当前位置:文档之家› 电磁场与电磁波知识点

电磁场与电磁波知识点

电磁场

麦克斯韦电磁场理论的两大支柱:变化的磁场产生电场,变化的电场产生磁场。

振荡电场产生同频率的振荡磁场;振荡磁场产生同频率的振荡电场。

⑵按照麦克斯韦的电磁场理论,变化的电场和磁场总是相互联系的,形成一个不可分离的统一的场,这就是电磁场。电场和磁场只是这个统一的电磁场的两种具体表现。

变化的电场和磁场从产生的区域由近及远地向周围空间传播开去,就形成了电磁波。

有效地发射电磁波的条件是:⑴频率足够高(单位时间内辐射出的能量P∝f4);⑵形成开放电路(把电场和磁场分散到尽可能大的空间里去)。

电磁波是横波。E与B的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波是横波。电磁波的传播不需要靠别的物质作介质,在真空中也能传播。在真空中的波速为c=3.0×108m/s。

电磁波

变化的电场和磁场从产生的区域由近及远地向周围空间传播开去,就形成了电磁波。

有效地发射电磁波的条件是:⑴频率足够高(单位时间内辐射出的能量P∝f4);⑵形成开放电路(把电场和磁场分散到尽可能大的空间里去)。

电磁波是横波。E与B的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波是横波。电磁波的传播不需要靠别的物质作介质,在真空中也能传播。在真空中的波速为c=3.0×108m/s。

麦克斯韦电磁场理论的两大支柱:变化的磁场产生电场,变化的电场产生磁场。

振荡电场产生同频率的振荡磁场;振荡磁场产生同频率的振荡电场。

⑵按照麦克斯韦的电磁场理论,变化的电场和磁场总是相互联系的,形成一个不可分离的统一的场,这就是电磁场。电场和磁场只是这个统一的电磁场的两种具体表现。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F 的散度处处为0,即0F ??≡,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F 的旋度处处为0,即0F ??≡,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=?? ?和 斯托克斯定理: s C F dS F dl ???=??? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题, 。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D dS dV Q ρ?==? ?和 0l E dl ?=?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=和0E ??=。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E =5x y z xe ye e --+。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D.电介质 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C )。 A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

电磁场和电磁波

电磁场和电磁波 电磁场,有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 电磁波是电磁场的一种运动形态。在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。 电磁场和电磁波是物理中的两个基础概念,电磁场和电磁波有什么区别了? 电磁场 一般来说电磁场就是指彼此相联系的交变电场和磁场。电磁场是由带电粒子的运动而产生出的一种物理场,在电磁场里,磁场的任何变化都会产生电场,电场的任何变化也会产生磁场。这种交变电磁场不仅可以存在于电荷、电流或导体的周围,而且能够在空间传播。

电磁场可以被视为一种电场和磁场的连结。电场是由电荷产生的,而移动的电荷又会产生出磁场。 电磁波是什么了 电磁场的传播就构成了电磁波。又被称为电磁辐射,比如我们常见的电磁波有无线电波、微波、红外线、可见光、紫外线、X 射线、r射线,这些全都是电磁波,只是这些电磁波的波长不同而已。其中无线电波的波长是电磁波中最长的,r射线的电磁波的波长最短。 直得一提的是,人眼可以接收到的电磁波的波长一般是在380至780nm之间,也就是我们常说的可见光。一般来说,只要物体本身的温度大于绝对零度(也就是零下273.15摄氏度),除了暗物质外,都会向外发射电磁波,而世界上并没有温度低于零下273.15摄氏度的物体,所以我们身边的物体可以说者会放出电磁波。电磁波的传播速度是以光速传播。 电磁波是谁最先发现了了,历史上电磁波首先是由詹姆斯·麦克斯韦于1865年预测出来的,后来又由德国物理学家海因里希·赫兹于1887年至1888年间在实验中证实了电磁波的存在。

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结 电磁场知识点总结篇一 电磁场知识点总结 电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。 电磁场知识点总结 一、电磁场 麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。 理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场 * 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场 * 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立 的部分,有机的统一为一个整体,并成功预言了电磁波的存在) 二、电磁波 1、概念:电磁场由近及远的传播就形成了电磁波。(赫兹用实验证实了电磁波的存在,并测出电磁波的波速) 2、性质:* 电磁波的传播不需要介质,在真空中也可以传播 * 电磁波是横波 * 电磁波在真空中的传播速度为光速 * 电磁波的波长=波速*周期 3、电磁振荡 LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化 振荡周期:T = 2πsqrt[LC]4、电磁波的发射 * 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间 * 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。调制分两类:调幅与调频 # 调幅:使高频电磁波的振幅随低频信号的改变而改变 # 调频:使高频电磁波的频率随低频信号的改变而改变 (电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”) 5、电磁波的接收 * 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。 * 调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程 * 解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波 (收音机是如何接收广播的?收音机的天线接收所有电磁波,经调谐选择需要的电磁波(选台),经过解调取出携带的信号,放大后再还原为声音) 5、电磁波的应用

电磁场与电磁波知识点

电磁场与电磁波知识点 电磁场与电磁波是电磁学的基本概念。电磁场是由电荷或电流所产生 的具有一定强度和方向的力场,它对空间中的其他电荷或电流起相互作用 的作用。电磁波是电磁场的一种传播形式,它是以电场和磁场相互作用而 产生的一种波动现象。 首先,我们来了解一下电磁场的基本概念。电磁场是由电荷或电流所 产生的力场。当电荷或电流存在时,它们会在周围产生电场和磁场。电场 是由电荷产生的力场,它与电荷的性质和位置有关,遵循库仑定律。磁场 是由电流产生的力场,它与电流的性质和流动方向有关,遵循安培定律。 电磁场有一定的强度和方向,它们可以通过电场强度和磁感应强度来描述。 电磁场是非常重要的物理概念,它在电磁学、电动力学和电磁波学等 领域中发挥着重要的作用。电磁场不仅能够解释电荷或电流之间的相互作用,还能够解释光的传播和电磁波的形成。 接下来,我们来了解一下电磁波的基本概念。电磁波是电磁场的一种 传播形式,它是以电场和磁场相互作用而产生的一种波动现象。电磁波是 由振荡的电荷或电流产生的,当电荷或电流振荡时,它们会在周围产生电 磁场的波动。 电磁波有许多特性,包括频率、波长、速度和偏振等。频率是指电磁 波的振荡次数,它与波长之间有一个简单的关系,即频率等于速度除以波长。波长是指电磁波的空间周期,它是电磁波在一个周期内传播的距离。 速度是指电磁波的传播速度,它在真空中的数值约为光速。偏振是指电磁 波的振动方向,电磁波可以是线偏振、圆偏振或者非偏振的。

电磁波在物质中的传播速度和真空中的传播速度有所不同。当电磁波传播到介质中时,它会与介质中的电荷和电流相互作用,从而减小传播速度。介质对电磁波的传播速度的影响可以用折射率来描述,折射率是介质中光速与真空中光速的比值。 电磁波在空间中传播时,它能够传递能量和动量。电磁波的能量和动量密度与电场和磁场的强度有关,它们可以通过能量密度和动量密度来描述。能量密度是单位体积内的能量,动量密度是单位体积内的动量。电磁波的能量和动量密度与电磁场的强度有一个简单的关系,即能量密度等于电场强度和磁感应强度的平方之和的一半,动量密度等于电场强度和磁感应强度的矢量叉乘的一半。 电磁波有许多重要的应用,包括通信、雷达、微波炉和医学成像等。电磁波可以通过天线进行发送和接收,它们可以在空间中传播到达目标位置。电磁波的频率决定了它的特定应用,例如无线电波用于广播和通信,微波用于加热食物,可见光用于照明和成像。

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结 电磁场是一个非常重要的物理知识,在人们的日常生活中普遍而深刻地存在着。它从 一种笼统的概念上描述了电、磁、引力场等和它们之间的紧密联系,由此演变到各种精彩 的物理现象,可以解释世界的特征。电磁场的基本概念指的是它能够创造出一个均匀的场,由该场来维持运动的不变性,进而发生变化,影响紧密联系的电、磁两个场。该场由 电磁力线、电磁感应力和电磁能量密度组成,可以产生动力作用,相互感应,形成短距离 的相互作用。电磁场的静态性具有可视性、可测量性和可控性等特性,使得研究者能够观 察出它的特征,同时可以通过实验来研究电磁场的某一部分,以及它们之间的相互作用等。 相对于电磁场而言,电磁波是电磁场的动态特性,它包含有在空间和时间上变化的电 磁场分量,即电场、磁场和电磁能量。它可以被视为电磁场在时间空间中的变化,电磁波 以光速传播,所谓“电磁波”是指该能量在时间空间中传播的过程。电磁波是由电磁场在 某一特定范围内相互作用所产生的,它使得电磁场以一种非常稳定的形式流动,在时间空 间中平均分布。 按照传播特性的不同,电磁波可以分为定向性的和向下的,定向的电磁波是指它的传 播方向比较固定,如光在空间传播的特性,而向下的电磁波指的是其传播方向在波的整个 传播过程中是变化的,如电子传播的特性。此外,电磁波还可以按照参数的特性来划分, 各种特性的电磁波都可以由其对应的频率来表示,这就是按照参数划分电磁波的特征。 总之,电磁场和电磁波之间存在着密切的关系,它们都是由两个重要的场--电场和磁 场--组成的,电磁波可以看作是电磁场的动态特性,它是由电磁场在空间和时间上的变化 所产生的,可以按特性来区分为定向性和向下性,也可以按参数来分成各种不同的电磁波。通过研究电磁场和电磁波,我们可以更深入地了解和研究物理现象,从而有助于拓展我们 对世界的认识。

电磁场与电磁波

电磁场与电磁波 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变动的电场会产生磁场,变动的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。 在电磁学里,电磁场(electromagnetic field)是一种由带电物体产生的一种物理场。 处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体(电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。 定义编辑 有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒介,具有能量和动量,是物质的一种存在形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 随时间变化着的电磁场(electromagncfic field)。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。 电磁波是电磁场的一种运动形态。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期转化以电磁波的形式向空间传播出去。电磁波为横波,电磁波的磁场、电场及其行进方向三者互相垂直。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波。波长越长的地面波,其衰减也越少。 电磁波的波长越长也越容易绕过障碍物继续传播。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播的(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性变化,其强度与距离的平方成反比,波本身带有能量,任何位置之能量、功率与振幅的平方成正比,其速度等于光速(每秒30万公里)。光波也是电磁波,无线电波也有和光波同样的特性,如当它通过不同介质时,也会发生折射、反射、绕射、散射及吸收等。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同、且量值最大的两点之间的距离,就是电磁波的波长λ。电磁波的频率γ即电振荡电流的频率,无线电广播中用的单位是千赫,速度是c。根据λγ=c,求出λ=c/γ。 电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播即形成了电磁波,所以电磁波也常称为电波。1864年,英国科学家麦克斯韦在总结前人研究电磁现象取得的成果的基础上,建立了

电磁场与电磁波(知识点重点总结)

电磁场与电磁波 一、本课程应用的三个主要方面: 静电场:利用静电场对带电粒子具有力的作用。如:静电复印、静电除尘以及静电喷漆 静磁场:利用磁场力的作用。如:电磁铁、磁悬浮轴承以及磁悬浮列车等 时变电磁场:利用电磁波作为媒介传输信息。如:无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术、微波炉、电磁炉、卫星通信、蓝牙技术、隐形飞机。 二、 1、卫星通信基本原理: 卫星通信就是地球上(包括地球、水面和低层大气中)的无线电通信站之间利用人造卫星做中继站而进行的通信。 2、电磁炉加热原理: 感应电流(涡流)加热,利用电流通过线圈产生磁场,当磁场内的磁力线通过金属器皿的底部时即会产生无数小涡流,使器皿本身自行高速发热,然后再加热于器皿内的食物。 特点:①锅具自行发热,并煮食锅内食物。 ②炉面不发热,当磁场内的磁力线通过非金属物休,不会产生涡流,故不会产生热。炉面和人 都是非金属物体,本身不会发热,因此没有烧伤的危险。 ③电磁炉的热效率极高,煮食时安全、洁净、无火、无烟。 3、微波炉加热原理: 内加热:微波炉中极性分子接受微波辐射的能量后,通过分子偶极的每秒数十亿次的高速旋转产生热效应,这种加热方式称为内加热。 外加热:把普通热传导和热对流的加热过程称为外加热。 内加热特点:加热速度快、受热体系温度均匀等特点。 4、雷达工作原理: 雷达发出高频电磁波射到物体上,物体把这个电磁波向各个方向反射,当然也有一部分反射回发射点(雷达),在雷达处再设一个接收装置就可接收到回波,根据回波可发现物体。 5、隐形飞机原理: 使雷达无法探测到,飞机达到隐形效果的关键。在于采用隐形材料和隐形设计,尽量把雷达波束吸收掉,或者向偏离原雷达的方向反射,这样飞机就不容易被雷达探测到。

电磁场知识点总结

电磁场知识点总结 电磁场知识点总结 电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。 电磁场知识点总结 一、电磁场 麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。 理解:*均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场 *均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场 *电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立 的部分,有机的统一为一个整体,并成功预言了电磁波的存在) 二、电磁波 1、概念:电磁场由近及远的传播就形成了电磁波。(赫兹用实验证实了电磁波的存在,并测出电磁波的波速) 2、性质:*电磁波的传播不需要介质,在真空中也可以传播

*电磁波是横波 *电磁波在真空中的传播速度为光速 *电磁波的波长=波速*周期 3、电磁振荡 LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B均随时间周期性变化 振荡周期:T=2πsqrt[LC]4、电磁波的发射 *条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间*调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。调制分两类:调幅与调频 #调幅:使高频电磁波的振幅随低频信号的改变而改变 #调频:使高频电磁波的频率随低频信号的改变而改变 (电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”) 5、电磁波的接收 *电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。 *调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程 *解调:从接收到的高频振荡电流中分离出所携带的信号的过程,

2023最新-电磁场与电磁波知识点总结通用6篇

电磁场与电磁波知识点总结通用6篇 高中地理知识点总结与篇一高中地理知识点总结人类对宇宙的认识过程天圆地方说、地圆说、地心说、日心说、大爆炸宇宙学说。 宇宙的基本特点由各种形态的物质构成,在不断运动和发展变化。 天体的分类星云、恒星、行星、卫星、彗星、流星体、星际物质。 天体系统的成因天体之间因相互吸引和相互绕转,形成天体系统。 天体系统的级别地月系-太阳系-银河系(河外星系)-总星系。 日地平均距离1.496亿千米。 电磁波的知识点总结篇二电磁波的知识点总结 电磁波: 电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效地传递能量和动量。 电磁波的产生: 电磁波是由时断时续变化的电流产生的。 电磁波谱: 按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、红外线、可见光、紫外线、X射线及γ射线。以无线电的波长最长,宇宙射线的波长最短。 无线电波3000米~0.3毫米。(微波0.1~100厘米) 红外线0.3毫米~0.75微米。(其中:近红外为0.76~3微米,中红外为3~6微米,远红外为6~15微米,超远红外为15~300微米) 可见光0.7微米~0.4微米。 紫外线0.4微米~10纳米 X射线10纳米~0.1纳米 γ射线0.1纳米~1皮米 高能射线小于1皮米 传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几毫米。 微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿透而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对于金属类东西,则会反射微波。 电磁波的发现 1、电磁场理论的核心之一:变化的磁场产生电场 在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1) 均匀变化的磁场产生稳定电场(2) 非均匀变化的磁场产生变化电场 2、电磁场理论的核心之二:变化的电场产生磁场 麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 理解:(1) 均匀变化的电场产生稳定磁场 (2) 非均匀变化的电场产生变化磁场 3、麦克斯韦电磁场理论的理解: 恒定的电场不产生磁场 恒定的磁场不产生电场 均匀变化的电场在周围空间产生恒定的磁场

高中物理电磁场和电磁波知识点总结

高中物理电磁场和电磁波知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场可以在周围空间产生电场,变化的电场可以在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变 化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是互相关系着,形成一个不可分割的统一体,这就是电磁场. 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相鼓励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速 c=3.00×10 8 m/s. 下面为大家介绍的是2022年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,

即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那局部导体相当于电源. (2)电磁感应现象的本质是产生感应电动势,假如回路闭合,那么有感应电流,回路不闭合,那么只有感应电动势而无感应电流. 2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.假如面积S 与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和. 3. 楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的断定,而右手定那么只适用于导线切割磁感线运动的情况,此种情况用右手定那么断定比用楞次定律断定简便. (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的 磁通量.

(完整word版)电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂- =⨯∇•∂∂+=•∂∂+ =⨯∇s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )(ϖϖϖϖϖϖϖϖ ϖϖϖϖϖϖ ϖϖϖϖ ϖϖρ 本构关系: E J H B E D ϖ ϖϖϖϖ ϖσμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇s s l l s d B B Q s d D D l d E E I l d H J H 0 000ϖϖϖϖϖϖϖϖϖϖϖϖϖρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-•=-=-⨯=-=-•==-⨯ϖϖϖϖϖϖϖϖϖϖ ϖϖϖ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0)0 )(0 )==-•==-⨯==-•==-⨯ϖϖϖϖϖϖϖϖϖ ϖϖϖ((

(1)基本方程 00 2 2 =•==∇- =∇=•=•∇=•=⨯∇⎰ ⎰⎰A A p s l l d E Q s d D D l d E E ϕϕϕε ρ ϕρ ϖϖϖϖϖϖϖϖ 本构关系: E D ϖ ϖε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

高考物理电磁场和电磁波知识点

高考物理电磁场和电磁波知识点 1.麦克斯韦的电磁场理论 1变化的磁场可以在周围空间产生电场,变化的电场可以在周围空间产生磁场。 2随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。 随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。 变化的电场和变化的磁场总是相互联系,形成一个不可分割的统一体,即电磁场。 2.电磁波 周期性变化的电场和磁场总是交替变换、激发和产生,并从发生区域传播到周围空间,形成电磁波。2电磁波是横波。3.电磁波可以在真空中传播。电磁波从一种介质进入另一 种介质。频率不变,波速和波长变化。电磁波的传播速度V等于波长λ和频率f,即 V=λf。真空中任何频率的电磁波的传播速度等于真空中的光速,C=3。00×108m/s 1.磁场 磁场:磁场是一种存在于磁铁、电流和运动电荷周围的物质。永磁体和电流都能在太 空中产生磁场。变化的电场也能产生磁场。 2磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。 3磁现象的电学本质:所有磁现象都可以归因于通过磁场的移动电荷或电流之间的相 互作用。 4安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分 子电流,分子电流使每个物质微粒成为微小的磁体。 5磁场方向:指定磁场中任何点上小磁针N极上的力的方向,或小磁针静止时N极的 方向是该点的磁场方向。 2.磁感线 在磁场中人工绘制一系列曲线。曲线的切线方向表示该位置的磁场方向,曲线的密度 可以定性地表示磁场的强弱。这一系列曲线被称为磁感应线。 2磁铁外部的磁感线,都从磁铁n极出来,进入s极,在内部,由s极到n极,磁感 线是闭合曲线;磁感线不相交。 3几种典型磁场的磁感应线分布: ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

(完整word版)电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂- =⨯∇•∂∂+=•∂∂+ =⨯∇s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )(ϖϖϖϖϖϖϖϖ ϖϖϖϖϖϖ ϖϖϖϖ ϖϖρ 本构关系: E J H B E D ϖ ϖϖϖϖ ϖσμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇s s l l s d B B Q s d D D l d E E I l d H J H 0 000ϖϖϖϖϖϖϖϖϖϖϖϖϖρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0)==-•=-=-⨯=-=-•==-⨯ϖϖϖϖϖϖϖϖ ϖϖϖϖϖ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0)0 )(0 )==-•==-⨯==-•==-⨯ϖϖϖϖϖϖϖϖϖ ϖϖϖ((

(1)基本方程 00 2 2 =•==∇- =∇=•=•∇=•=⨯∇⎰ ⎰⎰A A p s l l d E Q s d D D l d E E ϕϕϕε ρ ϕρ ϖϖϖϖϖϖϖϖ 本构关系: E D ϖ ϖε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

电磁场与电磁波知识点整理

0lim t q t F E q →=v v 第二章.电磁学基本理论 本章以麦克斯韦方程组为核心,揭示电磁场和电荷,电流之间互相联系的规律。我们研究电磁场问题都是以麦克斯韦方程组为出发点。 一.场量的定义和计算 2.1 电场的定义 这种存在于电荷周围,能对其他电荷产生作用力的特殊的物质称为电场。可见电荷是产生电场的源。 2.2 电场强度的定义 单位正电荷在电场中某点受到的作用力称为该点的电场强度 电场强度严格的数学表达式为: 在此要求实验电荷足够小,以使该电荷产生的电场不致使原电场 发生畸变。 2.3 库仑定律: 其中: 为真空中介电常数。 2.4 电场强度的计算 其中: 是源电荷指向场点的方向。 点电荷周围电场强度的计算公式: (2) 连续分布的电荷源产生的电场 a.线电荷分布:线电荷密度定义:单位长度上的电荷量。 上所带的电荷量: 2112 212 021 ˆ4πR q q F a R ε= v 1 q 2 q 21 R v 912 01 108.851036π ε --=⨯=⨯F/m 0ε22 00ˆˆ4π4πt R R t qq q E a a q R R εε==v ˆR a 2 0ˆ4πR q E a R ε= v 0d lim d l l q q l l ρ∆→∆== ' ∆d l 'd d l q l ρ' =

该线电荷在空间产生的电场强度: b.面电荷分布:电荷沿空间曲面连续分布。 该面电荷在空间产生的电场强度: c.体电荷分布: 电荷在某空间体积内连续分布 。 该体电荷在空间产生的电场强度: 二.电位 (1)电位定义:外力将单位正电荷是由无穷远处移到A 点,则A 点和无穷远处的电位差称为A 点的电位。 (以无穷远处为零电位参考点。 为电荷源到A 点的距离) (2)电位差定义:单位正电荷由P 点移动到A 点,外力所做的功称为A 点和P 点之间的电位差。 电位差数学表达式: (三) 磁场 产生磁场的源:a.永久磁铁b.变化的电场 c.电流周围(运动的电荷) 1. 什么是磁场? 存在于载流回路或永久磁铁周围空间,能对运动电荷施力的特殊物质称为磁场。 2. 磁感应强度 的定义: 2 d 1ˆ4πl R l l E a R ρε' ' = ⎰ v 0d lim d S S q q S S ρ∆→∆== ' ∆2 d 1 ˆ4πS R S S E a R ρε' ' = ⎰ v 0d lim d V V q q V V ρ∆→∆== ∆2 d 1 ˆ4πV R V V E a R ρε' ' =⎰ v t d A AP P W E l q φ==-⋅⎰v v 01 d 4πA A A q E l R φε∞ =⋅= ⎰v v B v t m 0 t ˆlim v q F a B q v →⨯=v v

(完整word版)电磁场与电磁波公式总结

电磁场与电磁波复习 第一部分 知识点概括 第一章 矢量剖析 1、三种常用的坐标系 (1)直角坐标系 微分线元: d R a x dx a y dy a z dz 面积元: dS x dydz ,体积元: d dxdydz dS y dxdz dS z dxdy (2)柱坐标系 dl r dr dS r dl dl z rd dz 长度元: dl rd ,面积元 dS dl r dl z drdz ,体积元: d rdrd dz dl z dz dS z dl dl z rdrdz (3)球坐标系 dl r dr dS r dl dl r 2 sin d d 长 度 元 : dl rd , 面 积 元 : dS dl r dl r sin drd , 体 积 元 : dl r sin d dS dl r dl rdrd d r 2 sin drd d 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 x r cos r x 2 y 2 y y r sin , arctan z z z x z (2)直角坐标系与球坐标系的关系 x r sin cos r x 2 y 2 z 2 z y r sin sin , arccos x 2 y 2 z 2 z r cos y arctan (3)柱坐标系与球坐标系的关系 r ' r sin r r ' 2 z 2 , arccos z r '2 z 2 z r cos 3、梯度 (1)直角坐标系中: grad a x a y a z x y z (2)柱坐标系中: grad a r a 1 a z r r z

相关主题
文本预览
相关文档 最新文档