匹林产生丰富的生物活性,那么必须控制其手性。
然而,一些手性化学合成的挑战包括:合成单一手性异构体的成本过高,化学分离方法面临着困难,而且手性化合物的生产效率较低。
基于这些限制,开发出有效和可行的手性合成方法就显得非常重要。
手性化合物的制备需要控制其立体构型,通常要在合成操作中控制立体化学过程。
在药物合成中,业界已经发展出很多种手性合成方法,下面将介绍一些主要的手性合成方法及其适用范围:1.立体选择性配体辅助制备(SLA)SLA方法是目前应用最为广泛的手性合成方法之一。
在这种方法中,底物(通常是不对称的)被配合到手性配体上,形成新的手性化合物。
这个手性化合物与底物之间的反应组成了一系列的不对称反应,最终得到手性选择性较高的化合物。
SLA方法的优点是选择性高,反应良好,可以制备出一定量、高纯度和可控性的化合物。
但是,该方法在产量、环境友liness和经济性方面存在一些限制。
2.手性诱导手性诱导是一种手性合成方法,在这种方法中,分子间作用力使两个不对称部分保持相同的构型。
该方法能够改善分子的立体选择性并减少不需要的立体异构体的生成。
含手性碳DIOP型双膦配体的合成及修饰摘要:不对称催化是由潜手性反应物合成光活性化合物的有效途径,ɑ,β不饱和氨基酸的氢化立体选择性已达90%以上,L-Dopa的工业化生产则标志着不对称催化氢化开始走向实际应用。
高选择性的催化剂一般是一价铑的手性双磷配体络合物,其中DIOP[2,3-O-异丙叉-2,3-二羟基-1,4-双(二苯基磷基)丁烷〕是合成最早、研究最深入的催比剂配体之一。
关键词:DIOP、酒石酸、修饰1、DIOP型双膦配体的合成1971年,kagan等由天然酒石酸经五步反应合成了DI0P,全程收率27%。
随后,Murrer等改进了该法中的膦化反应,其收率可达49%。
1.1 酒石酸二乙酯(DEtT)的合成将100g酒石酸用20mL蒸馏水浸润,加入250mL95%乙醇和0.5g对甲苯磺酸,安装酯化分水器加热至溶解,加入450mL苯,回流分水。
反应结束后冷却,加入2g碳酸钾,充分振摇后过滤、蒸馏,收集96℃~98℃/53~93Pa馏份。
1.2 2,3-O-异丙叉酒石酸二乙酯(DEtIT)的合成45.8g酒石酸二乙酯、45mL原甲酸三乙酯、25mL丙酮、0.5g对甲苯磺酸和250mL正己烷混匀,回流4h。
冷却后改装分馏柱,待汽相温度升至58℃以上时,冷却,加入少量碳酸钾,充分振摇,过滤后减压蒸馏,收集94~96℃/67Pa的溜份。
1.3 2,3-O-异丙叉-1,2,3,4-丁四醇(ITol)的合成于500mL四口瓶中,加入11.5g四氢锂铝,通N2,搅拌下滴加150mL干燥四氢呋喃,回流30min,冷却后将45gDEtIT溶于150mL干燥四氢吠喃中,滴入反应瓶中,控制滴加速度维持微沸,回流6h。
冰水浴中冷却,依次滴加15mL 冰水、15mL 4mol/L氢氧化钠和4mL冰水,分解过剩的四氢锂铝,过滤,滤饼由3×150mL二氧六环提取,合并滤液,蒸除溶剂。
1.4 1,4-二对甲苯磺酰-2,3-O-异丙叉-l,2,3,4-T四醇(DTosITol)的合成27.5g ITol溶于125mL新蒸吡啶中,搅拌下分批加入125g重结晶对甲苯磺酰氯。
binap的制备一、引言binap(2,2'-二氨基-1,1'-联萘)是一种重要的手性配体,广泛应用于有机合成和金属催化反应中。
其制备方法多种多样,本文将介绍其中一种常用的合成方法。
二、制备方法binap的制备方法主要有两步:联萘的硝化和硝基联萘的还原。
1. 联萘的硝化将联萘溶解在硫酸中,然后缓慢滴加硝酸,控制反应温度在0-5℃下进行。
反应进行一段时间后,通过加入冰水和醋酸进行中和,得到硝基联萘。
该步骤的目的是在联萘上引入硝基。
2. 硝基联萘的还原将硝基联萘溶解在乙醇中,加入过量的亚硫酸钠。
反应进行后,通过加入冰水和盐酸进行中和,得到目标产物binap。
该步骤的目的是将硝基还原为氨基。
三、反应机理binap的制备反应中,硝化反应和还原反应是两个关键步骤。
1. 硝化反应机理硫酸在反应中起到催化剂的作用,通过质子化联萘,使其成为良好的亲电体。
硝酸与质子化的联萘发生亲电取代反应,将硝基引入联萘结构中。
中和步骤中的冰水和醋酸用于中和反应溶液中的硫酸和硝酸,并使产物易于提取。
2. 还原反应机理亚硫酸钠作为还原剂,在碱性条件下将硝基还原为氨基。
亚硫酸钠中的亚硫酸根离子与硝基发生还原反应,生成氨基联萘。
中和步骤中的冰水和盐酸用于中和反应溶液中的亚硫酸钠和产生的亚硫酸。
四、实验条件与注意事项在进行binap的制备实验时,需要注意以下几点:1. 温度控制:硝化反应需要在0-5℃下进行,可以通过冷却系统或冰浴来控制反应温度。
2. 搅拌条件:反应过程需要充分搅拌,以保证反应均匀进行。
3. 中和条件:中和步骤中的冰水和醋酸或盐酸用量需要适当控制,以确保反应溶液中的酸性物质得到中和。
4. 安全措施:在实验过程中,应注意安全操作,佩戴适当的防护装备,避免接触有害物质。
五、应用与展望制备得到的binap可以应用于有机合成中的不对称催化反应,例如金属催化的不对称加氢、不对称氢化等反应。
binap作为手性配体,具有良好的立体选择性和催化活性,对于合成手性化合物具有重要意义。
手性催化研究的新进展与展望手性催化研究的新进展与展望丁奎岭1,*范青华21中国科学院上海有机化学研究所,上海2000322中国科学院化学研究所,北京100190手性是自然界的基本属性之一,与生命休戚相关。
近年来,人们对单一手性化合物(如手性医药和农药等)及手性功能材料的需求推动了手性科学的蓬勃发展。
手性物质的获得,除了来自天然以外,人工合成是主要的途径。
外消旋体拆分、底物诱导的手性合成和手性催化合成是获得手性物质的三种方法,其中,手性催化是最有效的方法,因为他能够实现手性增殖。
一个高效的手性催化剂分子可以诱导产生成千上万乃至上百万个手性产物分子,达到甚至超过了酶催化的水平。
2001年,诺贝尔化学奖授予了三位从事手性催化研究的科学家Knowles、Noyori 和Sharpless,以表彰他们在手性催化氢化和氧化方面做出的开拓性贡献,同时也彰显了这个领域的重要性以及对相关领域如药物、新材料等产生的深远影响。
我国对于手性催化合成的研究始于上世纪80年代,从90年代逐渐引起重视。
1995年戴立信、陆熙炎和朱光美先生曾撰文呼吁我国应对手性技术特别是手性催化技术的研究给予重视[1]。
国家自然科学基金委员会九五和十五期间分别组织了“手性药物的化学与生物学研究”(戴立信院士和黄量院士主持)[2]、“手性与手性药物研究中的若干科学问题研究”(林国强院士主持)[3]重大研究项目,同时中国科学院和教育部等也对手性科学与技术的研究给予了重点支持,极大地推动了我国手性科学和技术领域特别是在手性催化领域的发展,取得了一批在国际上有较大影响的研究成果,并培养了一支优秀的研究队伍,在手性催化研究领域开始在国际上占有一席之地。
本文结合国际上手性催化研究的最新进展,主要回顾了我国科学家近年来在新型手性配体、金属配合物手性催化、生物手性催化、有机小分子手性催化、负载手性催化剂、以及新概念与新方法等方面取得的重要研究进展[4],并展望了手性催化的未来发展趋势。
新型手性Salen双核锌配合物的分子识别研究韩华;袁伟锋;阮文娟;赵小菁;胡国航;朱志昂【期刊名称】《物理化学学报》【年(卷),期】2004(020)005【摘要】合成了新型手性Salen配体(H3L)及新型手性Salen双核锌配合物(主体).通过研究主体对咪唑类客体及氨基酸酯类客体的分子识别行为,测定了这些配位反应的缔合常数.主体对咪唑类客体分子识别的缔合常数顺序为:K(Im)>K(2-MeIm)>K(2-Et-4-MeIm).主体对氨基酸酯类客体分子识别的缔合常数顺序为:K(LeuOCH3)>K(ValOCH3)>K(AlaOCH3)>K(SerOCH3),配位数均为2.主体与D、L型氨基酸酯分子识别反应在不同温度下的缔合常数结果表明,随着温度的升高,对映选择性下降.实验发现反应体系中存在焓熵补偿关系.CD光谱的研究结果也反映了主体对不同客体识别能力的差异.【总页数】6页(P529-534)【作者】韩华;袁伟锋;阮文娟;赵小菁;胡国航;朱志昂【作者单位】南开大学化学系,天津,300071;南开大学化学系,天津,300071;南开大学化学系,天津,300071;南开大学化学系,天津,300071;南开大学化学系,天津,300071;南开大学化学系,天津,300071【正文语种】中文【中图分类】O641.24【相关文献】1.双核Salen锌配合物对含氮小分子的分子识别研究 [J], 朱必学;阮文娟;高峰;曹小辉;朱志昂2.新型手性双核Salen Mn的分子识别研究 [J], 袁瑞娟;阮文娟;朱必学;曹小辉;朱志昂3.手性氨基酸尾式卟啉锌配合物对氨基酸酯的手性分子识别 [J], 罗国添;刘海洋4.新型手性双核Salen锰(Ⅲ)配合物对咪唑、吡啶类客体的分子识别研究 [J], 胡国航;阮文娟;高峰;朱志昂5.新型手性双核Salen Zn(Ⅱ)配合物的分子识别研究 [J], 袁伟锋;阮文娟;章应辉;南晶;朱志昂因版权原因,仅展示原文概要,查看原文内容请购买。