中药多糖的分子量及结构研究进展.
- 格式:doc
- 大小:36.00 KB
- 文档页数:4
黄芪多糖的研究进展李娟;邱时秀;杨雪;雷春龙;许祯莹;吴永胜【摘要】黄芪多糖是一种溶于水的中性杂多糖,具有提高畜禽抗氧化活性、增强免疫力、抑菌、提高生产性能、改善肠道发育等作用.对黄芪多糖的分子结构及组成成分、提取工艺和功能进行了综述,从而为其进一步的饲料化开发利用提供理论依据.【期刊名称】《畜牧与饲料科学》【年(卷),期】2017(038)003【总页数】3页(P40-41,75)【关键词】黄芪多糖;生物活性;功能【作者】李娟;邱时秀;杨雪;雷春龙;许祯莹;吴永胜【作者单位】成都市农林科学院畜牧研究所,四川成都611130;成都市农林科学院畜牧研究所,四川成都611130;成都市农林科学院畜牧研究所,四川成都611130;成都市农林科学院畜牧研究所,四川成都611130;成都市农林科学院畜牧研究所,四川成都611130;成都市农林科学院畜牧研究所,四川成都611130【正文语种】中文【中图分类】Q53;S853.74早在20世纪90年代,有日本学者研究发现,黄芪多糖(astragalus polysaccharide)具有增强老龄鼠产生抗体的能力[1]。
大量研究表明,植物多糖增强机体免疫功能并提高机体抗氧化能力是其发挥药用的主要机制之一[2]。
黄芪中含有多糖、蛋白质、生物碱、氨基酸、黄酮类、微量元素等活性物质,其中多糖成分的免疫活性最为突出[3]。
黄芪多糖是从黄芪中提炼而成,是黄芪中的主要生物活性成分。
为了充分利用资源,提高黄芪开发利用附加值,越来越多的学者致力于研究黄芪多糖的抗氧化活性、抑菌、改善肠道发育等作用。
笔者从黄芪多糖的分子结构及组成成分、提取工艺和功能介绍方面进行了简要综述。
分子的大小是多糖具备生物活性的必要条件,这与多糖高级结构有序构象的维持有关[4]。
黄芪多糖主要由分子量为59 400的多糖组成,是一种溶于水的中性杂多糖[5]。
多糖的主要成分是中性碳水化合物,其次是糖醛酸和蛋白质[1]。
中药植物多糖降血糖作用的研究进展1.黄芪多糖黄芪(Astragalus membranaceus)是一种常用的中草药,其多糖具有明显的降血糖活性。
研究发现,黄芪多糖能够增加胰岛素释放和降低胰岛素抵抗,从而改善胰岛功能。
此外,黄芪多糖还能够抑制糖的吸收和降低血液中的葡萄糖水平。
2.银杏多糖银杏(Ginkgo biloba)是一种常用的中药植物,其多糖具有一定的降血糖作用。
研究表明,银杏多糖能够提高糖尿病患者的胰岛素敏感性,降低胰岛素抵抗,并调节胰岛素和胰高血糖素的分泌。
此外,银杏多糖还能够抑制葡萄糖的吸收和降低血液中的糖化血红蛋白水平。
3.枸杞多糖枸杞(Lycium barbarum)是一种常见的中草药,其多糖具有良好的降血糖作用。
枸杞多糖能够增加胰岛素敏感性,降低胰岛素抵抗,并提高胰岛素的释放。
此外,枸杞多糖还能够抑制糖的吸收和降低血液中的葡萄糖水平。
研究还发现,枸杞多糖还能够减轻胰岛素抵抗引起的脂肪肝和肾脏损伤。
4.薏苡仁多糖薏苡仁(Coix lacryma-jobi)是一种常用的中草药,其多糖具有良好的降血糖活性。
研究发现,薏苡仁多糖能够增加胰岛素敏感性,降低胰岛素抵抗,并调节脂肪代谢和血脂水平。
此外,薏苡仁多糖还能够抑制葡萄糖的吸收和降低血液中的糖化血红蛋白水平。
综上所述,中药植物多糖具有重要的降血糖作用,对于糖尿病的治疗和预防具有潜在的应用价值。
然而,目前关于中药植物多糖降血糖作用的研究还存在一些问题,如药理机制的不完全理解、剂量与疗效之间的关系等。
因此,未来的研究需要进一步探索中药植物多糖的降血糖作用机制,优化药物的剂量和用法,并进行更多的临床研究来验证其疗效。
白术多糖结构-概述说明以及解释1.引言1.1 概述白术多糖是一种来源于白术植物的多糖类化合物。
白术又被称为“中药之宝”,在中医领域有着广泛的应用。
而白术多糖作为白术的主要活性成分之一,已经引起了越来越多的研究兴趣。
白术多糖的结构复杂且多样,主要由多种糖类组成,如葡萄糖、甘露糖、阿拉伯糖等。
这些糖类通过特定的化学键连接在一起,形成不同种类的多糖结构。
这些结构中可能还存在有其他化学官能团的修饰,如乙酰基、硫酸基等,从而增加了多糖的多样性和功能多样性。
白术多糖的结构与它的生物活性密切相关。
多糖结构的不同部分可能与不同的生物分子相互作用,从而发挥不同的生理效应。
例如,白术多糖的某些结构可能具有抗氧化、免疫调节、抗菌等功能。
因此,研究白术多糖的结构是理解其生物活性及其在医学和保健品领域的应用价值的重要基础。
本文将重点介绍白术多糖的结构特点及其相关的研究进展。
在正文部分,我们将详细阐述白术多糖的结构要点,并探讨这些结构与其生物活性之间的关系。
结论部分将对已有的研究进行总结,并展望未来在白术多糖结构研究领域的发展方向。
通过对白术多糖结构的深入研究,我们有望进一步挖掘其潜在的医疗和保健功能,并为中药白术的合理应用提供科学依据。
文章结构部分的内容可以写成如下形式:1.2 文章结构本文按照以下结构进行叙述和分析:1. 引言:介绍本文的研究对象——白术多糖,并总述本文的目的和架构。
2. 正文:详细描述白术多糖的结构要点,主要包括以下内容:2.1 白术多糖的结构要点1:介绍白术多糖的基本组成和化学性质,以及其在生物体内的分布和功能。
2.2 白术多糖的结构要点2:探讨白术多糖的分子结构和化学键的连接方式,同时分析其结构与功能之间的关系。
3. 结论:对以上内容进行总结,并展望白术多糖结构研究的未来发展方向。
通过以上结构的布局,本文将全面系统地介绍白术多糖的结构特点,帮助读者更好地理解和认识该物质。
同时,通过对其结构与功能的分析,有助于进一步研究白术多糖的药理活性和医学应用价值。
中药当归多糖的研究进展作者:谢诗慧来源:《安徽农学通报》2019年第11期摘; 要:当归多糖为当归饮片主要的药理学活性成分,具有增强免疫、抗氧化、抗肿瘤、抗病毒和造血等多种生物学活性作用。
该文主要综述了当归多糖的分离提取、纯化鉴定、化学修饰及生物学活性研究,为当归多糖在中药领域的研究提供理论依据。
关键词:当归多糖;分离提取;纯化鉴定;化学修饰;生物学活性中图分类号 S511 文献标识码 A 文章编号 1007-7731(2019)11-0027-3Abstract:Angelica polysaccharide is the main pharmacological active ingredients of Angelica decoction tablets.And It has enhanced immunity,antioxidant,anti-tumor,anti-virus and hematopoietic and other biological active effects.This paper reviewed; extraction,purification,chemical modification and biological activity of; Angelica polysaccharide and provided a theoretical basis for the research of Angelica polysaccharide in traditional Chinese medicine.Key words:Angelica polysaccharide;Extraction;Purification;Chemical modification;Biological activity當归是伞形科植物当归[Angelica sinensis (Oliv.) Diels]的干燥根。
多糖的生物活性及在医药领域的研究进展发布时间:2021-07-15T15:12:43.730Z 来源:《健康世界》2021年10期作者:吴颖露温东娜吕明伟[导读] 葡萄糖是我们接触最多的物质之一,它存在于我们的体内,存在于我们的食物,存在于大自然所有的生物之中。
吴颖露温东娜吕明伟华北理工大学生命科学学院 063210摘要:葡萄糖是我们接触最多的物质之一,它存在于我们的体内,存在于我们的食物,存在于大自然所有的生物之中。
葡萄糖是构建多糖的单体,多糖是生物大分子的一种。
它具有多种多样的生物活性,可以通过形成不同的构型,缔造出具有不同功能的大分子。
本文简单介绍了多糖在抗肿瘤,抗凝血,抗氧化等一些方面的应用,以及多糖在医药领域的研究进展。
关键词:多糖;生物活性;医药;引言多糖是一种天然的,高分子的一种聚合物,他们一般通过多个单糖,通过缩合反应减少一分子水,得到糖苷键构成的一种大分子。
多糖一般由数十个单糖通过缩合得到线型的,或者非线型的空间结构,他们的分子量跨度非常大,小到几百,大到百万的分子量都是非常常见的。
它们的分布非常广泛,存在于几乎所有的生物体内,包括动物、植物、微生物,多糖是我们日常生命活动不可缺少的一种物质。
近年来,从天然产物中分离得到的多糖被应用于抗肿瘤,抗凝血,抗氧化等方面,这些应用也越来越普遍。
1生物活性1.1抗肿瘤活性癌症是现今发病率最高的疾病之一,严重的威胁着人类的生命健康,癌症由细胞的异变并不断的进行细胞复制,逐步的成长为肿瘤。
现在越来越多的研究发现,多糖对肿瘤有一定的抑制效果[1]。
多糖一般从以下两个方面对肿瘤发挥作用:(1)诱导细胞的凋亡。
在细胞实验中,通过添加多糖对肿瘤细胞的生长实验与空白实验进行对照,实验结果表明,添加多糖的肿瘤细胞可以一直癌细胞系BIU87的生长,促使细胞的凋亡,而未添加多糖的肿瘤细胞这是正常发育。
(2)提高免疫力。
添加多糖,可以增加T细胞,巨噬细胞等免疫细胞的的浓度,增强机体的免疫作用,对肿瘤细胞产生更大的抑制作用。
多糖类物质的研究进展李自明 11级食品科学与工程 111304023摘要多糖是由10个以上单糖通过糖苷键连接而成的聚糖,在自然界中分布极广,在高等植物、藻类、菌类及动物体内均有存在,是自然界含量最丰富的生物聚合物。
人们对多糖的认识首先是把它看作食物中的能量来源。
多糖作为药物始于1943年,但从20世纪60年代以来,人们逐渐发现多糖在抗肿瘤、肝炎、心血管疾病、衰老等方面有独特的生物活性,且细胞毒性极低。
近年来,由于天然药物化学、药理学研究的不断深入,多糖分析手段得到突飞猛进的发展。
研究发现,多糖可作为生命活动中核心作用的遗传物质,它能控制细胞分裂和分化,调节细胞的生长与衰老等多种复杂的功能。
本文将对多糖的提取、分离纯化、组分分析以及生物活性等研究内容做一综述。
关键词多糖;分离纯化;结构分析;生物活性1多糖的研究概况多糖是除了蛋白质和核酸以外的一类重要的生物大分子, 虽然糖类的研究并不比蛋白质和核酸晚, 但其研究层次与水平还远远落后于蛋白质和核酸。
20世纪70年代以来,随着免疫物质、生物膜及多种生物活性物质的研究表明, 糖类在生物体内具有各种关键的生物学功能, 因此糖类的研究成为人们关注的焦点。
大量的药理实验表明,多糖类化合物具有免疫增强与调节、抗肿瘤、抗病毒、抗凝血、抗放射、抗衰老等作用。
日本自20世纪80年代以来, 已有数种多糖应用于临床。
近年来,日本及欧美学者引进现代分子生物学技术手段,加强对中药多糖活性决定簇等化学结构与功能关系的研究,并在柴胡、当归等中药的研究方面有了一定的突破。
国内的研究起步较晚, 虽然已在云芝糖肽、银耳多糖等的研究中取得了一定的进展,但对药用多糖的研究仍多偏重于提取、分离、精制、化学组成等方面, 大多数品种尚处于实验阶段或仅用于滋补品和饮料,与国外相比仍有一定的差距。
2多糖的分离纯化与性质研究2.1 多糖的提取分离与纯化多糖是极性大分子化合物,大多采用不同温度的水、稀碱或稀盐溶液提取,尽量避免在酸性条件下提取,以防引起糖苷键的断裂。
中药多糖结构与功能及其机制【中药多糖结构与功能及其机制】1. 引言中药多糖作为一种重要的中药成分,在中医药学中占有重要地位。
其在治疗和预防疾病方面具有广泛的应用价值,其独特的结构和功能使其成为中医药研究领域的热点之一。
本文将从中药多糖的结构与功能以及作用机制方面展开探讨,旨在对该主题进行深入剖析。
2. 中药多糖的结构中药多糖是一类多糖类化合物的总称,其结构包括多种多糖单体,如葡萄糖、果糖、半乳糖等。
这些多糖单体通过不同的排列和连接方式形成不同的多糖结构,如直链多糖、支链多糖、混合多糖等,其中不同结构对中药多糖的功能具有重要影响。
3. 中药多糖的功能中药多糖具有多种生物学活性,包括抗氧化、抗炎、免疫调节、抗肿瘤等功能。
这些功能主要源于中药多糖分子结构中含有的各种功能基团和官能团,如羟基、羧基、硫酸基等。
这些基团和官能团的存在影响了中药多糖的生物学活性,使其具有多种医药保健功能。
4. 中药多糖的作用机制中药多糖的作用机制主要包括与受体的结合、调节信号通路、调节细胞免疫功能等。
在与受体的结合过程中,中药多糖可以激活特定的受体,进而调节相关的信号通路,最终发挥其生物学功能。
中药多糖通过与Toll样受体结合,激活NF-κB信号通路,发挥抗炎作用。
5. 个人观点和理解在我看来,中药多糖作为一种天然药物成分,具有独特的生物学活性和作用机制,对人体健康具有重要意义。
其结构与功能的研究不仅有助于深化对中药多糖的认识,也为中药多糖的应用和开发提供了科学依据。
在以后的研究中,我希望能够更深入地探索中药多糖的作用机制,以期发现更多的潜在生物学功能和临床应用价值。
6. 总结中药多糖的结构与功能以及作用机制是一个值得深入研究的课题。
通过对其结构和功能的全面了解,我们能够更好地认识中药多糖的生物学活性和药理学特性,为其在临床应用和新药开发中发挥更大的作用提供科学依据。
希望本文对读者对中药多糖有所启发,也能为相关领域的研究者提供一些参考价值。
许欢怡,李泉岑,郑明锋,等. 银耳多糖的结构、功能性及应用研究进展[J]. 食品工业科技,2024,45(4):362−370. doi:10.13386/j.issn1002-0306.2023040052XU Huanyi, LI Quancen, ZHENG Mingfeng, et al. Research Progress on Structure, Function and Application of Tremella fuciformis Polysaccharide[J]. Science and Technology of Food Industry, 2024, 45(4): 362−370. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2023040052· 专题综述 ·银耳多糖的结构、功能性及应用研究进展许欢怡1,2,李泉岑1,2,郑明锋1,2,刘 斌1,2,3,吕 峰1,2,曾 峰1,2,3,*(1.福建农林大学食品科学学院,福建福州 350002;2.福建省亚热带果蔬加工工程技术研究中心,福建福州 350002;3.国家菌草工程技术研究中心,福建福州 350002)摘 要:银耳富含营养素,银耳多糖是其中最主要的功能活性成分,具有多种生物活性。
银耳多糖的制备方法多样,对于其结构的研究多集中在分子量、单糖组分和糖苷键类型等方面。
本文综述了银耳多糖的制备、结构和抗氧化、抗肿瘤、调节免疫、改善记忆、抗炎、降血糖和降血脂等生物活性及其在食品、化妆品和医药方面的开发应用。
未来需要优化银耳多糖的制备技术,结合现代分析技术解析银耳多糖的高级结构,对银耳多糖的功能及作用机理进行深入的研究,以期为银耳的精深加工与产品研发提供理论参考。
关键词:银耳多糖,结构,分子量,功能性,构效关系本文网刊:中图分类号:TS219 文献标识码:A 文章编号:1002−0306(2024)04−0362−09DOI: 10.13386/j.issn1002-0306.2023040052Research Progress on Structure, Function and Application ofTremella fuciformis PolysaccharideXU Huanyi 1,2,LI Quancen 1,2,ZHENG Mingfeng 1,2,LIU Bin 1,2,3,LÜ Feng 1,2,ZENG Feng 1,2,3, *(1.College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China ;2.Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China ;3.National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China )Abstract :Tremella fuciformis is rich in nutrients, and Tremella fuciformis polysaccharide is the most important functional active component with a variety of biological activities. Tremella fuciformis polysaccharides can be prepared by various methods, and the research on its structure is mainly focused on molecular weight, monosaccharide components, and glycosidic bond type. This review summarizes the preparation, structure, and biological activities of Tremella fuciformis polysaccharides, such as antioxidant, anti-tumor, immune regulation, memory improvement, anti-inflammation, blood sugar and blood lipid lowering, and its development and application in food, cosmetics, and medicine. In the future, it is necessary to optimize the preparation technology of Tremella fuciformis polysaccharides, analyze the advanced structure of Tremella fuciformis polysaccharides with modern analytical techniques, and conduct in-depth research on the function and mechanism of action of Tremella fuciformis polysaccharides, so as to provide theoretical reference for the deep processing and product development of Tremella fuciformis fuciformis.Key words :Tremella fuciformis polysaccharide ;structure ;molecular weight ;functionality ;structure-activity relationship银耳(Tremella fuciformis Berk.)属于真菌类银耳科银耳属,是担子菌门真菌银耳的子实体[1]。
多糖高级结构解析方法的研究进展多糖是一种由多个单糖分子通过糖苷键连接形成的生物大分子,在生物体内发挥着重要的生理功能。
多糖的高级结构解析对于理解生物大分子的生物功能和药物研发具有重要意义。
近年来,随着科技的不断发展,多糖高级结构解析方法的研究取得了显著的进展。
本文将围绕多糖高级结构解析方法的研究进展进行综述。
多糖高级结构的解析方法可以概括为物理方法、化学方法和生物方法。
物理方法包括X射线衍射、红外光谱和核磁共振等,可以提供多糖的构象和取向等信息。
化学方法主要包括降解、甲基化、乙酰化等,可以用于确定多糖的链长度、糖单元组成和连接方式等。
生物方法则包括利用特异性抗体或酶对多糖进行识别和降解等,可以用于分析多糖的高级结构。
然而,这些方法存在一定的局限性,如样品制备困难、分辨率低、特异性不够强等。
随着科技的不断进步,近年来多糖高级结构解析方法的研究取得了许多新的进展。
例如,通过结合超速离心和质谱技术,研究者成功解析了复杂多糖的精细结构。
利用纳米孔测序技术也可以快速、准确地测定多糖序列。
另外,基于计算机模拟的方法如分子动力学模拟和蒙特卡罗模拟等也被应用于多糖高级结构的预测和解析。
这些新方法的引入极大地推动了多糖高级结构解析的研究进展。
多糖高级结构解析方法具有许多优点。
例如,物理方法可以提供关于多糖构象和取向的信息,化学方法可以确定多糖的组成和连接方式,生物方法可以用于分析多糖的高级结构。
然而,这些方法也存在一定的局限性。
例如,物理方法可能需要高分辨率的仪器设备,化学方法可能有副反应或无法确定糖苷键的位置,生物方法则需要特异性抗体或酶。
随着多糖高级结构解析方法的不断改进和发展,其应用前景也越来越广阔。
例如,在药物研发方面,通过解析特定多糖的高级结构,可以发现新的药物靶点或制备具有特定生物活性的多糖药物。
另外,多糖高级结构解析方法在食品工业、环境科学和生物技术等领域也有广泛的应用。
例如,通过解析食品中的多糖结构,可以评估其营养价值和生物活性;通过解析环境中的多糖结构,可以了解其对环境的影响和作用机制;通过解析生物技术制备的多糖结构,可以优化制备工艺并评估其生物功能。
中药多糖的分子量及结构研究进展 [ 09-09-09 15:35:00 ] 作者:封聚强, 赵骏 编辑:studa20
【摘要】 目前中药多糖药理作用研究比较活跃,而其分子量和分子量分布及化学结构确定成为进一步深入研究多糖特异性和构效关系以及药效机理的基础。该文归纳总结了多糖分子量和分子量分布及化学结构研究的方法。
【关键词】 中药多糖; 分子量; 分子量分布; 化学结构; 生物活性 Abstract:The study on pharmacological action of polysaccharide of traditional Chinese drug is more active at present, but the definition of molecular weight and molecular weight distribution and chemical constitution has become the foundation of better study on specificity and structure-function relationship and drug action mechanism of polysaccharide. The methods of study on molecular weight and molecular weight distribution and chemical constitutuion of polysaccharide were reviewed in this paper.
Key words:Polysaccharide of traditional Chinese drug; Molecular weight; Molecular weight distribution; Chemical constitution; Biological activity
多糖通常是由几百甚至几千个单糖组成的高分子均聚物或共聚物,其能被水解为多个单糖。多糖存在于植物和动物之中,在高等植物和藻类中,它们是细胞壁或细胞内部的组分;在细菌和真菌中,它们可能既是细胞组分,又是新陈代谢的产物。多糖分子量很大,其性质也大大不同于单糖和低聚糖。现代研究发现茯苓、黄芪、猪苓、枸杞、柴胡、人参、香菇、云芝、银耳、灵芝、冬虫夏草等中药其生物活性成分之一是多糖,具有免疫调节、抗辐射、抗凝血、降血糖、降血脂等功效,而它们的生理活性与多糖分子量和分子量分布及化学结构有密切关系。
1 中药多糖分子量和分子量分布研究 中药多糖是生物大分子,属高分子化合物,其分子量的测定方法有绝对法、当量法和相对法。表示其分子量大小的方式有重均分子量(Mw),数均分子量(Mn),粘均分子量(Mη)和Z均分子量(Mz)。多糖大多数情况下Mn< Mη< Mw< Mz 。多糖的分子量分布是指多糖中各种不同的分子量组分在总量中所占的各自的分量,一般用分子量分布指数α表示,即重均分子量与数均分子量的比值(α=Mw / Mn) ,α比值愈大,说明分子量分布愈宽,当α=1时,是分子量均一体系。对于生物大分子多糖来说,其分子链的长短可以是不同的,在衡量其分子量时,往往是一个平均数。重均分子量是按分子重量统计平均的分子量,测定方法有光散射法、超速离心沉降速度法以及凝胶渗透色谱法等。数均分子量就是依据总体分子的的个数,求出分子量来的,数均分子量测定方法有端基分析法,气相渗透法,沸点升高冰点降低法,膜渗透压法,凝胶渗透色谱法等。中药多糖主要测数均分子量和重均分子量。目前常用体积排阻色谱法(包括凝胶渗透色谱法和高效凝胶渗透色谱法)测定多糖分子量和分子量分布。2005年版《中国药典》Ⅱ部中收载了用高效凝胶渗透色谱法测定多糖分子量及分子量分布方法。
1.1 凝胶渗透色谱法(GPC) 凝胶渗透色谱法它是根据在凝胶柱上不同分子量的多糖与洗脱体积成一定关系的特性,先用各种已知分子量的多糖制成标准曲线,然后由样品的洗脱体积从曲线中求得分子量。用凝胶过滤法测分子量,每次缓冲液及流速均需一致,否则会产生较大的误差,凝胶柱多采用软质凝胶,常用的商品型号为交联葡聚糖sephadex,琼脂糖Sepharose,聚丙烯酰胺BIo-Gel P。A. E. A. Oliveira1等[1]用GPC法测定了刀豆属植物种子外皮多糖的重均分子量(Mw)为8 830。孔庆胜等[2]采用凝胶过滤法测定南瓜多糖分子量,SephadexG-200层析柱,硫酸-苯酚法检测,测得南瓜多糖的平均分子量为16 000。陈洪亮等[3]用葡聚糖凝胶过滤法测定芦荟多糖分子量,所用凝胶为SephadexG-150,硫酸-苯酚法跟踪检测,结果分子量为45 400。盖英萍等[4]将桑叶多糖粗提取物通过SephadexG-200柱层析,检测得到3种多糖组分,后经SephadexG-75柱层析测定3种多糖组分的相对分子量为41 977,21 220,6 697。
1.2 高效凝胶渗透色谱法(HPGPC) 高效凝胶渗透色谱法它是根据在凝胶柱上不同分子量的多糖与洗脱保留时间(tR)成一定关系的特性,先用各种已知分子量的多糖制成标准曲线,然后由样品的保留时间(tR)从曲线中求得分子量。高效凝胶渗透色谱法测定多糖分子量多采用示差折光检测器,示差折光检测器是一种通用型检测器,在液相色谱检测中多应用于对紫外-可见光没有吸收的化合物分析,只要被检测的化合物的折光指数与液相溶剂体系有差别即可被检测。高效凝胶渗透色谱中主要使用的是刚性凝胶柱,包括高交联度(>40%)苯乙烯-二乙烯基苯共聚物微球,常用的商品型号为TSK-Gel、Progel-TSKH-Type柱等;多孔球形硅胶,常用的商品型号为T5K- SW柱等;羟基化聚醚多孔微球,常用的商品型号为TSK -PW等。戴敬[5]采用色谱柱为TSK-G4000PWXL(7.8 mm×30.0 cm),示差折光检测器,分析测定了13 批样品,得到四维灵芝液中多糖组分高效凝胶色谱图谱、多糖组分平均分子量。郭辉[6]采用色谱OHPakSB-805HQ(8 mm×300 mm),示差折光器检测器,测得红毛五加多糖各组分的重均分子量。姜素琴[7]采用色谱柱为TSK-GELG3000PWxl,测定云芝多糖的重均分子量、数均分子量及分子量分布指数。韩凤兰[8]应用SUGAR KS-804色谱柱,示差折光器检测器,测定宁夏黄芪多糖重均分子量、数均分子量及分子量分布指数。张红旭[9]用凝胶色谱分析柱为Ohpak SB-805HQC(300 mm×8 mm), 示差折光器检测器,测定了香菇多糖的平均分子量。2 中药多糖的化学结构研究
多糖与蛋白质等生物大分子一样也有明确的三维空间结构,可以用一、二、三、四级结构来描述,其中二、三、四级结构属高级结构,多糖的一级结构是指多糖的单糖残基的组成、排列顺序、相邻单糖残基的连接方式、异头物的构型及糖链有无分支、分支的位置和长短等。多糖的二、三、四级结构是指多糖分子中主链的构象,侧链的空间排布,单糖残基空间相对定位等。由于单糖的种类比构成蛋白质的氨基酸种类多,连接的位点也多,故具有多分支结构的杂多糖结构的确定比蛋白质困难得多。多糖与蛋白质一样,其活性不但与立体结构有关,也存在活性中心,而且还与它所结合的蛋白质、色素、金属离子等有关。目前中药多糖化学结构测定方法很多,主要有酸完全水解、部分水解法,碱降解法、高碘酸氧化和Smith降解法、甲基化反应、酶降解、薄层色谱、高效液相色谱、红外光谱、核磁共振光谱、质谱、气质联用、X-射线衍射等。
2. 多糖一级结构测定常用光谱方法 2.1.1 红外光谱法(IR)和紫外光谱法(UV) 红外光谱在多糖结构分析上主要是识别糖的各种官能团并确定多糖中各种单糖的糖苷键及糖构型,以及不同糖的鉴别。刘宗林[10]经红外光谱分析推断西洋参的多糖是含有葡萄糖、半乳搪、木糖和阿拉伯糖的杂多糖。胡闻莉等[11]用红外光谱分析生脉散多糖纯品,结果表明其结构中存在α型糖苷键(即α-端基差向异构体)。紫外光谱在多糖结构分析上没有多大用处,但可利用在260,280 nm处有无吸收来判断多糖中是否有蛋白质,多肽及核酸,此外还可测定多糖的含量及糖醛酸含量。杨世平等[12]用紫外光谱法说明红枣多糖中蛋白质含量。
2.1.2 核磁共振光谱法(NMR) 核磁共振光谱主要解决多糖结构中糖苷键的构型和重复结构中单糖的数目。1H核磁共振波谱主要解决多糖结构中糖苷键的构型,13CNMR化学位移范围宽广,信号清晰,在多糖结构分析中可确认各种碳核以及分辨分子的构型和构象。13CNMR可用来确定多糖残基中取代位置和分枝点[13],而2D NMR对于多糖13CNMR谱全归属起着至关重要的作用[14]。白日霞等[15]利用C13核磁共振手段表征了mg级小皮伞多糖结构。李熙灿等[16]应用1H-NMR,13CNMR对黑海参中的多糖成分进行了结构鉴定。核磁共振技术对多糖结构的测定非常重要,如果再与糖组分分析[17]等技术相结合,将更有助于多糖结构的确定。
2.1.3 质谱和气-质联 用质谱在多糖的结构研究中是一种重要的手段,包括电子轰击质谱、化学电离质谱、快原子轰击质谱、电喷雾质谱、串联质谱等[18]。其中化学电离质谱(CI)能提供可靠的分子量,糖碎片的性质,还原糖和非还原端糖的情况等,气-质联用可大大简化糖的结构分析工作。白日霞[19]应用气相色谱-质谱法对甲基化多糖的测定方法及通过质谱解析对多糖的一级结构的推测原理进行了研究。张宏等[20]经气质联机(GC一MS)分析,初步确定了淫羊藿多糖结