当前位置:文档之家› 互感器极性判断方法

互感器极性判断方法

互感器极性判断方法
互感器极性判断方法

互感器的极性如何判断?如何避免其极性接反?

电压互感器(PT)和电流互感器(Ct)是电力系统重要的电气设备,它承担着高、低压系统之间的隔离及高压量向低压量转换的职能。其接线的正确与否,对系统的保护、测量、监察等设备的正常工作有极其重要的意义。在新安装PT、CT投运或更换PT、CT二次电缆时,利用极性试验法检验PT、CT接线的正确性,已经是继电保护工作人员必不可少的工作程序。

避免其极性接反就是要找到互感器输入和输出的“同名端”,具体的方法就是“点极性”。这里以电流互感器为例说明如何点极性。

具体方法是将指针式万用表接在互感器二次输出绕组上,万用表打在直流电压档;然后将一节干电池的负极固定在电流互感器的一次输出导线上;再用干电池的正极去“点”电流互感器的一次输入导线,这样在互感器一次回路就会产生一个+(正)脉冲电流;同时观察指针万用表的表针向哪个方向“偏移”,若万用表的表针从0由左向右偏移,郎表针“正启”,说明你接入的“电流互感器一次输入端”与“指针式万用表正接线柱连接的电流互感器二次某输出端”是同名端,而这种接线就称为“正极性”或“加极性”;若万用表的表针从0由右向左偏移,郎表针“反启”,说明你接入的“电流互感器一次输入端”与“指针式万用表正接线柱连接的电流互感器二次某输出端”不是同名端,而这种接线就称为“反极性”或“反极性”;

注意:

1、我在外地网吧,可能逻辑性差,见谅。

2、用上述方法还不准确,还要看“干电池”拉开是否向反启。

3、若无反映,检查接线,对设备容量大的,如变比大的CT可用9V的电池串起来点极性。

4、点、拉等手段应该成为过去。现在现场大多使用三合一(点极性、二次绕组伏安特性)一次升流CT试验仪,太方便了。

5、电压互感器的原理和方法是一样的。

6、对了,“点”和“拉”是瞬时的事,时间不能太长,对CT来说,一次绕组相当短路,时间长了电就放光了,且只有交流才能由互感器反映,点上一瞬间后,就变成直流了。

7、一定要用指针式万用表,数字式的不行。

电流互感器的加极性和减极性是什么意思?

极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。时,二次电流自K1端流出经外部回路到K2。L1和K1,L2和K2分别为同极性端。反之,就是加极性。

为什么差动保护要使用D级电流互感器

差动保护因为要在事故的时候检测电网的大电流(接地或短路的时候一次电流会很大,所以二次电流也要持续增长)。通常用上10P10或者10P15 还有10P20也有5P10

10P10级前面的10P是测量等级,后面的10是准确限值系数,也就是说在二次电流可以持续增长10倍(二次额定电流是5A,那么增长10倍就变成50A了)而测量不超过偏差。

在测量或者计量互感器在故障的时候二次电流也会曾涨,不过一般的测量线圈的仪表保安系数FS<10 这样故障的时候就不会因为二次电流过大而损害仪表,仪器。希望对你有帮助,我就是做互感器的。

电流互感器的极性

电流互感器的极性:当一次绕组中的电流由L1流入,二次绕组的电流由K1流出,这种标注的方式称为减极性标注。 1、电流速断保护(电流Ⅰ段) 几个基本概念 系统的最大运行方式 被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的电流为最大的运行方式 系统的最小运行方式 被保护线路末端发生短路时,系统等值阻抗最大,而通过保护装置的电流为最小的运行方式 最大短路电流 在最大运行方式下流过保护装置的短路电流最大最小短路电流 在最小运行方式下流过保护装置的短路电流最小 保护装置的启动值 使保护装置启动的最小电流值 保护装置的整定 根据对继电保护装置的要求,确定保护装置的启动值、灵敏系数、动作时限等 电流速断保护保护只能保护本条线路的一部分;限时电流速断保护能保护线路的全长,但不能作为下一条相邻线路的远后备;定时限过电流保护可以做为本条线路和下一段相邻线路的后备保护。 由电流速断保护、限时电流速断保护、定时限过电流保护相互配合构成的一整套保护称为三段式保护 配电线路并不一定都要装设三段式电流保护 三段式电流保护的优点是简单可靠,缺点是受运行方式和短路电流的类型的影响 方向性电流保护原理: 方向性保护是指当短路功率从母线流向线路时(内部故障)动作而当短路功率由线路流向母线时不动作的保护,即使继电保护具有一定的方向性. 零序电流的分布,是由线路的零序阻抗和中性点接地变压器的零序阻抗及变压器接地中性点的数目和位置决定的,而与电源的数量和位置无关 线路纵差动保护是反应被保护线路首末两端电流的大小和相位,保护整条线路。当在被保护范围内任一点发生故障时,它都能瞬时切除故障。被保护线路两侧的电流互感器变比相等,极性采用减极性标注 差动保护结论: 差动保护灵敏度高 保护范围稳定 可以实现全线速动 不能作为相邻线路的后备保护

高中化学分子极性及其判断规律专题辅导

高中化学分子极性及其判断规律 张素琳 一、分类:按照分子的极性,可把分子分为两类。 1. 非极性分子:正负电荷重心重合,分子对外不显示电负性的分子。例如:H O 22、、 N Cl Br CO CS CH CCl BF 22222443、、、、、、、等。 2. 极性分子:正负电荷重心不重合,分子对外显示电负性的分子。例如H O NH 23、、 HCl 、H 2O 2等。 二、掌握常见分子极性及其空间构型:常见分子极性及其空间构型可用下表表示。 三、了解常见分子空间构型及其键角:中学常见分子空间构型及其键角列举如下: (1)H O N 222、、等双原子单质分子为直线形,夹角为180°。 (2)H O 2为平面形,夹角为104.5°。 (3)NH 3为三角锥形,夹角为107°18'。 (4)H 2S 为平面形,夹角为92°。 (5)CH CCl SiH 444()、为正四面体形,夹角为109°28'。 (6)CH Cl CH Cl CHCl 3223()、为四面体形,夹角不确定。 (7)C H 22为直线形,夹角为180°。 (8)C H 24为平面形,夹角为120°。 (9)C H 66为平面形,夹角为60°。

(10)P 4为正四面体形,夹角为109°28'。 (11)CO CS 22()为直线形,夹角为180°。 (12)BF 3为平面形,夹角为120°。 注意:中学常见的四面体物质有①CH 4 ②CH Cl 3 ③CH Cl 22 ④CHCl 3 ⑤ CCl 4 ⑥P 4 ⑦NH 4 ⑧SiH 4 ⑨SiF 4等。其中是正四面体的有①、⑤、⑥、⑦、⑧、 ⑨共6种。 四、分子极性判断规律。 ①双原子单质分子都是非极性分子。如H O N Cl Br 22222、、、、等。 ②双原子化合物分子都是极性分子。如HCl 、HBr 、HI 等。 ③多原子分子极性要看空间构型是否对称,对称的是非极性分子,否则是极性分子。如H 2O 、NH HCl H O CH Cl 3223、、、等是极性分子;CO CH CCl BF 2443、、、等是非极性分子。 ④AB n 形分子极性判断:若A 原子的最外层电子全部参与成键,这种分子一般为非极性分子。如CO CH BF 243、、等。若A 原子的最外层电子没有全部参与成键,这种分子一般为极性分子。如H O NH 23、等。

三极管的极性判断及参数

三极管的极性判断及参数 作者:未知 文章来源:来自网络 点击数:57 更新时间: 2008-3-1 0:00:27 1. 常用小功率三极管的主要参数 常用小功率三极管的主要参数,参见表B311。 2.三极管电极和管型的判别 (1) 目测法 ① 管型的判别 一般,管型是NPN 还是PNP 应从管壳上标注的型号来辨别。依照部颁标准,三极管型号的第二位(字母),A 、C 表示PNP 管,B 、D 表示NPN 管,例如: 3AX 为PNP 型低频小功率管 3BX 为NPN 型低频小功率管 3CG 为PNP 型高频小功率管 3DG 为NPN 型高频小功率管 3AD 为PNP 型低频大功率管 3DD 为NPN 型低频大功率管 3CA 为PNP 型高频大功率管 3DA 为NPN 型高频大功率管 此外有国际流行的9011~9018系列高频小功率管,除9012和9015为PNP 管外,其余均为NPN 型管。 ② 管极的判别 常用中小功率三极管有金属圆壳 和塑料封装(半柱型)等外型,图T305 介绍了三种典型的外形和管极排列方 式。 (2) 用万用表电阻档判别 三极管内部有两个PN 结,可用万用表电阻档分辨e 、b 、c 三个极。在型号标注模糊的情况下,也可用此法判别管型。 ① 基极的判别 判别管极时应首先确认基极。对于NPN 管,用 黑表笔接假定的基极,用红表笔分别接触另外两个 极,若测得电阻都小,约为几百欧~几千欧;而将 黑、红两表笔对调,测得电阻均较大,在几百千欧 以上,此时黑表笔接的就是基极。PNP 管,情况正 相反,测量时两个PN 结都正偏的情况下,红表笔 接基极。 实际上,小功率管的基极一般排列在三个管脚 的中间,可用上述方法,分别将黑、红表笔接基极, 既可测定三极管的两个PN 结是否完好(与二极管PN

反馈极性的判断方法瞬时极性法

反馈极性的判断方法瞬时 极性法 Last revision on 21 December 2020

反馈极性的判断方法——瞬时极性法 反馈在电技术中应用十分广泛。反馈有正,负之分。负反馈主要用于模拟放大电路中,负反馈既能稳定静态工作点,又能改善放大电路的各种性能。放大电路很少用正反馈。在一定条件下放在电路中的负反馈可转化为正反馈,形成自激振荡,使放大器不能正常工作,这是要避免的一面。正反馈还有有利的一面,就是在波形产生的电路中,人为地把电路接成反馈形式,产生所需的波形。在电子技术实践中,要正确组成反馈放大电路和振荡电路。必须清晰准确地判别正负反馈。如何有效判别正负反馈本文介绍瞬时(变化)极性法。 学习反馈电路,掌握反馈的基本概念和判别方法,必须解决以下问题: (1)什么是反馈反馈就是将放大电路的输出信号的一部分,通过一定电路形式送回到输入回路称为反馈。 (2)反馈元件如何判别既与输出回路相连,又与输入回路相连的器件都是反馈元件;虽仅在输出回路或输入回路,但与反馈支路相连,并对反馈信号大小产生影响的元件也是反馈元件。 (3)如何构成反馈放大器引入反馈的放大电路称为反馈放大电路,即反馈放大器。(见图1) 图1 图中A是基本放大电路,F是反馈网络,两部分构成一个闭环。X’i和x’f分别是输入信号和反馈信号,x’d是净输入信号,三者汇交的节点称为混合环节。X’i、x’f、x’d可以是电压信号,也可以是电流信号,x’i与x’f在节点处可以相加也可以相减。如果是串联反馈x’i和x’f都用电压表示,两个电压在此串联相减。如果是并联反馈,x’i和x’f都用电流表示,两个电流在此并联相减。

三极管的主要参数及极性判断

PNP三极管管脚图TO-92管脚图: SOT-23管脚图:

本篇文章摘自百科查看详细内容请点:https://www.doczj.com/doc/e412745303.html,/Article/jk/200912/121135 5.html 三极管的主要参数及极性判断

Z304三极管的主要参数及极性判别 1.常用小功率三极管的主要参数 常用小功率三极管的主要参数,参见表B311。 2.三极管电极和管型的判别 (1) 目测法 ①管型的判别 一般,管型是NPN还是PNP应从管壳上标注的型号来辨别。依照部颁标准,三极管型号的第二位(字母),A、C表示PNP管,B、D表示NPN管,例如: 3AX 为PNP型低频小功率管3BX 为NPN型低频小功率管 3CG 为PNP型高频小功率管3DG 为NPN型高频小功率管 3AD 为PNP型低频大功率管3DD 为NPN型低频大功率管 3CA 为PNP型高频大功率管3DA 为NPN型高频大功率管 此外有国际流行的9011~9018系列高频小功率管,除9012和9015为PNP管外,其余均为NP N型管。 ②管极的判别 常用中小功率三极管有金属圆壳和塑料封装(半柱型)等外型,图T305介绍了三种典型的外形和管极 排列方式。

(2) 用万用表电阻档判别 三极管内部有两个PN结,可用万用表电阻档分辨e、b、c三个极。在型号标注模糊的情况下,也可 用此法判别管型。 ①基极的判别 判别管极时应首先确认基极。对于NPN管,用黑表笔接假定的基极,用红表笔分别接触另外两个极,若测得电阻都小,约为几百欧~几千欧;而将黑、红两表笔对调,测得电阻均较大,在几百千欧以上,此时黑表笔接的就是基极。PNP管,情况正相反,测量时两个PN结都正偏的情况下,红表笔接基极。 实际上,小功率管的基极一般排列在三个管脚的中间,可用上述方法,分别将黑、红表笔接基极,既可测定三极管的两个PN结是否完好(与二极管PN结的测量方法一样),又可确认管型。 ②集电极和发射极的判别 确定基极后,假设余下管脚之一为集电极c,另一为发射极e,用手指分别捏住c极与b极(即用手指代替基极电阻Rb)。同时,将万用表两表笔分别与c、e接触,若被测管为NPN,则用黑表笔接触c极、用红表笔接e极(PNP管相反),观察指针偏转角度;然后再设另一管脚为c极,重复以上过程,比较两次测量指针的偏转角度,大的一次表明IC大,管子处于放大状态,相应假设的c、e极正确。 3.三极管性能的简易测量 (1) 用万用表电阻档测ICEO和 基极开路,万用表黑表笔接NPN管的集电极c、红表笔接发射极e(PNP管相反),此时c、e间电阻 值大则表明ICEO小,电阻值小则表明ICEO大。 用手指代替基极电阻Rb,用上法测c、e间电阻,若阻值比基极开路时小得多则表明β值大。 (2) 用万用表hFE档测β 有的万用表有hFE档,按表上规定的极型插入三极管即可测得电流放大系数β,若β很小或为零,表明三极管己损坏,可用电阻档分别测两个PN结,确认是否有击穿或断路。

电流互感器极性的判断

怎样测量电流互感器的极性 电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。 测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①直流法;②交流法;③仪器法。 1直流法 见图1。用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。如指针摆动与上述相反为加极性。 图1直流法测电流互感器极性 2交流法

见图2,将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来, 在二次侧通以1~5V的交流电压(用小量程),用10V以下的电压表测量U 及U3的数值如U3=U1-U2为减极性;若U3=U1+U2为加极性。 2 图2交流法测电流互感器极性 注意:在试验过程中尽量使通入电压低一些,以免电流太大损坏线圈,为了读数清楚电压表尽量选择小一些,变流比在5以下时采用交流法测量比较简单准确,对变流比超过10的互感器不要采用这种方法进行测量,因为U2的数值较小U3与U1的数值接近,电压表的读数不易区别大小,所以在测量时不好辨别,一般不宜采用此法测量极性。 3仪表法 一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。 高压电流互感器极性的判断

按规定电流互感器在交接及大修前后应进行极性试验,防止接线时将极性弄错,造成继电保护回路上和计量回路中的保护装置错误动作和不能正确地进行计量,因此必须在接线时做极性试验。 判断电流互感器极性的方法有三种,分别为直流法、交流法、仪器法。其中最方便、最实用的是直流法,用一只普通的1号干电池,一根0.5米长的连接线,一只指针式万用表,最好是MF-500型的,上面带有微安挡,指针偏转角度大,显示比较直观。把万用表左侧旋钮调整到A直流电流挡位,右侧旋钮调整到50微安刻度;判断极性时一般两个人一起操作,其中一个人把万用表的正极红表笔接电流互感器二次侧的S1端,负极黑表笔接S2端,另一个人把连接线一端固定在电流互感器一次侧P2端,连接线的另一端和干电池负极锌片端接触,使干电池的正极瞬间碰触电流互感器的一次侧P1端,会发现万用表指针正偏(向右偏)之后,又马上返回,这说明极性正确,为负极。然后红表笔接S2端黑表笔接S3端,或红表笔接S3端黑表笔接S4端,指针偏转情况应与上述相同;如指针

分子极性判断方法.docx

一、共价键的极性判断 化学键有无极性,是相对于共价键而言的。从本质上讲,共价键有无极性取决于共用电子对是 否发生偏移,有电子对偏移的共价键即为极性键,无电子对偏移的共价键即为非极性键。 从形式上讲,一般来说,由同种元素的原子形成的共价键即为非极性键,由不同种元素的原子形 成的共价键即为极性键。 在学习共价键的极性判断时,一定要走出这样一种误区“由同种元素的原子形成的共价键一 定为非极性键”。 对于化合物来说,象H3C-CH3中的“C- C”键、 CH2=CH2中的“ C=C”键、 Na2O2中的“O- O” 键等具有结构对称的分子中同种元素原子间形成的共价键的确是非极性键。但象 CH3CH2OH、 CH3COOH等结构不对称的分子中的“C - C”键却不是非极性键,而是极性键。 对于单质来说,象在H2、O2、N2、P4、C60、金刚石、石墨等共价单质中的共价键的确是非 极性键。但在 O3分子中的“O - O”键却不是非极性键,而是极性键。这是因为O3分子结构呈“V”型(或角型),键长为(该键长正好位于氧原子单键键长148 pm 与双键键长 112 pm 之间),与 SO2结构相似,可模仿 SO2把 O3称作“二氧化氧”,所以 O3分子中的“O - O”键是 极性键,其分子是极性分子。 二、分子的极性判断 分子是否存在极性,不能简单的只看分子中的共价键是否有极性,而要看整个分子中的电荷分布 是否均匀、对称。 根据组成分子的原子种类和数目的多少,可将分子分为单原子分子、双原子分子和多原子分子, 各类分子极性判断依据是: 1、单原子分子:分子中不存在化学键,故无极性分子或非极性分子之说,如He、Ne等稀有气体分子。 2、双原子分子:对于双原子分子来说,分子的极性与共价键的极性是一致的。若含极性键 就是极性分子,如HF、 HI 等;若含非极性键就是非极性分子,如I2 、 O2、 N2等。 3、多原子分子: ⑴以非极性键结合的多原子单质分子,都是非极性分子,如P4等。 ⑵以极性键结合的多原子化合物分子,其分子的极性判断比较复杂,可能是极性分子,也可 能是非极性分子,这主要由分子中各键在空间的排列位置来决定。若分子中的电荷分布均匀, 排列位置对称,则为非极性分子,如CO2、 BF3、CH4等;若分子中的电荷分布不均匀,排列 位置不对称,则为极性分子,如H2O、 NH3、 PCl3等。

互感器极性及其接线安全技术示范文本

互感器极性及其接线安全技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

互感器极性及其接线安全技术示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 在生产实践中,由于电流互感器极性及接线不正确, 造成保护装置误动和拒动,由此而引起的停电事故时有发 生,这在克拉玛依电网已发生过多起,且故障多发生在主 变差动保护、110kV线路保护及母差保护中。例如:石西 地区110kV陆良变电站及35kV莫北变电站都因1,2号 主变差动保护电流互感器极性及接线存在问题,造成多次 全站失电。因此,正确判断电流互感器的极性及二次接线 的正确性是非常重要的。 1 极性的判断及二次线的联接 以双圈变压器差动保护接线为例,简要说明如何判断

电流互感器极性以及正确的电流互感器二次接线。 1.1电流互感器的极性判断 电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。 1.2正确的电流互感器的二次接线方式 (1)变压器按Y/△-11接线时,两侧电流之间有30。的相位差,即同相的低压侧电流超前高压侧电流30。,为了

电流互感器接线方式

电流互感器接线方式 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线

图 1 电流互感器的三种极性标注 图 2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I

CT极性判别方法

判断电压电流互感器极性的新方法 发布日期:2009-5-27 10:53:43 (阅2378次) 关键词: 变压器互感器继电保护 [摘要]应用克希霍夫定律(Kirchhoff''s Current Law)及二次回路接线原理,推导出一种判断电压和电流互感器极性的新方法,经与传统的检测方法进行对比,证明了其优越性和实用性,可供继保专业人员参考和运用。 [关键词]互感器继电保护克希霍夫定律(KCL)极性 引言 变压器和电流互感器在继电保护二次回路中起一、二次回路的电压和电流隔离作用,它们的一、二次侧都有两个及以上的引出端子,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置正确动作,又影响电力系统的运行监控和事故处理,严重时还会危及设备及人身安全。因此,正确判断变压器(电压互感器)和电流互感器的极性正确与否是一项十分重要的工作。 1 传统的极性检测方法 1.1直流法 电压和电流互感器的传统极性检测直流法可按图1接好线,使用干电池和高灵敏度的磁电式仪表进行测定。检测极性时,将电池的正极接在一次线圈的K端上,而将磁电式仪表(如指针式电流表或毫伏表)的正极端接在二次线圈的K端上。当开关S瞬间闭合时,仪表指针偏向右转(正方向),而开关S瞬间断开时,仪表指针则偏向左转(反方向),则表明所接互感器一、二次侧端子为同极性。反之,为异极性。

1.2、交流法 按图2所示接线,将互感器一、二次线圈的尾端L2、K2接在一起,在二次线圈上通入1~5V的交流电压,再用10V以下小量程交流电压表分别测量U2、U3,若U3=U1-U2,则L1、K1为同极性,若U3=U1+U2,L1、K1为异极性。 2 新极性检测方法 该方法以KCL和二次接线原理为基本依据,强调注入电流作为引导检测过程的基本手段,将交流安培计的读数作为检测结果,来判断互感器的极性。 2.1原理 根据KCL的描述: 在任何电路中的任意节点上流入该节点的电流总和等于流出该节点的电流总和,即Σi入=Σi出。当某一节点趋于无穷大的极限情况时,KCL可以推广至任意用一闭合面(图3虚线表示与纸平面的相交线)所包围的电路部分。该闭合面S包围了部分电路,并与支路1、2、3相交,应用KCL定律可得i1-i3-i2=0。 下面讨论一种特殊状态,当初始时刻电路中无电流通过时,如果强制性地使某一闭合面包围的部分电路中流入一定量的相对于初始状态额外的电流,由于离开包围部分电路的任一闭合面的各支路的电流的代数和为零,所以必有同量的电流流出那部分电路,则可在流出的闭合面的另一支路上串联一只交流安培计测量。那么,当被包围的部分电路为电压和电流互感器的内部电路时,则其中任两相的同极性或异极性将影响流出包围的互感器内部电路电流的大小,然后结果将体现在交流安培计的读数上。下面以电流互感器的星形和三角形两种连接情况来具体说明。 2.2星形回路检测 在检测之前,须断开一次隔离刀闸,确保电流互感器内部电路处于无电流状态。任选电流互感器的两相(图4所选的是A、B两相)在一次侧线圈的L端同时接地,K端串接一升流装置。在二次侧的中性线n上串接一只交流安培计。用升流装置向其中注入定量的交流电流,电流大小及安培计的量程可由电流互感器的变比确定。数量级约在10-1A至1A之间。同时观察安培计的变化和读数。由于另一单相未注流的原方开路,在二次星形回路中电流继电器线圈阻抗相对很高,所以二次回路的电流I3很小,近似为零。此时若安培计的指针不动或微偏(读数IA也约为零),则说明此两相的二次电路在闭合面包围下其电流近似

三极管极性判断

三极管极性判断! 一、三颠倒,找基极三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k 挡位。假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠

倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻 找的基极。 二、 PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。 三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c 和发射极e。(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电

阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b 极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c 极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。 四、测不出,动嘴巴若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转

互感器接线安全及其极性(正式版)

文件编号:TP-AR-L7282 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 互感器接线安全及其极 性(正式版)

互感器接线安全及其极性(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、防范措施 (1) 在实验报告中也应明确写明电流互感器同名端的测试方法、测试结果、接线方式。 (2)保护整定计算人员,可在定值单上对特殊线路的电流互感器极性作明确要求,如以母线为基准,故障电流由母线流向线路为正,装置应可靠动作;故障电流由线路流向母线为负,装置应不动作。 (3)在生产实践中,由于电流互感器极性及接线不正确,造成保护装置误动和拒动,由此而引起的停电事故时有发生,实验人员应注意理论知识的学习,熟悉各种保护的动作原理,充分认识电流互感器极性

及接线的重要性,严格按设计图施工。 (4)按照质量管理要求,设备验收时使用的设备验收表格中应增加那些通常容易被忽视却很重要的项目,如电流互感器同名端的测试方法、测试结果、接线方式是否正确等。 二、极性的判断及二次线的联接 以双圈变压器差动保护接线为例,简要说明如何判断电流互感器极性以及正确的零序电流互感器二次接线。新安装设备的实验报告中,往往是各种实验技术数据都很全,所有实验都合格,唯独没有电流互感器极性及接线方面的记录,由于验收工作欠仔细,且电流互感器极性及接线方面出些差错,不容易被发现,结果在设备运行后,在某一特定条件下暴露出问题,造成保护误动或拒动。 2.1 正确的电流互感器的二次接线方式

三极管极性判定

9013三极管 9013是一种NPN型小功率三极管。三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区。三极管的排列方式有PNP和NPN两种。s9013 NPN三极管主要用途:作为音频放大和收音机1W推挽输出以及开关等。 中文名 9013三极管 外文名 9013 triode 作用 电流放大 应用 收音机的1W推挽输出,音频放大 材料 硅 类型 NPN型

目录 .1型号对比 .2引脚参数 型号对比 s9014,s9013,s9015,s9012,s9018系列的晶体小功率三极管,把显示文字平面朝自己,从左向右依次为e发射极b基极c集电极;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c,s8050,8550,C2078 也是和这个一样的。用下面这个引脚图(管脚图)表示: 三极管引脚图e b c 当前,国内各种晶体三极管有很多种,管脚的排列也不相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置(下面有用万用表测量三极管的三个极的方法),或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。 非9014,9013系列三极管管脚识别方法: (a) 判定基极。用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、 反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。 (b) 判定三极管集电极c和发射极e。(以PNP型三极管为例)将万用表置于R×100或 R×1K挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。 D 不拆卸三极管判断其好坏的方法。 在实际应用中、小功率三极管多直接焊接在印刷电路板上,由于元件的安装密度大,拆卸比较麻烦,所以在检测时常常通过用万用表直流电压挡,去测量被测管子各引脚的电压值,来推断其工作是否正常,进而判断三极管的好坏。

互感器极性及其接线安全参考文本

互感器极性及其接线安全 参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

互感器极性及其接线安全参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 在生产实践中,由于电流互感器极性及接线不正确, 造成保护装置误动和拒动,由此而引起的停电事故时有发 生,这在克拉玛依电网已发生过多起,且故障多发生在主 变差动保护、110 kV线路保护及母差保护中。例如:石西 地区110 kV陆良变电站及35 kV莫北变电站都因1,2号 主变差动保护电流互感器极性及接线存在问题,造成多次 全站失电。因此,正确判断电流互感器的极性及二次接线 的正确性是非常重要的。 1 极性的判断及二次线的联接 以双圈变压器差动保护接线为例,简要说明如何判断电流 互感器极性以及正确的电流互感器二次接线。 1.1 电流互感器的极性判断

电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。 1.2 正确的电流互感器的二次接线方式 (1) 变压器按Y/△-11接线时,两侧电流之间有30。的相位差,即同相的低压侧电流超前高压侧电流30。,为了消除这一不平衡电流,差动保护的电流互感器二次侧应采用△/Y接线,如图2所示。 变压器低压侧,即副边一次线圈接成△,则与其对应的低压侧电流互感器二次接线应接成Y型。如电流互感器为减极性,并假定靠母线侧为正,电流互感器的正端子联接在一起,作为中性线。二次引出线分别接在a、b、c各相

如何判断三极管的类型和极性

①用数字式万用表判断基极 b 和三极管的类型:将万用表欧姆 挡置"R ×200" 或"R×2k" 处,先假设三极管的某极为"基极",并把红表笔接在假设的基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将万用表欧姆挡置"R ×200" 或"R ×2k" 处,以NPN管为例,把红表笔接在假设的集电极c 上, 黑表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为 c 、e 问电阻值小说明通过万用表的电流大, 偏置正常。万 用表都有测三极管放大倍数(Hfe)的接口。可以估测一下三极管的放大倍数。

己知三极管类型及电极,指针式万用表判别晶体管好坏的方法 如下: ①测 NPN 三极管:将万用表欧姆挡置 "R × 200" 或 "R × 2k" 处,把红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是 好 的 。 ②测 PNP 三极管:将万用表欧姆挡置 "R × 200" 或 "R ×2k" 处,把黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。 c 、e 的判别电路示意图(一)

直流法判断互感器的极性 (整理

直流法判断互感器的极性(整理) 一、工器具准备及安全检查 1、250V兆欧表1只,万用表1只,兆欧表、万用表测试连接线各两条(红色黑色),电源盒一只,放电棒一根,绝缘手套两只,一字起一把,砂纸一张,抹布一条,裸铜线三根。 2、检查兆欧表、万用表外观是否完好,对兆欧表进行开路、短路检查,检查绝缘手套有无合格证,试验标签是否过期(六个月一次),有无漏气现象;检查放电棒有无合格证,试验标签是否过期(1年一次) 二、询问老师互感器处在什么状态? 老师答:此时互感器处在检修状态。这时检查(电流、电压)互感器有无接地,(注意:不要碰触电流、电压互感器) 三、互感器导通检查 1、取绝缘手套戴上,将放电棒的接地端夹在互感器的外壳接地上,依次用放电棒的顶端(带接地电阻)和直接接地端钮对电流器P1 P2 IS1 IS2桩头进行放电,再对电压互感器A 、B 、a1、b1 、a 2、b2、进行放电。将放电棒放在一侧。(放电棒接地线夹仍然夹在接地不要取下,后面要用。) 2、打磨清扫互感器。 取砂纸对互感器桩头进行打磨,然后取抹布对互感器进行清扫。 3、万用表导通检查。 先将万用表档位拔至“Ω”档*1K档位,再检查万用表,静态调零,在表头正、负极开路的情况下,用罗丝批旋调万用表调零旋钮,使指针指向“0”位;动态调零,在万用表短路状态下,旋调万用表下面“Ω”旋钮调零,使万用表指针指向“0”位。 4、互感器导通检查。 万用表在“Ω*1K”档,用正负极测试夹分别碰及电流互感的P1---P2 ,S1---S2桩头,万用表应显示导通,再碰及电压互感器的A--B 、a1----b1 、a2----b2、桩头,万用表应显示导通,以上说明电流、电压互感器一、二侧无断路现象。 四、进行互感器极性检查。 1、将万用表拔至A档和50μA档位, 2、取电池盒。 3、电流互感器 1、先将电源红色引线夹在P1桩头上(正极),将黑色引线(负极)夹在P2桩头上。 2、将万用表正极引线夹在S1桩头上,负极夹在S2桩头上。 3、按动电源盒红色按钮,连续三次,如果万用表指针向右偏转,说明互感器为“减极性”,向左偏听偏信转说明互感器为“加极性”。 4、电流互感器极性测量完成后,在取下测量线前,先戴绝缘手套,拿放电棒依次对P1 P2 IS1 IS2桩头进行放电,然后取下电源及万用表引线。 4、电压互感器 1、将电源红色引线夹在A桩头上(正极),将黑色引线(负极)夹在B桩头上。 2、万用表正极引线夹在a1桩头上,负极夹在b1桩头上。按动电源盒红色按钮,连续三次,观察万用表指针偏向判断极性;再对电压器进行放电,将万用表正极引线夹在a2桩头上,负极夹在b2桩头上。按动电源盒红色按钮,连续三装表接电技能操作题(高)―8 次,观察万用表指针偏向判断极性。 3、取绝缘手套,拿放电棒对A 、B 、a1、b1 、a2、b2、进行放电。取下电源、万用表引线,将万用表开关关闭,档位旋钮旋至关闭。放回后面的桌子上。

电流互感器极性、接线方式及其应用

电流互感器极性、接线方式及其应用 引言 在电力系统中电流互感器的作用是把大电流变成小电流,将连接在继电器及测量仪器仪表的二次回路与一次电流的高压系统隔离,并将一次电流变换到5A 或1A 两种标准的二次电流值。电流互感器的极性与电流保护密切相关,特别是在农电系统中,电流保护起主导作用,因此必须掌握好极性与保护的关系。本文分析了电流互感器的极性和常用电流保护的关系,以及易出错的二次接线。 2 电流互感器的极性 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和 2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线 图1 电流互感器的三种极性标注

图2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I e ,由向量差得其电流值为Ia 的 3 倍,相位滞后I a 300 角,如果三只继电器整定值是一样的,3KA 会提前动作,造成保护误动。

分子极性判断方法

分子极性判断方法 一、共价键的极性判断 化学键有无极性,是相对于共价键而言的。从本质上讲,共价键有无极性取决于共用电子对是否发生偏移,有电子对偏移的共价键即为极性键,无电子对偏移的共价键即为非极性键。 从形式上讲,一般来说,由同种元素的原子形成的共价键即为非极性键,由不同种元素的原 子形成的共价键即为极性键。 在学习共价键的极性判断时,一定要走出这样一种误区由同种元素的原子形成的共价键一 定为非极性键”。 对于化合物来说,象H3C-CH中的C-C”键、CH2=CH中的C=C键、Na20冲的O-0”键等具有 结构对称的分子中同种元素原子间形成的共价键的确是非极性键。但象CH3CH2OHCH3C00H 等结构不对称的分子中的C-C”键却不是非极性键,而是极性键。 对于单质来说,象在H2、02、N2、P4、C60、金刚石、石墨等共价单质中的共价键的确是非极性键。但在03分子中的0-0”键却不是非极性键,而是极性键。这是因为03分子结构呈V' 型(或角型),键长为127.8pm (该键长正好位于氧原子单键键长148 pm与双键键长112 pm 之间),与S02吉构相似,可模仿S0把03称作二氧化氧”,所以03分子中的0-0”键是极性键,其分子是极性分子。 二、分子的极性判断 分子是否存在极性,不能简单的只看分子中的共价键是否有极性,而要看整个分子中的电荷 分布是否均匀、对称。 根据组成分子的原子种类和数目的多少,可将分子分为单原子分子、双原子分子和多原子分 子,各类分子极性判断依据是: 1、单原子分子:分子中不存在化学键,故无极性分子或非极性分子之说,如He Ne等稀有气体分子。 2、双原子分子:对于双原子分子来说,分子的极性与共价键的极性是一致的。若含极性键就是极性分子,如HF HI等;若含非极性键就是非极性分子,如I2、02、N2等。 3、多原子分子: ⑴以非极性键结合的多原子单质分子,都是非极性分子,如P4等。 ⑵以极性键结合的多原子化合物分子,其分子的极性判断比较复杂,可能是极性分子,也可 能是非极性分子,这主要由分子中各键在空间的排列位置来决定。若分子中的电荷分布均匀, 排列位置对称,则为非极性分子,如C02 BF3 CH4等;若分子中的电荷分布不均匀,排列 位置不对称,则为极性分子,如H20 NH3 PCI3等。 三、共价键的极性和分子的极性的关系 空间不对称 极性键极性分子

万用表判断三极管管脚极性方法

万用表判断三极管管脚极性方法 三极管是由管芯(两个PN结)、三个电极和管壳组成,三个电极分别叫集电极c、发射极e和基极b,目前常见的三极管是硅平面管,又分PNP和NPN型两类。现在锗合金管已经少见了。 这里向大家介绍如何用万用表测量三极管的三个管脚的简单方法。 1.找出基极,并判定管型(NPN或PNP) 对于PNP型三极管,C、E极分别为其内部两个PN结的正极,B极为它们共同的负极,而对于NPN型三极管而言,则正好相反:C、E极分别为两个PN结的负极,而B极则为它们共用的正极,根据PN结正向电阻小反向电阻大的特性就可以很方便的判断基极和管子的类型。具体方法如下:将万用表拨在R×100或R×1K档上。红笔接触某一管脚,用黑表笔分别接另外两个管脚,这样就可得到三组(每组两次)的读数,当其中一组二次测量都是几百欧的低阻值时,若公共管脚是红表笔,所接触的是基极,且三极管的管型为PNP型;若公共管脚是黑表笔,所接触的是也是基极,且三极管的管型为NPN型。 2.判别发射极和集电极

由于三极管在制作时,两个P区或两个N区的掺杂浓度不同,如果发射极、集电极使用正确,三极管具有很强的放大能力,反之,如果发射极、集电极互换使用,则放大能力非常弱,由此即可把管子的发射极、集电极区别开来。 在判别出管型和基极b后,可用下列方法来判别集电极和发射极。 将万用表拨在R×1K档上。用手将基极与另一管脚捏在一起(注意不要让电极直接相碰),为使测量现象明显,可将手指湿润一下,将红表笔接在与基极捏在一起的管脚上,黑表笔接另一管脚,注意观察万用表指针向右摆动的幅度。然后将两个管脚对调,重复上述测量步骤。比较两次测量中表针向右摆动的幅度,找出摆动幅度大的一次。对PNP型三极管,则将黑表笔接在与基极捏在一起的管脚上,重复上述实验,找出表针摆动幅度大的一次,对于NPN型,黑表笔接的是集电极,红表笔接的是发射极。对于PNP型,红表笔接的是集电极,黑表笔接的是发射极。 这种判别电极方法的原理是,利用万用表内部的电池,给三极管的集电极、发射极加上电压,使其具有放大能力。有手捏其基极、集电极时,就等于通过手的电阻给三极管加一正向偏流,使其导通,此时表针向右摆动幅度就反映出其放大能力的大小,因此可正确判别出发射极、集电极来。

相关主题
文本预览
相关文档 最新文档