风洞试验技术介绍及应用
- 格式:ppt
- 大小:61.32 MB
- 文档页数:45
玻璃幕墙风荷载是玻璃幕墙设计诸荷载(作用)中最重要的一项。
它的取值直接影响玻璃幕墙的安全,尤其是体型复杂的高层建筑玻璃幕墙的设计风荷载更要慎重采用。
《玻璃幕墙工程技术规范》JGl02—2003规定:“玻璃幕墙的风荷载标准值可按风洞试验结果确定;玻璃幕墙高度大于200m或体型、风荷载环境复杂时,宜进行风洞试验确定风荷载。
”风压是速度压,风速只是代表在自由气流中某点的风速,房屋建筑设计时不能直接以该风速作为结构荷载,因为房屋本身并不是理想地使原来的自由风流停滞,而是让气流以不同方式在房屋表面绕过,因此房屋对气流形成某种干扰,要完全从理论上确定气流影响的物体表面的压力,目前还是做不到。
一般都是通过试验的方法确定风作用在建筑物表面所引起的压力(吸力)与来流风压的比值,即风荷载体型系数,它表示建筑物表面在稳定风压作用下的静态压力分布规律,主要与建筑物的体型与尺度有关(荷载规范共列出38种基本体型),当周围有较多高层建筑时,这一群体对风产生特定的群体干扰因而形成了特定的风环境,对所设计的高层建筑也会产生影响,受到群体干扰影响时,对称的截面形状会出现并不对称的风压分布,特别是上游和下游建筑物对气流产生的干扰造成群体干扰影响下的气流特性与单体有很大差别,而我国现行规范未考虑群体干扰的影响因素,还有一些高层建筑采用一些特殊的体型(非基本体型),且不同高度采用不同的截面形状,沿高度变化的截面风压分布,再加上群体干扰的影响,其风压分布复杂多变,例如正负风压系数都出现在双园弧面尖角拐角,双园弧面与过渡段交接处的尖角上有极强的压力脉动等,这些分布规律在荷载规范风荷载体型系数表中是查不到的,需要通过风洞试验来验证和确定。
一些高层建筑即使平面形状与基本体型相似,但周围环境不尽相同,最好还是通过风洞试验来确定风荷载体型系数。
现在已有很多高层建筑采用风洞试验来确定风荷载,经过对一部份风洞试验报告分析,发现在同一地点,高度、体型均相近的建筑设计风荷载取值悬殊,也有同一建筑由两个试验单位试验,试验结果差别很大,甚至有些试验单位的试验报告提出的设计风荷载方案中,出现按C类地区计算出的风压比按B类计算的数据要大的不正常情况。
风洞实验的知识为什么要做风洞实验?我们人类所赖以生存的贴近地球表面的大气层里,有许多与我们的生活密切相关值得研究的现象。
其中最为普遍的现象就是风对物体的作用力,以及物体运动时所受的力。
大风呼啸而过时,可以折树倒屋,掀翻航船,造成严重的灾难,而利用风能的风车又可以提水发电,为人类效力。
车船在空气中前进,会受到阻力,而飞机要靠在空气中前进速度引起的空气动力才能够在空中飞行。
物体表面与空气接触,会产生两种力:一种是垂直于表面的,一种是与表面相切的。
这些力的大小,在表面和周围情况不变的条件下,只与物体和空气的相对速度有关。
也就是说,同样的物体,物体以同一姿态均匀速度在空气中运动,和物体在同样姿态下,空气以相同的速度流过物体,所受的力是相同的。
物体表面所受的这些力的合力,组成合力和合力矩。
决定了物体在空气中的行为。
特别是当物体在风作用下所受的力,或者物体在空气中运动时所受的阻力和升力,这是人们十分关心的问题。
最早为了测量这些力,是在英国数学家和工程师若宾(Benjamin Robins,1707-1751)所设计的悬臂机的设备上进行的。
将要测量的物体固定在悬臂的末端,当悬臂以一定的速度旋转起来时,从所加的驱动力P就可以换算出物体所受的阻力。
这种悬臂机使用了很长的时期。
不过它有一个缺点,就是当悬臂旋转了一些时间之后,空气或水会随着悬臂一同旋转,这样会使实验的精度大受影响。
既然在空气中物体所受的力只和物体与空气的相对速度有关,于是就可以让空气运动而物体固定来测量物体所受的力。
这就是原始的风洞的想法。
最早的风洞是为了研究物体在空中飞行时所受的升力与阻力的需要来设计的,也就是为了早期设计飞机所需要来设计的。
风洞的历史第一个设计与建造实验风洞的是英国人温翰姆(Francis Herbert Wenham,1824-1880),他是英国航空学会创始人之一。
他在1871年设计建造了一个风洞。
1884年另外一个英国人菲里普(Hiratio Phllips,1845-1912)又建造了一座改进的风洞。
如果风洞试验显示结构顶点最大加速度超限或业主要求提高舒适度标准,可以考虑在房屋顶部设置调谐质量阻尼器(TMD)。
结构构件设计采用中国规范和风工程顾问提供的风洞荷载。
风洞实验wind tunnel experiments在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法。
风洞实验的理论依据是流动相似原理。
由于风洞尺寸、结构、材料、模型、实验气体等方面的限制,风洞实验要作到与真实条件完全相似是不可能的。
通常的风洞实验,只是一种部分相似的模拟实验。
因此,在实验前应根据实际内容确定模拟参数和实验方案,并选用合适的风洞和模型。
风洞实验尽管有局限性,但有如下四个优点:①能比较准确地控制实验条件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。
因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。
模型的设计和制造是风洞实验的一个关键。
模型应满足如下要求:形状同实物几何相似或符合所研究问题的需要(如内部流动的模拟等);大小能保证在模型周围获得所需的气流条件;表面状态(如光洁或粗糙程度、温度、人工边界层过渡措施等)与所研究的问题相适应;有足够的强度和刚度,支撑模型的方式对实验结果的影响可忽略或可作修正;能满足使用测试仪器的要求;便于组装和拆卸。
此外,某些实验还对刚度、质量分布有特殊要求。
模型的材料在低速风洞中一般是高强度木材或增强塑料,在高速和高超声速风洞中常用碳钢、合金钢或高强度铝合金。
有些实验根据需要还采用其他材料。
模型通常都是缩尺的,也有全尺寸的,有时还可以按一定要求局部放大。
对于几何对称的实物,还可以利用其对称性做成模拟半个实物的模型。
风洞(英语:Wind tunnel)是空气动力学的研究工具。
风洞是一种产生人造气流的管道,用于研究空气流经物体所产生的气动效应。
风洞除了主要应用于汽车、飞行器、导弹(尤其是巡航导弹、空对空导弹等)设计领域,也适用于建筑物、高速列车、船舰的空气阻力、耐热与抗压试验等。
简介风洞实验是飞行器研制工作中的一个不可缺少的组成部分。
它不仅在航空和航天工程的研究和发展中起着重要作用,随着工业空气动力学的发展,在交通运输、房屋建筑、风能利用等领域更是不可或缺的。
这种方法,流动条件容易控制,可重要依据是运动的相对性原理。
实验时,常将模型或实物固定在风复地、经济地取得实验数据。
为使实验结果准确,实验时的流动必须与实际流动状态相似,即必须满足相似律的要求。
但由于风洞尺寸和动力的限制,在一个风洞中同时模拟所有的相似参数是很困难的,通常是按所要研究的课题,选择一些影响最大的参数进行模拟。
此外,风洞实验段的流场品质,如气流速度分布均匀度、平均气流方向偏离风洞轴线的大小、沿风洞轴线方向的压力梯度、截面温度分布的均匀度、气流的湍流度和噪声级等必须符合一定的标准,并定期进行检查测定。
历史1871年,弗朗西斯〃赫伯特〃韦纳姆和约翰〃布朗宁设计并建造了世界上第一座风洞1901年,莱特兄弟为研究飞机及得到正确的飞行资料,发明了风洞隧道进行测试[1]。
1902年莱特兄弟以风洞隧道的测试与前两架滑翔机的经验,建造第三架滑翔机,为当时最大的双翼滑翔机,并在机尾加装垂直尾翼,以防止转向时发生翻转,并进行了上千次的试飞。
而最终在1903年发明了世界上第一架带有动力的载人飞行器——莱特飞行器。
1945年,第二次世界大战尚未结束时,德国设计并开始建造一个实验段直径1米,最高风速达10马赫的连续式高超音速风洞。
战争结束后被美国缴获,美国仿制并作了适当修改后,一直到1961年才在阿诺德中心建立最高风速达12马赫的高超音速风洞。
因为风洞的控制性佳,可重复性高,现今风洞广泛用于汽车空气动力学和风工程(Wind Engineering)的测试,譬如结构物的风力荷载(Wind load)和振动、建筑物通风(Ventilation)、空气污染(Air pollution)、风力发电(Wind power)、环境风场(Pedestrian level wind)、复杂地形中的流况、防风设施(Wind break)的功效等。
流体力学中风洞实验的基本操作教程一、引言流体力学中的风洞实验是研究气体和液体流动行为的重要工具之一。
通过在实验室内部模拟大气环境中的气动流动,研究者可以观察和测量不同物体在流体中的受力和运动情况。
风洞实验在航空航天、汽车工程、建筑物设计等领域具有广泛的应用。
本文将为您介绍流体力学中风洞实验的基本操作步骤和注意事项。
二、风洞实验设备及组成部分1. 风洞:包括进风道、试验段和排风道。
2. 进风系统:用于提供实验所需的气流,包括获得高速气流所需的风机、引风道和加速器。
3. 试验段:用于安装和测量不同物体或模型的力学和流体力学性质。
4. 测量仪器:包括压力传感器、风速仪、雷诺数计等,用于记录和分析实验数据。
三、风洞实验的基本操作步骤1. 确定实验目标和设计实验方案在进行风洞实验之前,首先需要确定实验的目标和所需测试的参数。
然后,设计实验方案,包括选择适当的模型、确定实验条件(如流速、压力等),并考虑相关数据采集和分析方法。
2. 准备试验设备和工具检查风洞设备的状态,确保其正常运行。
清洁试验段,保证工作通道内无杂物和减小因堵塞而产生的气流扰动。
3. 安装模型并进行预实验根据实验方案,选择并安装相应的模型。
安装时要确保模型的稳定性,并注意避免模型表面的几何非均匀性对实验结果的影响。
进行预实验时,逐渐增加流速,观察模型的运动情况,并进行必要的调整,以确保后续实验的准确性。
4. 调整实验参数根据实验要求,调整实验参数,如流速、温度等。
通过风速仪、温度计等仪器对实验段内的流速和温度进行准确测量,并进行必要的校正。
5. 进行实验并记录数据在实验过程中,应严格按照实验方案要求进行操作。
记录数据时,可使用压力传感器、流速仪等测量仪器获取相应的气动力学参数和流体力学数据。
同时,为了提高实验结果的准确性,可进行多次实验,并取平均值进行分析。
6. 数据分析和结果验证根据实验获得的数据,进行数据处理和分析。
应注意排除异常数据和误差来源,并计算得出最终的实验结果。
0 引 言风洞模型试验是航空航天飞行器研制过程中了解飞行器性能、降低飞行器研制风险和成本的重要手段之一。
风洞模型的设计制造直接影响模型的质量、加工周期和成本,影响风洞试验的数据质量、效率、周期和成本。
众所周知,风洞试验首先要设计加工试验模型,传统的跨超声速风洞模型通常采用全金属材料,通过车、洗、刨、磨、钻或电加工等工艺制造,低速风洞模型一般采用非金属(如木材、树脂或复合材料等)或金属与非金属结合制造。
风洞试验中,模型状态的变化,(如襟、副翼等角度变化)需要风洞停车,人工拆装;试验中,风洞模型通常被视为刚性模型,模型的振动或变形的影响一般被忽略。
随着计算流体力学(CFD )技术和计算机网络技术的发展,飞行器研制周期缩短,人力资源和能源成本的提高,使人们对风洞试验的效率、风洞模型设计制造考虑更为精细。
传统的风洞模型技术在某些方面已不能满足现代飞行器研制技术发展的需要,因此,风洞模型技风洞试验模型技术新发展摘 要:风洞模型试验是航空航天飞行器研制的重要环节之一。
试验模型的设计制造关系到风洞试验的数据质量、效率、周期和成本。
本文归纳了近年来国外风洞模型技术的最新发展,分析了快速成型技术在风洞试验模型制造中的发展和应用;阐述了欧、美遥控风洞模型技术的发展理念、关键技术和应用研究;概述了风洞试验模型采用的新材料、抑振和变形测量技术。
关键词:风洞模型;模型快速成型;遥控风洞模型Keywords: wind tunnel model ;model rapid prototyping ;remotely controlled modelNew Development of Model Techniques for Wind Tunnel Test术已呈现出新的发展态势,以弥补传统风洞试验模型的不足。
1 模型快速成型技术现代飞行器设计技术的进步使飞行器的研制节奏加快,飞行器气动性能设计中CFD 技术应用增多,CFD 的模拟计算结果或某些设计的思想需要得到风洞试验的验证。
1、空气动力学研究的基本手段有哪些,各有什么优缺点?答:理论研究、风洞试验和飞行试验①理论研究:指人们根据对空气动力学现象的观察分析,对这些现象进行抽象和简化,描述其本质的数学模型,建立相应的数学物理方程并根据相应的边界条件求解这些数学方程。
主要指数值计算(CFD)技术。
尽管CFD技术在近几十年有了突飞猛进的发展,工程应用日趋成熟,但风洞试验仍是确定飞行器飞行性能的主要手段,CFD尚不能代替风洞试验,而只能作为飞行器设计手段与风洞试验相互补充,而且CFD的发展和可靠性也需风洞试验验证。
②飞行试验:主要指模型的自由飞试验和样机的试飞试验。
飞行试验方法可用来验证风洞试验数据的可靠性,解决那些风洞试验难以解决的问题;飞行试验能克服风洞试验模拟方式上的不真实因素,如流场模拟差异、飞行器尺寸差异(雷诺数和尺度效应)、流动不能完全相似等。
用真实飞行的测量数据来修正风洞试验数据,解决所谓风洞试验数据与飞行数据的相关性问题。
但是,由于飞行试验本身存在一系列误差,精度比风洞试验低得多;存在着费用高、试验条件不稳定、测量方法复杂等缺陷。
③风洞试验:空气动力学的发展史表明,风洞试验是试验空气动力学这门学科发展的的基本手段。
空气动力学的基本现象和基本原理,人们都是通过试验逐步认识的。
空气动力学研究上的重大突破,都首先是试验上的突破,空气动力学的理论本身都是在试验研究的基础上发现和发展起来的。
理论计算只能解决流动的物理机理已经通过试验研究认识清楚的,不是过于复杂的流动问题,但是流动机理方面的研究以及数值计算结果的验证,仍然要依靠试验。
用风洞试验方法来解决空气动力学问题,测量方便,试验参数如气流速度、试验状态易于控制,不受外界条件的影响,且费用较低,而飞行试验的试验条件不容易控制,测量方法复杂。
风洞试验过去和现在一直是发现和确定流动现象、探索和揭示流动机理、寻求和了解流动规律,以及为飞行器设计提供优良的气动布局和空气动力学特性数据的主要手段;在今后的相当长的时期内,这种状况不会改变,并将与其他研究手段更好的相互结合、相互补充、相互促进。
公路车风洞测试方法概述说明1. 引言1.1 概述公路车风洞测试方法是一种常用的科学技术手段,通过在风洞实验室中模拟公路交通环境,以观测和测量车辆在不同气流条件下的行驶性能和空气动力特性。
这项技术旨在提供客观准确的数据支持,以改进公路车辆设计、提高行驶稳定性和降低空气阻力。
1.2 文章结构本文将围绕公路车风洞测试方法展开讨论。
首先,我们将介绍常用的风洞测试设备,包括静态风洞和动态风洞,并对其工作原理和特点进行概述。
接着,我们将探讨测试参数与数据采集方法,解析如何准确地获取实验所需的各类数据。
同时,我们还将详细介绍数据处理与分析方法,以便从海量数据中提炼出有效信息并进行科学研究。
在第三部分中,我们将深入了解公路车风洞测试的具体步骤与流程。
这包括了实施前的准备工作、实际进行的风洞测试过程以及后期数据记录与验证等环节。
通过清晰的步骤指导,读者将对风洞测试的操作流程有更全面的理解。
在第四部分中,我们将讨论公路车风洞测试的意义与应用。
具体而言,我们将探究风洞测试对于提高车辆行驶稳定性研究、减少空气阻力以及开发新型车辆设计方案等方面的重要作用。
这些研究领域是目前公路车工程领域关注的焦点,并且具有广阔的市场前景和应用价值。
最后,在结论与展望部分,我们将对全文进行总结,并展望公路车风洞测试方法在未来的发展趋势。
随着科学技术不断进步和创新,我们可以期待公路车风洞测试方法在更多领域得到广泛应用并取得更加精确有效的成果。
通过本文的介绍与解析,读者将能够全面了解公路车风洞测试方法及其应用价值,为相关研究提供参考和指导。
接下来,我们将开始探讨2. 公路车风洞测试方法部分内容。
2. 公路车风洞测试方法2.1 常用风洞测试设备公路车风洞测试是通过将实际尺寸的汽车模型置于风洞中进行试验,获取有关空气动力学特性的数据。
常见的风洞测试设备包括:1. 静压式风洞:静压式风洞是最基本和常见的风洞类型,这种风洞主要通过测量在静态状态下流过模型周围的空气静压力来获得相关数据。
桥梁抗风设计、风洞试验及抗风措施?46?北方交通201l桥梁抗风设计,风洞试验及抗风措施刘长宏,刘春,宋俊杰(中国华西工程设计建设有限公司大连分公司,大连116000)摘要:桥梁应具有抵抗风作用的能力,特别是大跨度桥梁,其柔性较大,设计时必须考虑颤振,抖振,涡激振动等空气动力问题,通过抗风设计,风洞试验,抗风措施来确定桥梁风荷载和抗风性能是大跨度柔性桥梁抗风研究的主要手段.关键词:桥梁;风荷载;颤振;节段模型;风洞试验中图分类号:U442.59文献标识码:B文章编号:1673—6052(2011)10—0046—021桥梁抗风设计的目的桥梁抗风设计的目的在于保证结构在施工和运营阶段能够:(1)对于可能出现的最大静风荷载,桥梁不会发生强度破坏,变形和静力失稳.(2)为了确保桥梁的抗风安全性,桥梁发生自激发散振动(如颤振)的临界风速必须高于桥梁的设计风速,并具备一定的安全储备,即:临界风速>安全系数X设计风速.对于颤振验算,通常安全系数取为1.2.(3)对于限幅振动,尽管其振幅有限,但因其发生的频率高,可能会引起结构的疲劳损伤或影响结构正常使用,使行人感到不适以及影响施工的Jl~,N进行等,所以也应将桥梁可能发生的限幅振动的振幅减小到可以接受的程度,即:最大响应≤容许值. 2桥梁抗风设计桥梁抗风设计大体可分为结构设计和结构抗风性能检验两个阶段.2.1结构设计阶段这一阶段的工作内容包括对桥位处风速资料的收集,风观测,风的特性参数选取等.根据全国基本风压分布图,并考虑桥址处的地形地貌情况,桥梁高度和桥跨长度,自然风的特征等因素,确定桥梁的设计风速,设计风荷载和自激振动检验风速.设计内容是提出抗风设计对结构设计的多项要求,作为确定桥梁结构体系,各构件的材料,形状,尺寸等的参考.其中最重要的是结构体系的抗风性能设计和结构断面形状的气动选型.2.2结构抗风性能检验阶段该阶段包括静力抗风性能和动力抗风检验两部分.静力抗风检验包括根据规范或通过风洞试验确定结构断面的静力气动力系数,计算出作用在桥梁各个部分的静风荷载,进而计算出在静风荷载作用下的结构内力,变形,检验结构的静力稳定性.动力抗风检验包括桥梁在施工及运营状态时的颤振特性,涡激共振特性,抖振特性检验.采用风洞试验或半试验半理论的方法给出桥梁的颤振临界风速形态,涡激共振的发生风速和振幅估计,抖振振幅及其产生的惯性力.对于颤振临界风速的确定,下面列出VanDerPut的近似公式,以考证临界风速的影响因素.在桥梁初步设计阶段,通常可采用下式估算临界风速U:r厂■——~1U_【l+(8—0~√.721~)Jb式中:一主梁截面几何形状折减系数,对于目前用于悬索桥或斜拉桥的流线型扁平箱梁,该值约为0.7~0.9;对于截面较钝的混凝土箱梁,该值可低达0.3~0.5;8一桥梁的扭转频率与竖弯频率之比;r一主梁截面的惯性半径;一主梁单位长度质量与空气的质量比;(1)一竖弯频率;b一半桥宽.从上式大致可以看出,主梁截面越扁平,流线型越好,临界风速越高;桥梁的刚度越大,固有频率越高;主梁越重,临界风速越高.因此同样截面的混凝土主梁比钢主梁对抗风更为有利.3桥梁动力抗风设计的基本方针对于大跨度柔性桥梁,如悬索桥和斜拉桥的抗第10期刘长宏等:桥梁抗风设计,风洞试验及抗风措施?47? 风设计则应特别注意动力抗风设计.桥梁动力抗风设计的基本方针是:(1)提高结构的临界风速,使之大于设计风速,即不会发生危险性的发散型风致振动;(2)减少各种限幅风致振动(涡激共振,抖振等)的振幅,使之控制在可以接受的范围内.为了使桥梁在使用期间内,在预计的强风作用下不损害桥梁的安全性和使用性,首先应掌握架桥地点的强风特性,决定桥梁的设计风速,并据此推测风对桥梁的作用,校核抗风安全性.如果判断有可能会发生上述有害的振动,就应考虑适当的防止对策或进行设计变更.4风洞试验在确定风引起的桥梁响应时,通常可采用已有的理论分析和风洞模型试验等方法.但由于桥梁断面形状复杂多样,用纯理论分析方法求解作用在桥梁上的空气力及风致振动响应相当困难.因此,采用风洞模型试验仍是目前抗风设计最有效和最可靠的手段.风洞试验是空气动力学研究的一个十分重要且不可替代的手段.它是在风洞实验室模拟大气边界层的实际风环境和实际建筑结构,根据实验室中的模型响应考察实际结构响应.对于复杂环境下,有复杂外形的桥梁结构风效应研究,用其它手段很难进行时,风洞试验只需对实际条件作适当的简化,就可以达到研究目的.风洞试验是目前采用最普遍,最有效的研究手段.通过精心设计的各种风洞试验,可以预测实桥的空气静力稳定性,动力稳定性以及是否有影响正常使用的风致振动现象等.所谓风洞(windtunne1),通常指一个可产生气流的闭合环形管道.风洞的种类很多,一般可依照不同的用途,由其供试验用区域(称作试验段,试验模型置于此段)的截面积和风速大小加以划分.用于进行桥梁空气动力学研究的风洞,在早期都是利用低速航空的风洞,目前已逐步采用专门用于结构风工程研究的大气边界层风洞.大气边界层风洞具有较长的,并可以模拟大气边界层内自然风特性的试验段.试验段的截面积从几平方米至几十平方米不等,试验风速可以从很低的风速(一般为1~2m/s)到每秒数十米.5桥梁风洞模型试验方法根据试验的目的,桥梁风洞模型试验分为主梁节段模型静力试验,动力试验和全桥模型试验等. (1)节段模型静力试验是将主梁(成桥状态时还包括栏杆)按一定的几何比例做成模型,然后支撑在风洞中进行试验,以测定静力三分力系数(C,c和cM)等.(2)动力试验是用弹簧(模拟桥梁其余部分对主梁节段的弹性约束作用)将节段模型悬挂在风洞中进行试验,弹簧常数由相似条件决定.这种试验可以直接给出桥梁颤振临界风速的二维近似试验结果.因试验模型制作容易,费用少,时间省,这种试验得到广泛应用.(3)全桥模型则是将各部分构件的几何外形,质量和刚度按相似关系做成全桥模型,以使模型的固有振动特性与实桥相似,试验的目的是全面测定桥梁的临界风速,涡激振动和紊流引起的抖振的振幅.这种试验具有制作复杂,周期较长,费用昂贵,但真实可靠等特点.6桥梁结构及构件的抗风措施桥梁结构及构件的抗风措施大体上可分为两大类:一是改善结构的振动特性为目的的结构措施;二是以改善结构物的空气动力特性为目的的气动措施.(1)在大跨度斜拉桥或悬索桥的施工阶段中,结构体系处于不断转换区尚未成型,可能会出现比成桥后更为不利的状态,即刚度较小,变形较大,稳定性较差,甚至发生较大的风致振动响应的情况,其中稳定性问题也十分突出.一般说来,大跨斜拉桥在最大双悬臂状态和最大单悬臂状态的颤振稳定性比成桥状态要好.在最大双悬臂状态,主要会发生围绕桥塔的桥平面外的水平摆动以及平面内的竖向"翘翘板"振动,在桥塔中产生较大的内力,设置辅助墩或采用临时墩来减小悬臂长度是常用的方法;在最大单悬臂状态,强风作用下主梁的侧向和竖向抖振产生的惯性力较大,若振动不能接受,可以通过设置阻尼器以及临时风缆等方法来抑制振动.(2)悬索桥在安装初期的结构抗扭刚度主要由主缆提供,其扭转频率随主梁拼装长度的增加而增加.大跨度悬索桥主梁拼装的抗风低谷应避开大风期.若不能避开,可采用不对称施工方法,即不从中央对称拼装,而是偏高中央一定距离开始拼装主梁,待达到一定长度后再进行对称施工.(3)对于刚度相对较小的悬索桥,必须认真地考虑各种改善气动性能的导流措施以便同时解决颤振,涡振,斜振等各类风致振动问题.1500m以上跨度的悬索桥可能还要考虑采用中央开槽的分离箱断面以及增加交叉索形成空间索网等措施以提高结构?48?北方交通2011空心板粱桥拓宽结构新桥截面选取分析罗伟(沈阳公路工程监理有限责任公司,沈阳110000)摘要:应用梁格法建立空间有限元模型,对比分析了当新桥采用普通空心板和宽幅空心板时,旧桥的内力状态.并且分析了新桥截面的刚度以及跨径对旧桥减载效果的影响,对空心板梁桥拓宽结构的设计有一定的参考价值.关键词:空心板;梁格法;刚度;减载中图分类号:U495文献标识码:B文章编号:1673—6052(2011)tO一0048—03 1概述近年来我国的经济不断进步,交通事业繁荣兴盛,国家对基础设施的大力投资推动了公路建设行业的迅猛发展,也对我国公路工程建设提出了越来越高的要求.而我国较早建设的高速公路,如沈大,广佛,沪宁,京津塘,京珠,京沪等高速公路,绝大部分为四车道,随着交通量的不断增加,出现了严重的交通拥堵现象,影响了道路的通行能力与服务水平,为此不得不考虑建设第二通道或者扩建以缓解日趋紧张的交通压力.2国内外研究现状拼宽桥梁的关键是新,旧桥梁拓宽形式的选择,目前我国公路桥梁拓宽基本采用3种方式:(1)新旧桥梁的上,下部结构均不连接.这种方式的优点是新桥与旧桥各自受力明确,互不影响,施工难度小;缺点是在上部活载反复作用下,两桥主梁产生挠度不同,新桥与旧桥之间的沉降差异,可能会造成连接部位沥青铺装层破坏,进而在连接部位形成顺桥向裂缝和横桥墩向错台.(2)新旧桥的上,下部结构均连接.这种方式的优点是新桥与原桥联成整体,减小荷载作用下新老桥连接处产生过大的变形,拼接后桥梁整体性较好;缺点是由于新,旧桥基础沉降的不一致,导致桥梁附加内力增大,使连接处产生裂缝.(3)新旧桥梁的上部结构连接,下部结构分离.优点是由于下部分离,上部结构连接产生的内力对下步构造影响较小;缺点是新旧桥基础沉降的不一致会使上部结构产生较大的附加内力,可以适当增大桩径,减小新旧桥基础沉降的不一致对桥梁上部结构内力的影响.的刚度和气动性能,满足抗风要求.7结语抗风稳定性是控制大跨度桥梁成败的关键因素之一,在大跨度桥梁设计中,不仅要考虑承受风荷载的静力强度问题,还必须考虑空气动力稳定性问题.虽然通过抗风设计,风洞试验,抗风措施为桥梁抗风提供了强有力保障,但还需要进一步充实,完善,改进和提高.Wind—resistantDesign,WindTunnelTestandWind—resistantMeasuresforBridge AbstractThebridgeshouldbewiththecapacityofwind—resistantfunction,especiallythelarge—spanbridgewithhighflexibility,andaerodynamicproblemslikeflutter,buffeting,vortex—inducedvibrationandSOonmustbetakenintoaccountwhendesigning.Bymeansofwind—resistantdesign,windtunneltestandwind—re—sistantmeasurestodeterminewindloadandwind——resistantperformanceofthebridgeisthemainmeansofwind——resistantstudyoflarge—spanflexiblebridge.KeywordsBridge;Windload;Flutter;Segmentalmodel;Windtunneltest。
风洞试验方案一、引言风洞试验是航空航天领域中的重要技术手段,能够对飞行器的气动性能进行研究和验证。
然而,由于试验条件的复杂性、试验设备的高昂成本以及试验过程中的各种难题,使得风洞试验成为一项难度很大的任务。
本文旨在探讨一种适合飞行器气动性能试验的风洞试验方案,以提高试验效率和准确度。
二、实验目的本实验的目的是研究飞行器的气动特性,主要包括以下方面:1. 建立飞行器模型,并评估其尺寸与实际飞行器相符合的程度;2. 测量飞行器在不同风速下的升力、阻力以及侧向力等气动性能参数;3. 根据试验结果对飞行器进行优化。
三、实验方案为了达到上述实验目的,本文提出如下方案:1. 建立良好的飞行器几何模型。
通过三维建模软件建立真实的飞行器模型。
考虑到试验尺寸、风洞内工作范围以及模型制作和运输的便利性等多方面因素,本实验选用了1:30的比例缩小模型;2. 选用适当的风洞。
大型高速风洞的通常限制测试时间,对于初步试验,风速较低的低速风洞则能比较好地满足实验要求。
考虑到试验成本和实验设计较为简单的情况下,本实验选用测试速度为20m/s的低速风洞进行试验;3. 试验测试点与数据处理。
在风洞内设置飞行器模型放置平台及测试点,测试点选取升降面尾缘、机身前沿、驾驶舱前缘、机身下表面三分之一处和机头径向一定距离处,共计五个测试点。
完成试验后,将数据采集并进行处理,得到飞行器的气动参数,并进行分析;4. 试验结果分析与优化。
通过试验结果,研究飞行器的气动力系数,并在此基础上对模型进行优化,以满足飞行器高速飞行的实际需求。
四、实验注意事项1. 风洞试验前应进行试验设备和试验物的检查,确保试验物固定牢固、无影响试验数据的杂物;2. 试验进行过程中记得定期清理风洞内部及模型表面灰尘和杂质,确保气流的纯净;3. 在试验开始前需要进行模型气动力系数标定,获得准确的计算结果;4. 在试验过程中,要注意风洞工作范围、失速区域以及特殊气动效应,并进行充分的分析研究。
高超声速风洞试验介绍摘要风洞即风洞实验室,是以人工的方式产生并且控制气流,用来模拟飞行器或实体周围气体的流动情况,并可量度气流对实体的作用效果以及观察物理现象的一种管道状实验设备。
风洞实验是飞行器研制工作中的一个不可缺少的组成部分。
它在航空和航天工程的研究和发展中起着重要作用,这种实验方法,流动条件容易控制。
实验时,常将模型或实物固定在风洞中进行反复吹风,通过测控仪器和设备取得实验数据。
高超声速风洞是指马赫数大于 5的超声速风洞,主要用于导弹、人造卫星、航天飞机的模型实验。
本文主要介绍常规高超声速风洞和实验所用高超声速风洞。
1. 引言风洞(wind tunnel),是能人工产生和控制气流,以模拟飞行器或物体周围气流的流动,并可量度气流对物体的作用以及观察物理现象的一种管道状实验设备,它是进行空气动力实验最常用、最有效的工具。
风洞主要由洞体、驱动系统和测量控制系统组成,各部分的形式因风洞类型而异。
风洞种类繁多,有不同的分类方法。
风洞种类繁多,有不同的分类方法。
按实验段气流速度大小来区分,可以分为低速、高速和高超声速风洞。
2. 高超声速风动高超声速风洞是指马赫数大于 5的超声速风洞,主要用于导弹、人造卫星、航天飞机的模型实验。
实验项目通常有气动力、压力、传热测量和流场显示,还有动稳定性、低熔点模型烧蚀、质量引射和粒子侵蚀测量等。
高超声速风洞主要有常规高超声速风洞、低密度风洞、激波风洞、热冲风洞等形式。
高超声速风洞如要在风洞中获得更高 M数的气流(例如M≥5),一般来说单靠上游高压空气的吹冲作用还不能产生足够的压力差,这时在风洞下游出口处接上一只容积很大的真空容器,靠上冲下吸便可形成很大的压差,从而产生M≥5的高超音速气流。
不过气流在经过喷管加速到高超音速的过程中会急剧膨胀,温度会随之急剧下降,从而引起气体的自身液化。
为避免液化或模拟需要的温度,必须在高超音速风洞中相当于稳定段处装设加热装置。
高超音速风洞依加热原理和用途的不同有多种型式。
风洞风速比-概述说明以及解释1.引言1.1 概述风洞风速比是指风洞内实际风速与模型风速之间的比值。
在风洞实验中,通过控制风洞的工况参数,可以改变风洞内的风速比,从而模拟不同风场条件下的气流情况。
风速比是风洞试验中一个非常重要的参数,它直接影响着模型受到的风载荷、气动性能等。
本文将系统介绍风洞风速比的定义、重要性以及在工程设计中的实际应用。
通过深入分析风洞风速比的相关知识,可以更好地理解和利用风洞试验技术,为工程领域的气动设计和研究提供一定的参考和指导。
1.2 文章结构文章结构部分主要是介绍整篇文章的组织架构和内容安排。
本文分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的三个小节。
在概述部分,将介绍风洞和风速比的基本概念,引出文章主题。
文章结构部分则对整篇文章的内容和组织进行简要介绍,告诉读者将要讨论的话题和各部分的关联性。
目的部分明确了本文撰写的目的和意义,指导读者阅读和理解全文内容。
正文部分包括风洞的基本概念、风速比的定义和重要性以及风速比在工程设计中的应用三个小节。
在风洞的基本概念部分,将介绍风洞的定义、分类和功能。
风速比的定义和重要性部分将详细解释风速比的含义和其在气动试验中的重要作用。
风速比在工程设计中的应用部分将讨论风速比在不同工程领域中的具体应用场景和实际意义。
结论部分则包括总结正文要点、风速比的实际意义和展望未来研究方向三个小节。
总结正文要点将回顾并概括正文部分中讨论的主要内容和结论。
风速比的实际意义将强调风速比在实际工程设计和研究中的重要性和意义。
展望未来研究方向将探讨风速比研究的前景和未来可能的发展方向,引发读者对未来研究的思考和探讨。
1.3 目的本文的主要目的是探讨风速比在风洞实验和工程设计中的重要性和应用。
通过对风洞的基本概念和风速比的定义进行介绍,可以更好地理解风洞实验中风速比的作用和意义。
同时,分析风速比在工程设计中的应用,可以帮助工程师们更准确地评估风力对结构物的影响,并采取相应的防护措施。