植物抗病基因_R_与病原物无毒基因_Avr_相互作用机制的研究进展
- 格式:pdf
- 大小:806.66 KB
- 文档页数:8
植物病理学中的抗病基因筛选与转基因抗病品种培育植物病理学是研究植物疾病的发生、发展和防治的学科。
抗病基因在植物病理学中起着重要作用,它们能够为植物提供抗病性,减轻植物受病害侵袭的程度。
对于农作物来说,培育抗病品种是实现农业可持续发展的重要途径之一。
本文将从抗病基因筛选和转基因抗病品种培育两个方面展开探讨。
一、抗病基因筛选抗病基因的筛选是培育抗病品种的前提。
通过筛选和鉴定抗病基因,可以为后续的转基因培育提供基础。
目前,抗病基因筛选主要采用两种方法:传统方法和现代生物技术方法。
1. 传统方法传统方法是指对不同品种的植物进行交配、选育,并通过后代的表现来判断其抗病性。
这种方法主要依赖于人工选择和观察的经验。
例如,在番茄品种中,通过选育具有抗番茄黄色叶病毒(ToLCNDV)的亲本,再进行交配和杂交,最终获得抗病的番茄品种。
然而,传统方法存在着一些局限性,如耗时、成本高、效率低等问题。
2. 现代生物技术方法现代生物技术方法使抗病基因的筛选更加高效。
其中,分子标记辅助选择技术和全基因组关联研究是主要的方法。
分子标记辅助选择技术通过分析与抗病基因相关的DNA标记,可以准确预测植物的抗病性。
全基因组关联研究则是通过测定大量的遗传标记与表型(抗病性)之间的相关性,来鉴定抗病基因。
这些技术使得抗病基因的筛选更为精准、高效。
二、转基因抗病品种培育转基因技术是指通过外源基因的导入和表达,使植物表现出特定的性状,从而达到培育抗病品种的目的。
转基因抗病品种培育经历了以下几个步骤:1. 基因克隆和基因功能验证首先,从抗病品种中克隆并鉴定出具有抗病功能的基因。
通过基因克隆的技术手段,如PCR、基因组文库等,将具有抗病性的基因分离出来,并进行功能验证。
这一步骤的目的是确保转入的基因具有预期的抗病效果。
2. 基因转化通过农杆菌介导、基因枪等方法,将已经验证过功能的抗病基因导入到植物细胞中。
植物细胞会通过自身的复制和分化过程,形成具有转基因抗病基因的植株。
植物先天免疫研究进展摘要:植物缺乏循环免疫细胞和获得性免疫过程,通过大量先天免疫受体来识别异物分子。
植物的模式识别受体(pattern recognition receptors,PRRs)识别保守的病原体相关分子特征(pathogen-associated molecular patterns,PAMPs),导致PAMP 触发的免疫(PAMP-triggered immunity,PTI),限制初始病原体入侵和复制。
然而,许多病原细菌利用三型分泌系统(Type III Secretion System ,T3SS)释放大量的效应因子抑制PTI信号传导以达到增强寄生的目的。
相应地,植物进化出NB- LRR免疫受体,特异识别在感染过程中注入植物细胞内的病原体效应因子,NB- LRR的激活导致效应因子触发的免疫(effector-triggered immunity,ETI),作为植物免疫的第二道防线,产生超敏(hypersensitive reponse,HR)反应。
本文概述了病原体入侵植物的发病机制,并对植物先天免疫PTI和ETI做了简单比较,解释了病原菌与植物互作的共同进化过程。
关键词:PAMPs,PTI,效应因子,ETI前言高度多样的生态环境中生活着多种微生物,包括在土壤或水中独立生存的有机体,以及附着在生物膜甚至细胞间与宿主共生或依靠宿主生长而致病的微生物。
为了适应各个生态位的不同环境,微生物逐步演化形成了特殊的策略,使得它们能在植物的根、木质部或韧皮部导管、叶、花或果实中生存(1)。
此外,要适应植物的生活方式,病原体的传播也必须利用方法,例如,物理手段包括风力或水以应对固着生活的宿主植物。
农业上单一的耕作方式及集约化生产极大促进了病原体的传播和繁衍。
当然,植物防御也是多层次的,这意味着病原体要成功入侵植物必须打破重重障碍。
首先,植物存在物理屏障,如叶片角质层防止病原体进入植物组织,使病原体必须依靠主要的天然开口,如气孔、排水孔或伤口进入(1)。
如何通过基因工程技术改造植物抗虫性与抗病性植物是人类生活的重要资源,而植物病虫害是限制农作物产量和质量的主要因素之一。
为了解决这个问题,科学家们通过基因工程技术改造植物,使其获得更强的抗虫性与抗病性,以提高农作物产量和质量。
本文将介绍如何通过基因工程技术改造植物的抗虫性与抗病性,并讨论其中的挑战和前景。
一、基因工程技术的基本原理基因工程技术是一种通过改变生物体的基因组成来获得特定特征的方法。
它主要包括三个步骤:基因的克隆、转化和表达。
首先,科学家们通过克隆技术,将具有特定特征的基因从一个生物体中提取出来。
然后,他们通过转化技术将这些基因导入到目标植物细胞中。
最后,这些基因在植物细胞中得到表达,从而使植物获得特定的性状。
二、改造植物的抗虫性虫害是农作物生产中常见的问题,对农作物产生了巨大的损失。
为了解决这个问题,科学家们通过基因工程技术改造植物的抗虫性,以减少虫害对植物的危害。
1. 插入抗虫基因科学家们通过插入抗虫基因来提高植物的抗虫性。
这些抗虫基因可以是来自其他生物的毒素基因。
例如,一种常用的抗虫基因是来自嗜盐细菌的Bt(Bacillus thuringiensis)基因。
Bt基因编码产生的蛋白质具有杀虫活性,在植物体内能够杀死害虫。
将Bt基因导入植物细胞后,植物就会产生该杀虫蛋白质,从而获得抗虫性。
2. 增强植物的防御系统除了插入抗虫基因外,科学家们还可以通过增强植物的防御系统来提高其抗虫性。
植物的防御系统包括识别害虫入侵、产生化学物质以抵御害虫、吸引天敌等机制。
通过基因工程技术,科学家们可以增强植物的防御系统,使其更加有效地对抗害虫的入侵。
例如,增加植物产生抗虫化合物的能力,或者增加植物诱释化学物质吸引天敌等。
三、改造植物的抗病性与虫害相似,植物病害也给农作物生产带来了极大的挑战。
通过基因工程技术改造植物的抗病性,可以降低病害对农作物的危害。
1. 插入抗病基因科学家们通过插入抗病基因来提高植物的抗病性。
植物病原卵菌纲的RXLR效应子卵菌纲生物是一个系统发育不同的组,其中包括一些最具破坏性的植物病原物。
最近的4个卵菌无毒基因的特性发现具有普通的模块化结构编码效应子蛋白,包括一个N-末端的保守RXLR基序列。
在较近期的科研支持下,一些证据表明这些AVR蛋白质是由病原体分泌的,然后在侵染过程中易位到宿主细胞。
除了阐明宿主细胞机械运输所需的,今后的工作仍然确定无数的卵菌RXLR的效应子蛋白的毒力功能。
引言植物原核和真核病原体在寄主不同的细胞区室分泌效应子蛋白,以调节植物的防御机制,使它们能够寄生并繁殖[1-4]。
例如植物与微生物相互作用的研究是解开效应子分子功能的一种致病性机制的核心认识。
事实上,在阐明细菌效应子的毒力功能已取得重要的进展[2],和与真核植物病原体研究进展迅速,以及最近确定的亚麻锈病和大麦的白粉病菌效应子[5-7],卵菌疫和Hyaloperonospora[8,9,10,11],以及根结的线虫[12,13]。
卵菌纲形成了一个独特的真核微生物群,其中包括一些最臭名昭著的植物病原体[14]。
卵菌效应子一些方面的研究在近几年加速,原因是丰富的基因组资源。
卵菌纲,现在分泌的上百种效应子蛋白针对寄主植物两个不同的位点[1,3,15]。
质外体效应子被分泌到植物细胞外的空间,而细胞质效应子易位到植物细胞,在那里它们针对不同亚细胞[1,3]。
一些质外体效应子通过抑制宿主酶进行反防御,如蛋白酶和葡聚糖酶,即病原体侵染的积累效应[16〜18]。
与此相反,细胞质效应子的生化活动仍知之甚少。
卵菌细胞质效应子已发现通过他们的无毒(AVR)功能被发现,那就是,他们有能力引发宿主细胞过敏性坏死与相应的疾病的细胞抗病(R)的基因[8,9,10,11],但它们缺乏同源的抗病基因的植物仍是未知[3]。
本文总结了近年来的研究发现RXLR类卵菌细胞质效应子的结构和功能[1,3]。
这些效应子在宿主细胞内的功能由一个高度保守的区域,并且其特征在于定义的不变性序列RXLR。
植物病理学简述利用生物技术防治植物病害的方法、途径、存在的主要问题及解决思路生物技术对植物病理影响最突出的可能有如下三个领域植物细胞和组织的培养,单克隆抗体的生产,核酸的分析和操纵。
1)利用组织培养技术大规模生产无病原植株。
2)病原鉴定和病害诊断:各种免疫技术如单克隆抗体等和核酸技术如PCR技术的应用,尤其是各种快速检测试剂盒的出现,提高了植物病害诊断的效率和准确度。
植物病害生物防治常用的微生物有哪些?生物防治的机制是什么?1)链霉菌。
所产生的抗生素主要有井冈霉素、效霉素等。
研究证明,链霉菌代谢产物几丁质酶是造成菌丝畸变、细胞质凝集和外溢的直接原因。
2)木霉菌。
木霉菌的生防因子是代谢过程中产生的一系列水解酶类,如几丁质酶、纤维素霉、木聚糖酶、葡聚糖酶和蛋白酶,这些酶类对真菌细胞壁的降解有重要作用,可抑制病原菌孢子萌发,引起菌丝崩解。
二是次生代谢产生的各种抗生素类物质,主要的有木霉素,胶毒素、绿木霉素、胶绿木霉素和抗菌肽等。
3)拮抗细菌。
是枯草芽孢杆菌、荧光假单孢杆菌和放射性土壤农杆菌。
芽孢杆菌的主要生防物质是蛋白质和多肽类物质,其抑菌谱甚广,可使病原真菌菌丝体溶解,原生质外溢。
4)拮抗真菌。
A、我国共有3个属的食线虫真菌。
其中淡紫拟青霉对大豆胞囊线虫的致死作用主要是其代谢产生的几丁质酶。
B、梨胶锈菌的重寄生菌(Tuberculinavinoo),其孢子萌发形成芽管从病菌的性子器口和锈子器口侵入,不能直接侵入。
我国水稻上有哪些重要病害,目前江苏水稻最重要的病害有几种,其关键的防治技术是什么?我国水稻重要病害主要有稻瘟病、水稻白叶枯病和细菌性条斑病、水稻纹枯病、水稻条纹叶枯病、稻曲病等。
目前江苏省最重要的病害为稻瘟病、白叶枯病和条纹叶枯病。
条纹叶枯的防治:a、推迟移栽期7-10,避免灰飞虱的主要传毒高峰。
b、拔除病株,控制病害。
C、秧苗期全程药控,防病保秧。
D、选用抗病品种。
稻瘟病:采取以消灭越冬菌源为前提,选用抗病丰产良种为中心,农业栽培技术为基础,药剂防治为辅助的综合防治策略。
2021年2月Feb.2021第41卷第2期Vol.41,No.2热带农业科学CHINESE JOURNAL OF TROPICAL AGRICULTURE植物病原卵菌效应蛋白RXLR 和CRN 研究进展郭泽西曲俊杰刘露露尹玲(广西作物遗传改良生物技术重点开放实验室广西南宁530007)摘要卵菌是一类可以侵染动植物以及微生物的病原菌。
植物病原卵菌会导致很多农作物、经济作物产生病害,造成巨大的经济损失。
效应蛋白在植物病原卵菌侵染寄主的过程中发挥关键作用。
本文概述病原卵菌分泌的效应蛋白RXLR 和CRN 的挖掘方法、转运机制以及靶标蛋白筛选的最新研究进展。
这些信息可为深入揭示效应蛋白RXLR 和CRN 的致病机理和与寄主互作机制等提供理论指导,也为未来植物抗病育种和绿色防控等提供研究方向和策略。
关键词卵菌;效应蛋白;RXLR ;CRN中图分类号S432.4文献标识码ADOI :10.12008/j.issn.1009-2196.2021.02.011Research Progress on RXLR and CRN Effector Proteins of Plant OomycetesGUO ZexiQU JunjieLIU LuluYIN Ling(Guangxi Crop Genetic Improvement and Biotechnology Laboratory,Nanning,Guangxi 530007,China)Abstract Oomycetes are a type of pathogenic bacteria that can infect animals,plants and microorganisms.The plant pathogenic oomycetes can cause diseases in many crops,resulting in huge economic losses.The effector protein plays a key role in the process of host infection by plant pathogenic oomycetes.The latest researches in the mining method,transport mechanism and target protein screening of effector proteins RXLR and CRN secreted by pathogenic oomycetes were reviewed.This information provide theoretical guidance for further revealing the pathogenic mechanism and host interaction mechanism of effector proteins RXLR and CRN,and provide research directions and strategies for plant disease resistance breeding and green control and prevention in the future.Keywords oomycetes ;effector proteins ;RXLR ;CRN从传统的生物分类学来看,卵菌被认为是一种真菌。