2019-2020年七年级数学下册单元测试:第9章 不等式与不等式组
- 格式:doc
- 大小:310.01 KB
- 文档页数:3
2019-2020学年七年级下数学第9章《不等式与不等式组》选择题复习题库一.选择题(共50小题)1.不等式5x﹣3≤2的解集是()A.x≤1B.x≤﹣1C.x≥﹣1D.x≥12.已知x>y,则下列不等式成立的是()A.﹣2x>﹣2y B.4x>3y C.5﹣x>5﹣y D.x﹣2>y﹣3 3.在﹣,﹣2,1,﹣3四个数中,满足不等式x<﹣2的有()A.1个B.2个C.3个D.4个4.若m>n,则不论a取何实数,下列不等式都成立的是()A.m+a>n B.ma>na C.a﹣m<a﹣n D.ma2>na25.若不等式组的解为x>﹣b,则下列各式正确的是()A.a≥b B.a≤b C.a>b D.a<b6.不等式组的解集正确的是()A.x>﹣5B.x≤﹣1C.﹣1<x≤5D.﹣5<x≤﹣1 7.关于x 的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣18.已知点P(m﹣2,2m﹣1)在第二象限,且m为整数,则m的值是()A.0B.1C.2D.39.已知不等式组的解集是x≥2,则实数a的取值范围是()A.a>2B.a≥2C.a<2D.a≤210.某超市花费1140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为x元/千克,根据题意所列不等式正确的是()A.100(1﹣5%)x≥1140B.100(1﹣5%)x>1140C.100(1﹣5%)x<1140D.100(1﹣5%)x≤1140第1页(共28页)11.不等式3(x﹣1)≤5﹣x的正整数解有()A.1个B.2个C.3个D.4个12.已知x<y,则下列不等式成立的是()A.x﹣2>y﹣2B.4x>4y C.﹣x+2>﹣y+2D.﹣3x<﹣3y 13.不等式组的整数解的个数是()A.2B.3C.4D.514.对不等式a>b进行变形,结果正确的是()A.a﹣b<0B.a﹣2>b﹣2C.2a<2b D.1﹣a>1﹣b 15.下列不等式变形中不正确的是()A.由a>b,得b<a B.由﹣a>﹣b,得a<bC.由﹣ax>a,得x>﹣1D .由﹣x<y,得x>﹣2y16.某景点普通门票每人50元,20人以上(含20人)的团体票六折优惠.现有一批游客不足20人,但买20人的团体票所花的钱,比各自买普通门票平均每人会便宜至少10元,这批游客至少有()A.14B.15C.16D.1717.用不等式表示:“a 的与b的和为正数”,正确的是()A .a+b>0B .C .a+b≥0D .18.已知关于x 的不等式组有解,则a的取值不可能是()A.0B.1C.2D.﹣219.已知a<b,下列结论中成立的是()A.﹣a+1<﹣b+1B.﹣3a<﹣3bC .﹣b+2D.如果c<0,那么20.已知a>b,则下列不等式中正确的是()A.﹣2a>﹣2b B .C.2﹣a>2﹣b D.a+2>b+221.若a<b,则下列各式成立的是()A.﹣a<﹣b B.a﹣2>b﹣2C.2﹣a>2﹣b D .>第2页(共28页)。
人教版七年级数学下册第9章《不等式与不等式组》单元测试卷(含答案)一、选择题(本大题共10小题,共30分)1.若不等式组有解,则的取值范围是()A. B. C. D.2.下列各数中,不是一元一次不等式的解的是()A. B. C. D.3.不等式组的解在数轴上表示正确的是()A. B.C. D.4.如果的值不小于的值,那么的范围应为()A. B. C. D.5.已知关于的不等式组整数解有个,则的取值范围是()A. B. C. D.6.小明和同学约好周末去公园游玩他从学校出发,全程千米,此时距他和同学的见面时间还有分钟已知他每分钟走米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟米如果小明不迟到,至少骑车多少分钟?设骑车分钟,则列出的不等式为()A. B.C. D.7.的倍减去的差不小于,列出不等式为A. B. C. D.8.下列不等式中,属于一元一次不等式的是()A. B. C. D.9.若,则下列式子错误的是()A. B. C. D.10.若不等式组的解集在数轴上表示为()A. B.C. D.二、填空题(本大题共5小题,共15分)11.若代数式的值不大于,那么的最大整数解为。
12.如果不等式无解,则的取值范围是____ __。
13.如果不等式组的解集是,那么的取值范围是___________。
14.不等式2x-10≤0的解集为______。
15.若一元一次不等式组有解,则的取值范围是______ 。
三、解答题(本大题共7小题,共55分)16.(7分)求不等式的非负整数解。
17.(6分)不等式组有解,则的取值范围是多少?18.(7分)小明解不等式的过程如图.请指出他解答过程中错误的地方及错误原因,并写出正确的解答过程。
19.(6分)解不等式组并将解集在数轴上表示出来。
20.(10分)解不等式组21.(7分)解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来。
22.(7分)解下列不等式组,把解集在数轴表示出来。
2020人教版数学七年级下册第9章 不等式与不等式组单元测试题单元测试题(1)一、填空题1.用“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3)______-2;13-y 3y(4)a <b <0,则a 2______b 2; (5)若,则2x ______3y .23yx -<-2.满足5(x -1)≤4x +8<5x 的整数x 为______.3.若,则x 的取值范围是______.11|1|=--xx 4.若点M (3a -9,1-a )是第三象限的整数点,则M 点的坐标为______.5.一个两位数,它的十位数字比个位数字小2,如果这个数大于20且小于40,那么此数为_______.二、选择题6.若a ≠0,则下列不等式成立的是( ).(A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a(D)aa 22<-7.下列不等式中,对任何有理数都成立的是( ).(A)x -3>0(B)|x +1|>0(C)(x +5)2>0(D)-(x -5)2≤08.若a <0,则关于x 的不等式|a |x <a 的解集是( ).(A)x <1(B)x >1(C)x <-1(D)x >-19.如下图,对a ,b ,c 三种物体的重量判断正确的是( ).(A)a <c (B)a <b (C)a >c (D)b <c10.某商贩去菜摊卖黄瓜,他上午卖了30斤,价格为每斤x 元;下午他又卖了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因2yx +是( ).(A)x <y(B)x >y(C)x ≤y(D)x ≥y三、解不等式(组),并把解集在数轴上表示出来11..12.11252476312-+≥---x x x ⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x四、解答题13.x 取何整数时,式子与的差大于6但不大于8.729+x 2143-x14.如果关于x 的方程3(x +4)-4=2a +1的解大于方程的解.求a 3)43(414-=+x a x a 的取值范围.15.不等式的解集为x >2.求m 的值.m m x ->-2)(3116.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超过200个.第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件多少个?17.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少?18.为了保护环境,某造纸厂决定购买20台污水处理设备,现有A,B两种型号的设备,其中每台的价格、日处理污水量如下表:A型B型价格(万元/台)2420处理污水量(吨/日)480400经预算,该纸厂购买设备的资金不能高于410万元.(1)该企业有几种购买方案;(2)若纸厂每日排出的污水量大于8060吨而小于8172吨,为了节约资金,该厂应选择哪种购买方案?19.某班级为准备元旦联欢会,欲购买价格分别为2元,4元和10元的三种奖品,每种奖品至少购买1件,共买16件,恰好用去50元.若2元的奖品购买a件.(1)用含a的代数式表示另外两种奖品的件数;(2)请你设计购买方案,并说明理由.参考答案第九章 不等式与不等式组测试1.(1)>;(2)<;(3)>;(4)>;(5)>. 2.9,10,11,12,13.3.x <1. 4.(-3,-1) 5.24或35. 6.C . 7.D . 8.C 9.C 10.B .11.x ≤2,解集表示为12.-1<x ≤1,解集表示为13.,整数解为-3,-2,-1,0,1,2,3,4,5.6310<≤-x 14.,解得. 15.x >6-2m ,m =2.a a 316372->-187>a 16.设原来每天生产配件x 个.200<8(x +10)<4(x +10+27). 15<x <17. x =16.17.设饼干x 元,牛奶y 元.8<x <10,x 为整数,⎪⎩⎪⎨⎧-=+>+<.8.0109.0,10,10y x y x x ⎩⎨⎧==∴.1.1,9y x 18.(1)设购买A 型设备x 台,B 型设备(20-x )台.24x +20(20-x )≤410. x ≤2.5, ∴x =0,1,2.三种方案:方案一:A :0台;B :20台; 方案二:A :1台;B :19台;方案三:A :2台;B :18台.(2)依题意8060<480x +400(20-x )<8172.0.75<x <2.15,x =1,2.当x =1时,购买资金为404万元;x =2时,购买资金为408万元.为节约资金,应购买A 型1台,B 型19台.19.(1)4元的件数;;10元的件数:3455a -⋅-37a (2)有两种方案:方案一:2元10件,4元5件,10元1件;方案二:2元13件,4元1件,10元2件.单元测试题(2)一.选择题 (每小题3分,共30分)1. 若,则下列式子错误的是( )x y >A.B.C.D.33x y ->-33x y ->-32x y +>+33x y>2. 如图表示了某个不等式的解集, 该解集所含的整数解的个数是( )A 4 B. 5 C. 6 D.73. 若不等式组的解集为,则a 的取值范围为( )⎩⎨⎧->+<+1472,03x x a x 0<xA a >0 B. a =0 C. a >4 D. a =44. 不等式组的解集是( )⎩⎨⎧≥->+0302x x A. B. C. D.32≤≤-x 32≥-<x x 或32<<-x 32≤<-x 5. 不等式组的解集在数轴上表示正确的是( )⎩⎨⎧-≥-111x x <6. 如果不等式组有解,那么的取值范围是( )⎩⎨⎧><m x x 3m A.>3BC. <3D m 3≥m m 3≤m7. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于个正方体的重量( )A.2B.3C.4D.58. 韩日“世界杯”期间,重庆球迷一行56人从旅馆剩出租车道到球场为中国对加油,现有A,B 两个出租车队,A 队比B 队少3辆车,若全部安排剩A 队的车,每辆5人,车不够,每辆坐 6人,有的车未坐满,则A 队有出租车( )A.11辆B.10辆C.9辆D.8辆9. 甲从一个鱼摊上买了三条鱼,平均每条元,又从另一个鱼摊买了两条鱼,平均每条元,后a b 来他又以每条的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )2ba +A.B.C.D.的大小无关b a >b a <b a =b a 和10. 某次知识竞赛共有30道选择题,称对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对题,可得式子为( )x A. B.103(30)70x x -->103(30)70x x --≤C.D. 10370x x -≥103(30)70x x --≥二.填空题 (每小题3分,共30分)11. 不等式(m -2)x >2-m 的解集为x <-1,则m 的取值范围是__________________。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
七年级下数学第9章《不等式与不等式组》单元测试卷解析版一.选择题(共10小题)1.判断下列各式中不等式有()个(1)a+1>0;(2)a+b=0;(3)8<9;(4)3x﹣1≤x;(5)4﹣2x;(6)x﹣y≠1.A.2B.3C.4D.6【分析】主要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(3),(4),(6)为不等式,共有4个.故选:C.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.2.不等式组的解在数轴上表示为()A.B.C.D.【分析】根据在数轴上表示不等式解集的方法表示出不等式组的解集,选出符合条件的选项即可.【解答】解:∵,∴在数轴上表示为:.故选:C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.3.若a>b,则下列不等式中,不成立的是()A.﹣3a>﹣3b B.a﹣3>b﹣3C.D.﹣a<﹣b【分析】根据不等式的形式,结合“a>b”,依次分析各个选项,选出不成立的选项即可.【解答】解:A.a>b,两边同时乘以﹣3,不等号的方向要改变,即﹣3a<﹣3b,A项不成立,B.a>b,两边同时减去3,不等号的方向不变,即a﹣3>b﹣3,B项成立,C.a>b,两边同时除以3,不等号的方向不变,即,C项成立,D.a>b,两边同时乘以﹣1,不等号的方程改变,即﹣a<﹣b,D项成立,故选:A.【点评】本题考查了不等式的性质,正确掌握不等式的性质是解题的关键.4.下列是一元一次不等式的有()x>0,<﹣1,2x<﹣2+x,x+y>﹣3,x=﹣1,x2>3,.A.1个B.2个C.3个D.4个【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【解答】解:是一元一次不等式的有:x>0,2x<﹣2+x共有2个.故选:B.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,还要注意未知数的系数不能是0.5.若不等式x<a只有5个正整数解,则a的取值范围为()A.5<a<6B.5≤a≤6C.5≤a<6D.5<a≤6【分析】根据题意可以得到a的取值范围,本题得以解决.【解答】解:∵不等式x<a只有5个正整数解,∴a的取值范围是:5<a≤6,故选:D.【点评】本题考查一元一次不等式的整数解,解题的关键是明确题意,找出所求问题需要的条件.6.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.7.不等式组的解集是x<1,则a的取值范围是()A.a=1B.a=2C.a=3D.a=﹣3【分析】分别求出每一个不等式的解集,根据不等式组的解集列出关于a的方程,解之可得.【解答】解:解不等式3x+a<0,得:x<﹣,解不等式2x+7>4x﹣1,得:x<4,∵不等式组的解集为x<1,则﹣=1,解得a=﹣3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.关于x的不等式组有5个整数解,则a的取值范围是()A.1<a≤2B.1<a<2C.1≤a<2D.﹣1≤a<0【分析】先求出两个不等式的解集,再求其公共解,然后根据整数解的个数确定a的取值范围即可.【解答】解:,解不等式①得,x≤4,解不等式②得,x>a﹣2,所以,不等式组的解集是a﹣2<x≤4,∵不等式组有5个整数解,∴整数解为0、1、2、3、4,∴﹣1≤a﹣2<0,解1≤a<2.故选:C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).9.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.【分析】不到8棵意思是植树棵树在0棵和8棵之间,包括0棵,不包括8棵,关系式为:植树的总棵树≥(x﹣1)位同学植树的棵树,植树的总棵树<8+(x﹣1)位同学植树的棵树,把相关数值代入即可.【解答】解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列不等式组为:,即.故选:C.【点评】本题考查了列一元一次不等式组,得到植树总棵树和预计植树棵树之间的关系式是解决本题的关键;理解“有1位同学植树的棵数不到8棵”是解决本题的突破点.10.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5D.0≤(3x+7)﹣5(x﹣1)≤5【分析】若干个苹果分给x个小孩,根据如果每人分3个,那么余7个,共(3x+7)个苹果;如果每人分5个,那么最后一人分到的苹果是(3x+7)﹣5(x﹣1),可列出不等式组.【解答】解:若干个苹果分给x个小孩,0≤(3x+7)﹣5(x﹣1)<5.故选:C.【点评】本题考查理解题意的能力,设出人数就能表示出苹果数,然后根据最后一人分到的苹果不足5个,可列出不等式组.二.填空题(共3小题)11.不等式组有解,m的取值范围是m<8.【分析】根据不等式的解集是小大大小中间找,可得答案.【解答】解:由有解,得m<8.故答案为:m<8.【点评】本题考查了不等式的解集,解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.不等式3x≤x+4的非负整数解是0,1,2.【分析】首先求出不等式的解集,然后求得不等式的非负整数解.【解答】解:解不等式3x≤x+4得,x≤2,∴不等式3x≤x+4的非负整数解是0,1,2,故答案为:0,1,2.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.一次知识竞答比赛,共16道选择题,评选办法是;答对一道题得6分,答错一道题倒扣2分,不答则不扣分,王同学全部作答,如果王同学想成绩在60分以上,试写出他答对题x应满足的不等式6x﹣2(16﹣x)>60.【分析】设他答对题x道,则答错(16﹣x)道,根据题意可得不等关系:答对题得分﹣答错题的分数>60,根据不等关系列出不等式即可.【解答】解:设他答对题x道,由题意得:6x﹣2(16﹣x)>60,故答案为:6x﹣2(16﹣x)>60.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,表示出答对的题目所得分数可答错题目所扣的分数.三.解答题(共3小题)14.解不等式≤+1,并把解表达在数轴上.【分析】去括号,移项,合并同类项,把化系数为1即可求出x的取值范围,再在数轴上表示出不等式的解集.【解答】解:去分母,得:3(x+1)≤(x﹣2)+6,去括号,得:3x+3≤x﹣2+6,移项,得:3x﹣x≤6﹣3﹣2,合并同类项,得:2x≤1,系数化为1,得:x≤,将不等式解集表示在数轴上如下:.【点评】本题考查的是解一元一次不等式及在数轴上表示一元一次不等式的解集,在解答此类问题时要注意实心圆点与空心圆圈的区别.15.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:项目/品种单价(元/棵)成活率A8092%B10098%(1)若购树的总费用不超过82000元,则购A种树不少于多少棵?(2)当这批树的成活率不低于94%时,求购买这批树的最低费用为多少?【分析】(1)设购A种树不少于x棵,则B种树为(900﹣x)棵,根据两种树的总费用不超过82000元建立不等式,求出其解即可;(2)根据成活的棵数÷购进树种的总数=总成活率建立不等式求出购买A种树的数量范围,设购买这批树的费用为W元,建立W于y的一次函数关系就可以求出结论.【解答】解:(1)解设购A种树x棵.则B种树为(900﹣x)棵,由题意,得80x+100(900﹣x)≤82000x≥400答:购A种树不少于400棵;(2)设购买A种树y棵,则购买B种树为(900﹣y)棵,由题意,得92%y+98%(900﹣y)≥900×94%解得:y≤600设购买这批树的费用为W元,由题意,得W=80y+100(900﹣y),=﹣20y+90000,∴k=﹣20<0,∴W随y的增大而减小,∴y=600时,W最小=﹣20×600+90000=78000元.【点评】本题考查了列一元一次不等式解实际问题的运用,一元一次不等式的解法的运用,一次函数的解析式的性质的运用.解答时根据成活率问题建立不等式是关键.16.一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运货吨数第一次2418第二次5635(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.【分析】(1)设每辆甲种货车每次能运x吨货物,每辆乙种货车每次能运y吨货物,由第一次和第二次运输的货物的吨数可列二元一次方程组,解出方程组即可得解;(2)由保养费用不超过700元和运输货物不少于34吨可列出不等式组,求出整数解即可.【解答】(1)解:设甲车每辆运输x吨货物,乙车每辆运输y吨货物,由题意得:,解得:,答:甲车每辆运输4吨货物,乙车每辆运输2.5吨货物.(2)解:安排甲车a辆、乙车(10﹣a)辆,,解得:6≤a≤7.5,∵a为整数,∴a可以取的整数是6或7,答:公司可以安排甲车6辆、乙车4辆或甲车7辆、乙车3辆.【点评】此题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,第一问关键是看懂表格所表示的意义,根据表格所给数据列出方程组,求出每辆甲种货车和乙种货车每次运货量,第二问关键是根据不等关系列出不等式组求解.。
2020年七年级下数学第9章《不等式与不等式组》单元测试卷一.选择题(共10小题)1.判断下列各式中不等式有()个(1)a+1>0;(2)a+b=0;(3)8<9;(4)3x﹣1≤x;(5)4﹣2x;(6)x﹣y≠1.A.2B.3C.4D.62.不等式组的解在数轴上表示为()A.B.C.D.3.若a>b,则下列不等式中,不成立的是()A.﹣3a>﹣3b B.a﹣3>b﹣3C.D.﹣a<﹣b4.下列是一元一次不等式的有()x>0,<﹣1,2x<﹣2+x,x+y>﹣3,x=﹣1,x2>3,.A.1个B.2个C.3个D.4个5.若不等式x<a只有5个正整数解,则a的取值范围为()A.5<a<6B.5≤a≤6C.5≤a<6D.5<a≤66.下列各式不是一元一次不等式组的是()A.B.C.D.7.不等式组的解集是x<1,则a的取值范围是()A.a=1B.a=2C.a=3D.a=﹣38.关于x的不等式组有5个整数解,则a的取值范围是()A.1<a≤2B.1<a<2C.1≤a<2D.﹣1≤a<09.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.10.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5D.0≤(3x+7)﹣5(x﹣1)≤5二.填空题(共3小题)11.不等式组有解,m的取值范围是.12.不等式3x≤x+4的非负整数解是.13.一次知识竞答比赛,共16道选择题,评选办法是;答对一道题得6分,答错一道题倒扣2分,不答则不扣分,王同学全部作答,如果王同学想成绩在60分以上,试写出他答对题x应满足的不等式.三.解答题(共3小题)14.解不等式≤+1,并把解表达在数轴上.15.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:项目/品种单价(元/棵)成活率A8092%B10098%(1)若购树的总费用不超过82000元,则购A种树不少于多少棵?(2)当这批树的成活率不低于94%时,求购买这批树的最低费用为多少?16.一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运货吨数第一次2418第二次5635(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.2020年七年级下数学第9章《不等式与不等式组》单元测试卷参考答案与试题解析一.选择题(共10小题)1.判断下列各式中不等式有()个(1)a+1>0;(2)a+b=0;(3)8<9;(4)3x﹣1≤x;(5)4﹣2x;(6)x﹣y≠1.A.2B.3C.4D.6【分析】主要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(3),(4),(6)为不等式,共有4个.故选:C.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.2.不等式组的解在数轴上表示为()A.B.C.D.【分析】根据在数轴上表示不等式解集的方法表示出不等式组的解集,选出符合条件的选项即可.【解答】解:∵,∴在数轴上表示为:.故选:C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.3.若a>b,则下列不等式中,不成立的是()A.﹣3a>﹣3b B.a﹣3>b﹣3C.D.﹣a<﹣b【分析】根据不等式的形式,结合“a>b”,依次分析各个选项,选出不成立的选项即可.【解答】解:A.a>b,两边同时乘以﹣3,不等号的方向要改变,即﹣3a<﹣3b,A项不成立,B.a>b,两边同时减去3,不等号的方向不变,即a﹣3>b﹣3,B项成立,C.a>b,两边同时除以3,不等号的方向不变,即,C项成立,D.a>b,两边同时乘以﹣1,不等号的方程改变,即﹣a<﹣b,D项成立,故选:A.【点评】本题考查了不等式的性质,正确掌握不等式的性质是解题的关键.4.下列是一元一次不等式的有()x>0,<﹣1,2x<﹣2+x,x+y>﹣3,x=﹣1,x2>3,.A.1个B.2个C.3个D.4个【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【解答】解:是一元一次不等式的有:x>0,2x<﹣2+x共有2个.故选:B.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,还要注意未知数的系数不能是0.5.若不等式x<a只有5个正整数解,则a的取值范围为()A.5<a<6B.5≤a≤6C.5≤a<6D.5<a≤6【分析】根据题意可以得到a的取值范围,本题得以解决.【解答】解:∵不等式x<a只有5个正整数解,∴a的取值范围是:5<a≤6,故选:D.【点评】本题考查一元一次不等式的整数解,解题的关键是明确题意,找出所求问题需要的条件.6.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.7.不等式组的解集是x<1,则a的取值范围是()A.a=1B.a=2C.a=3D.a=﹣3【分析】分别求出每一个不等式的解集,根据不等式组的解集列出关于a的方程,解之可得.【解答】解:解不等式3x+a<0,得:x<﹣,解不等式2x+7>4x﹣1,得:x<4,∵不等式组的解集为x<1,则﹣=1,解得a=﹣3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.关于x的不等式组有5个整数解,则a的取值范围是()A.1<a≤2B.1<a<2C.1≤a<2D.﹣1≤a<0【分析】先求出两个不等式的解集,再求其公共解,然后根据整数解的个数确定a的取值范围即可.【解答】解:,解不等式①得,x≤4,解不等式②得,x>a﹣2,所以,不等式组的解集是a﹣2<x≤4,∵不等式组有5个整数解,∴整数解为0、1、2、3、4,∴﹣1≤a﹣2<0,解1≤a<2.故选:C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).9.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.【分析】不到8棵意思是植树棵树在0棵和8棵之间,包括0棵,不包括8棵,关系式为:植树的总棵树≥(x﹣1)位同学植树的棵树,植树的总棵树<8+(x﹣1)位同学植树的棵树,把相关数值代入即可.【解答】解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列不等式组为:,即.故选:C.【点评】本题考查了列一元一次不等式组,得到植树总棵树和预计植树棵树之间的关系式是解决本题的关键;理解“有1位同学植树的棵数不到8棵”是解决本题的突破点.10.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5D.0≤(3x+7)﹣5(x﹣1)≤5【分析】若干个苹果分给x个小孩,根据如果每人分3个,那么余7个,共(3x+7)个苹果;如果每人分5个,那么最后一人分到的苹果是(3x+7)﹣5(x﹣1),可列出不等式组.【解答】解:若干个苹果分给x个小孩,0≤(3x+7)﹣5(x﹣1)<5.故选:C.【点评】本题考查理解题意的能力,设出人数就能表示出苹果数,然后根据最后一人分到的苹果不足5个,可列出不等式组.二.填空题(共3小题)11.不等式组有解,m的取值范围是m<8.【分析】根据不等式的解集是小大大小中间找,可得答案.【解答】解:由有解,得m<8.故答案为:m<8.【点评】本题考查了不等式的解集,解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.不等式3x≤x+4的非负整数解是0,1,2.【分析】首先求出不等式的解集,然后求得不等式的非负整数解.【解答】解:解不等式3x≤x+4得,x≤2,∴不等式3x≤x+4的非负整数解是0,1,2,故答案为:0,1,2.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.一次知识竞答比赛,共16道选择题,评选办法是;答对一道题得6分,答错一道题倒扣2分,不答则不扣分,王同学全部作答,如果王同学想成绩在60分以上,试写出他答对题x应满足的不等式6x﹣2(16﹣x)>60.【分析】设他答对题x道,则答错(16﹣x)道,根据题意可得不等关系:答对题得分﹣答错题的分数>60,根据不等关系列出不等式即可.【解答】解:设他答对题x道,由题意得:6x﹣2(16﹣x)>60,故答案为:6x﹣2(16﹣x)>60.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,表示出答对的题目所得分数可答错题目所扣的分数.三.解答题(共3小题)14.解不等式≤+1,并把解表达在数轴上.【分析】去括号,移项,合并同类项,把化系数为1即可求出x的取值范围,再在数轴上表示出不等式的解集.【解答】解:去分母,得:3(x+1)≤(x﹣2)+6,去括号,得:3x+3≤x﹣2+6,移项,得:3x﹣x≤6﹣3﹣2,合并同类项,得:2x≤1,系数化为1,得:x≤,将不等式解集表示在数轴上如下:.【点评】本题考查的是解一元一次不等式及在数轴上表示一元一次不等式的解集,在解答此类问题时要注意实心圆点与空心圆圈的区别.15.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:项目/品种单价(元/棵)成活率A8092%B10098%(1)若购树的总费用不超过82000元,则购A种树不少于多少棵?(2)当这批树的成活率不低于94%时,求购买这批树的最低费用为多少?【分析】(1)设购A种树不少于x棵,则B种树为(900﹣x)棵,根据两种树的总费用不超过82000元建立不等式,求出其解即可;(2)根据成活的棵数÷购进树种的总数=总成活率建立不等式求出购买A种树的数量范围,设购买这批树的费用为W元,建立W于y的一次函数关系就可以求出结论.【解答】解:(1)解设购A种树x棵.则B种树为(900﹣x)棵,由题意,得80x+100(900﹣x)≤82000x≥400答:购A种树不少于400棵;(2)设购买A种树y棵,则购买B种树为(900﹣y)棵,由题意,得92%y+98%(900﹣y)≥900×94%解得:y≤600设购买这批树的费用为W元,由题意,得W=80y+100(900﹣y),=﹣20y+90000,∴k=﹣20<0,∴W随y的增大而减小,∴y=600时,W最小=﹣20×600+90000=78000元.【点评】本题考查了列一元一次不等式解实际问题的运用,一元一次不等式的解法的运用,一次函数的解析式的性质的运用.解答时根据成活率问题建立不等式是关键.16.一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运货吨数第一次2418第二次5635(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.【分析】(1)设每辆甲种货车每次能运x吨货物,每辆乙种货车每次能运y吨货物,由第一次和第二次运输的货物的吨数可列二元一次方程组,解出方程组即可得解;(2)由保养费用不超过700元和运输货物不少于34吨可列出不等式组,求出整数解即可.【解答】(1)解:设甲车每辆运输x吨货物,乙车每辆运输y吨货物,由题意得:,解得:,答:甲车每辆运输4吨货物,乙车每辆运输2.5吨货物.(2)解:安排甲车a辆、乙车(10﹣a)辆,,解得:6≤a≤7.5,∵a为整数,∴a可以取的整数是6或7,答:公司可以安排甲车6辆、乙车4辆或甲车7辆、乙车3辆.【点评】此题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,第一问关键是看懂表格所表示的意义,根据表格所给数据列出方程组,求出每辆甲种货车和乙种货车每次运货量,第二问关键是根据不等关系列出不等式组求解.第11 页共11 页。
七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。
2019-2020年七年级数学下册单元测试:第9章 不等式与不等式组
一、选择题
1.不等式1342xx的解集是( )
A.5x B.3x C.5x D.3x
2.不等式组1132xx的解集在数轴上可表示为( )
A. B.
C. D.
3.下列说法中,错误的是( )
A.不等式2x的正整数解有一个 B.2是不等式012x的一个解
C.不等式93x的解集是3x D.不等式10x的整数解有无数个
4.给出四个命题:①若ba,dc,则bdac;②若bcac,则ba;③若ba,
则22bcac;④若22bcac,则ba.正确的有( )
A.1个 B.2个 C.3个 D.4个
5.如果不等式1)4(xa的解集为41ax,那么有( )
A.4a B.1a C.4a D.a为任意实数
6.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在
2013~2012赛季全部32场比赛中最少得到48
分,才有希望进入季后赛.假设这个队在将
要举行的比赛中胜x场,要达到目标,x应满足的关系式是( )
A.48)32(2xx B.48)32(2xx
C.48)32(2xx D.482x
7.方程组3212yxmyx中,若未知数x、y满足0yx,则m的取值范围是( )
A.4m B.4m C.4m D.4m
8.某市自来水公司按如下标准收取水费:若每户每月用水不超过25m,则每立方米收费
5.1
元;若每户每月用水超过25m,则超过部分每立方米收费2元,小颖家某月的水费不少于
15
元,那么她家这个月的用水量(吨数为整数)至少是( )
A.210m B.29m C.28m D.26m
9.把不等式01x的解集在数轴上表示出来,则正确的是( )
A. B.
C. D.
10.已知ba,下列式子不成立的是( )
A.11ba B.ba33 C.ba2121 D.如果0c,那么cbca
二、填空题
11.如图,a,b,c三种物体的质量的大小关系是 .
12.若582112mx是一元一次不等式,则m .
13.不等式)2(392xx的正整数解是 .
14.若不等式组mxx3的解集是3x,则m的取值范围是 .
15.某商品的售价是528元,商家出售一件这样的商品可获利润是进价的%20~%10.设
进价为x元,则x的取值范围是 .
三、解答题
16.解下列不等式(组),并把解集分别表示在数轴上.
(1)243x;
(2)7)10(21283xxx
(3)0)2(3)3(213121xxxx
(4)321349xxx
17.当m取何整数时,关于x,y的方程组12231132myxmyx的解x,y都是正值?
18.某部门为了给员工普及电脑知识,决定购买A、B两种电脑,A型电脑单价为4800元,
B型电脑单价为3200元,若用不超过160000元去购买A、B型电脑共36台,要求购买A
型电脑多于25台,有哪几种购买方案?
19.如果不等式组:0809bxax的整数解仅为1,2,3,那么适合这个不等式组的整数a、
b
各是什么数?
20.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给
每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至
少分得一盒.
(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).
(2)该敬老院至少有多少名老人?最多有多少名老人?
21.解不等式xx2123,并把解集在数轴上表示出
来.
22.解不等式组.并把解集在数轴上表示出来.
xxxx8)1(311323.
23.为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购
买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支
钢笔,则需要31元.
(1)求购买每个笔记本和每支钢笔各多少元?
(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购
买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?