复杂网络中节点重要度评估研究
- 格式:doc
- 大小:12.25 KB
- 文档页数:2
浅议几种复杂网络节点重要度分析的中心性方法作者:张廷萍来源:《价值工程》2016年第14期摘要:网络节点重要度分析是研究和分析复杂网络的一种非常重要的方法。
识别有影响力的节点比较常用的是利用中心性方法解决这个问题。
本文介绍了几种常见的进行网络节点重要度分析的中心性方法,并通过实例对几种中心性方法进行了分析比较。
Abstract: To study and analyze complex networks, identifying influential nodes is a very important methodology. Many centrality measures have been proposed to address this issue. In this paper, centrality measures to identify influential nodes in complex networks are described. Numerical examples show the analysis and comparison of several methods to identify influential nodes.关键词:复杂网络;重要节点;中心性方法Key words: complex networks;identify influential nodes;centrality measures中图分类号:TN711 文献标识码:A 文章编号:1006-4311(2016)14-0209-020 引言当前,从疾病传播网络到全球医疗诊断网络,从电力网到交通网络,从交际网络到社会关系网络,复杂网络已经渗透到人类社会生活,给我们带来了极大的便利,但是,同时也产生了诸如交通瘫痪、谣言快速传播等不容忽视的负面冲击。
因此,对复杂网络进行深入的研究和分析以方便对其负面影响进行预测、避免和控制是刻不容缓的。
电力系统网络节点关键性分析与评估随着电力系统的不断发展,伴随而来的是电网的规模越来越大,系统的复杂程度不断加深。
因此,如何保证电力系统的稳定运行成为了一道重要的难题。
而电力系统网络节点关键性分析与评估的研究,就是为了解决这一问题而诞生的。
一、电力系统网络节点关键性分析电力系统由众多各具特色的节点构成。
这些节点之间的线路连接在一起,通过彼此之间的电能传递实现电力系统的功率传输。
因此,节点对电力系统的运行起着至关重要的作用。
通过对电力系统网络节点关键性分析,我们可以找到电力系统中最重要的节点来保证其稳定运行。
在进行电力系统网络节点关键性分析前,我们需要明确一个概念:节点重要度。
节点重要度是指电力系统网络中各节点在整个网络中所占的比例。
正是因为节点重要度(Node Importance)是衡量节点重要性的指标,因此这种方法被广泛应用于电力系统网络的关键性分析。
电力系统节点重要度的计算方法主要包括两种:第一种是基于电力系统功率流的算法。
这种算法利用电力系统各节点之间的电能传递进行分析,得到电力系统中节点的贡献率,从而评估其在整个电力系统中所占的比例;第二种是基于复杂网络理论的算法。
这种算法借鉴网络科学的思想,将电力系统看成一个复杂网络,然后通过分析网络节点之间的联系和依存程度,得出节点重要度。
二、电力系统网络节点关键性评估电力系统网络节点关键性评估是指通过对电力系统内各节点进行分类评估,找到其中最为关键的节点,在保证其安全稳定运行的前提下降低系统运行成本的方法。
电力系统网络节点关键性评估的方法主要包括两种:第一种是基于传统的安全评估数据的方法,即根据各项指标的数据进行计算,以此决定整个系统的关键性。
第二种是基于智能算法的方法。
这种方法利用数据挖掘和人工智能的技术,将系统的各项参数进行复杂的统计和分析,从而确定系统中最为关键的节点,并给出保证系统安全运行的最优方案。
不同的电力系统节点关键性评估方法存在着不同的优缺点和适用场景。
复杂网络中的节点中心性度量与分析在复杂网络中,节点的中心性度量和分析是一项关键任务,它可以帮助我们理解网络的结构、功能和影响力分布。
中心性度量通常用来衡量节点在网络中的重要性和影响力,以及它们在信息传播、交流和决策中的作用。
一种常用的中心性度量是度中心性,它是指节点与其他节点之间的连接数量。
在无向网络中,节点的度中心性仅仅是连接到该节点的边的数量。
而在有向网络中,节点的度中心性包括连接到该节点和从该节点出发的边的数量。
具有高度中心性的节点通常是网络中连接较多的节点,因此它们在信息流动和传播中扮演重要角色。
另一种中心性度量是接近中心性。
接近中心性衡量了节点与其他节点之间的距离,即节点到其他节点的平均最短路径长度。
节点的接近中心性越高,表示它在网络中更容易跟其他节点保持紧密联系。
接近中心性常被用于测量节点在信息传递和扩散中的速度和效率,以及节点在网络中的凝聚性。
具有高接近中心性的节点通常是在信息传播中起关键作用的中转站。
介数中心性是另一种常见的中心性度量。
它衡量了网络中节点在所有最短路径中出现的频率。
节点的介数中心性越高,说明它在网络中扮演着重要的桥梁或者关键节点的角色。
具有高介数中心性的节点在信息传递和交流中具有重要作用,它们有助于信息在网络中的快速传播。
除了以上几种常用的中心性度量,还有一些其他衡量节点重要性和影响力的指标,例如特征向量中心性、总度中心性和PageRank等。
特征向量中心性基于节点的连接和连接的重要程度,它可以衡量节点的影响力。
总度中心性将节点的度中心性与节点的邻居的中心性加权求和,可以更全面地衡量节点的重要性。
PageRank是一种基于随机游走理论的中心性度量,它通过考虑节点之间的连接结构和连接强度来评估节点的影响力。
中心性分析对于理解复杂网络的结构和功能至关重要。
它可以揭示出网络中的关键节点和影响力分布,有助于我们预测和模拟网络的行为和性质。
通过对节点中心性的测量和分析,我们可以识别出网络中最重要的节点,从而优化网络设计、提高信息传播的效率以及更好地管理和控制网络。
大型复杂网络中的关键节点识别和控制问题研究复杂网络是指由大量节点和边组成的复杂系统,在生物学、社会学、通信工程、交通领域、能源领域等多个领域中都有广泛的应用。
复杂网络中存在着许多关键节点,其在网络中扮演着重要的角色,控制着网络的运行和稳定,而研究如何识别和控制这些关键节点对于网络的设计和优化具有重要的意义。
一、关键节点的识别方法关键节点是指在网络中,其对网络结构和性能的影响最大的节点。
一些常见的关键节点识别方法包括:1. 度中心性:度中心性是指一个节点在网络中与其他节点相连的数量,度越高则代表该节点越为重要。
2. 物理中心性:物理中心性是指按照节点的重要性对节点进行排序,将这些节点按照物理距离排序,并且计算网络中每个节点到所有节点的距离,最后得出一个物理中心性指标。
3. 介数中心性:介数中心性是指节点在网络中作为中介的能力,即它作为一个桥梁,同时连接多个节点。
可以通过计算节点对网络中的其他节点进行信息传递的次数和时间来衡量一个节点的介数中心性。
4. 特征向量中心性:特征向量中心性是基于一个节点相连的其他节点的性质和权值进行计算的。
如果一个节点连接的其他节点比较重要,那么这个节点的特征向量中心性就比较高。
这些关键节点的识别方法都有其各自的适用范围,可以根据具体的应用场景进行选择。
二、关键节点的控制方法识别到关键节点之后,如何控制它们,以达到控制整个网络的目的呢?这就需要针对不同的关键节点,采用不同的控制方法。
1. 拓扑控制:拓扑控制是通过改变网络拓扑结构来控制关键节点,并提高网络的鲁棒性。
一些典型的拓扑控制方法包括节点删除、增加强化枢纽节点等。
2. 整体控制:整体控制是采用全局控制策略来控制网络中的关键节点,并且这种控制方法可以通过分析网络的结构信息来预测网络可能的行为。
全网控制常用的方法有:中心控制、随机控制、重要度控制等。
3. 网络重构控制:网络重构控制是通过改变网络结构的连接方式,来达到控制网络的目的。
复杂网络中节点重要度的一个评估指标蒋丰景;陈玥琪【摘要】为了简单而有效地评估网络拓扑结构中各节点重要性,本文基于节点的连接度和局部连通性,定义了一个节点重要度函数。
该重要度函数指标实质上与网络中的平均最短距离指标是一致的,通过该重要度函数指标值的大小可以得到网络中各节点的重要度排序。
理论分析与实例表明,对于小型网络,该方法的计算比较简单,且直观、有效、合理。
%To simply and effectively evaluate the importance of each node in network topology structure ,a node importance function based on the node connectivity degree and local connectivity is defined .The in-dex of the node importance function is substantially consistent with the index of the average shortest path in networks ,the importance of each node in the network can be sorted by the size of the index val-ue .For small networks ,it is relatively simple in calculation ,the method is vertified more intuitive ,effec-tive and reasonable by theoretical analysis and practical examples .【期刊名称】《西安工程大学学报》【年(卷),期】2014(000)001【总页数】3页(P140-142)【关键词】节点重要度;邻居节点;节点删除;平均最短距离【作者】蒋丰景;陈玥琪【作者单位】西安电子科技大学理学院,陕西西安 710071;西安电子科技大学理学院,陕西西安 710071【正文语种】中文【中图分类】C934随着信息技术飞速发展,互联网已成为社会舆论传播的主要载体之一,无论是现实生活还是系统科学,都与网络密切相关.特别是很多实际网络所抽象出来的复杂网络,表现出了与以往网络理论不同的特性[1],如小世界特性、无尺度特性等.如何在复杂网络环境下,保证网络的可靠性和抗毁性[2]成为复杂网络研究的重要课题.研究表明,在选择性打击下,即优先攻击网络中“核心节点”,无标度网络异常脆弱,网络基本处于瘫痪状态.因此,找出网络中的“核心节点”并将它们保护起来对维持整个网络的可靠性具有重要作用;同时,“核心节点”的保障和维护对实现网络信息流通和降低网络信息交换成本,提高信息流通效率有重要意义.网络节点的重要度指标的度量方法有节点的度、接近度、介数、信息、特征向量和累计提名等.其中最简单的方法是以节点的度作为节点重要性的衡量标准,认为节点的度越大则该节点越重要,但一个节点的度仅仅描述了该节点对于其他节点的直接影响力,因此有很大的片面性;文献[3]提出了一种基于生成树数目的节点删除法,如果多个节点的删除都使得网络不连通,那么这些节点的重要度将是一致的,从而使得评估不精确;文献[4]提出的介数能很好地衡量节点重要度,但计算节点的介数非常复杂,不仅要计算各个节点对之间的最短路径长度,还要记录这些最短路径的路线.本文利用网络的连通性来反映系统某种功能的完整性,通过度量节点删除对网络连通的破坏程度来反映网络节点(集)的重要性,即“破坏性等价于重要性”.从这种思想出发构造了一个和平均最短路径指标具有等价性的节点重要度函数指标I(vi),利用该函数可以有效地判定网络中各节点重要程度的大小,并且无需复杂的计算,实例计算也验证了该方法的合理性.本文所研究的复杂网络均为无向、无权、无重边网络,用图G=(V,E)表示,其中V={v1,v2,…,vn}表示网络G中节点的集合,E={e1,e2,…,em}为G中边的集合.定义1节点vi的度是指与它相关联的边的条数,记为ki.定义2节点vi的邻居节点是指与vi直接有边相连的那些节点,这些节点的集合构成vi的邻居节点集.定义3把vi和vj之间跳数最少的路径称为它们的最短路径,显然,vi和vj之间的最短路径可能不止一条.定义4定义为网络的平均最短距离,其中表达式中的dij为节点i和j之间的最短路径长度.定义5定义li为删除节点vi后,网络中vi的邻居节点集中保持连通的节点对数目.根据网络中节点与边的关系,有li为介于0与ki(ki-1)/2的正整数.当li比较大时,表明删除节点vi后,网络的连通性仍然很好,即节点vi自身的重要性相对比较小,这个指标可以有效地反映节点的局部连通情况,因此可以用它来考虑网络中节点的重要性.定义6称I(vi)=[ki(ki-1)]/[2(li+1)]为节点vi的重要度函数,考虑到叶子节点的li为0的情况,定义分母为li+1.该指标从节点自身的连接度和节点的局部连通性考虑了节点的重要性.同等条件下,连接度越大的节点收缩以后,网络中节点和边的数目就越少,因此该节点相对越重要.而处于关键位置的节点重要度也相对而言比较高,因为很多节点对之间的最短路径都要经过该节点,该节点收缩后将减少网络的平均最短距离,因此该节点比较重要.网络节点之间进行通信的路径首选最短路径,如果某个节点被许多最短路径经过,则表明该节点在整个网络中的作用和影响力是比较大的.因此,把网络中平均最短路径作为节点重要性指标是比较合理的,但是它的计算式比较复杂,因为不仅要计算出每个节点对之间的最短路径长度,并且还要记录这些最短路径.下面分析说明本文定义的节点重要度函数指标与网络中平均最短路径指标具有一致性,只是放大的显著性程度有所差别.当节点vi被删除或者收缩后网络中平均最短路径变化情况如下:如果节点vi不在最短路径上,则一部分节点的最短路径不经过vi.因此,当节点vi 被删除或者收缩后对这些节点的最短路径无影响,从而对整个网络的平均最短路径也没有影响.如果节点间的最短路径经过vi,则删除节点vi后这些节点间的最短路径将会发生变化.假设被删除节点的li比较小,即节点vi的邻居节点的连通性比较差,则最短路径中经过vi的邻居节点的概率比较小.相对而言,经过vi的最短路径的概率就比较大,这与li减小,I(vi)增大是一致的.因此,节点的I(vi)越大,表明删除节点vi后,通过vi的最大路径变大,从而网络的平均最短路径变大.也就是,节点vi的I(vi)越大,删除vi后网络的平均最短距离变大.因此,本文定义的节点重要度函数指标与网络中平均最短路径指标具有一致性.设某网络的拓扑结构如图1,用文献[3]与文献[5]得到节点4与节点6的重要度是一样的,使用本文的方法有:节点4的度k4=4,l4为删除节点4后,节点4的邻居节点中保持连通的节点对数目,显然l4=1,因此I(v4)=3.同样很容易计算l(v6)=6.因此节点4的重要性程度比节点6要小.从直观上也可以发现,当删除节点4,节点1,2,3的连通性比删除节点6后节点7,8,9的连通性要好,因此,节点4的重要性比节点6的重要性要小.由表1知,本文使用节点重要度函数指标得到的节点重要度排序结果与文献[7]中的方法得到的节点重要度排序结果是一致的,并且与实际结果是一致的.但是对于小型网络,本文中计算节点重要度的方法更为简单.此外,若通过文献[3]的方法,即考虑删除节点后网络的生成树变化数目的变化情况,则节点4~7的重要度是一样的.然而从直观上看,网络中这几个节点的重要度是有差别的.因此本文的方法是合理有效的.评估网络中的节点重要性一直是社会网络分析领域和系统科学研究领域的一个热点,本文基于“破坏性等价于重要性”这一思想,构造了一个节点重要度函数,从而使这一思想得到了精细的量化.对于小型网络,该方法避免了复杂的计算,实例分析也验证了该方法的合理性、有效性和优越性.【相关文献】[1]汪小帆,李翔,陈光荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.[2]饶育萍.林竞焉,月东方.网络抗毁度和节点重要性评价方法[J].计算机工程,2009,35(6):14-16.[3]陈勇,胡爱群.通信网络中最重要节点确定方法[J].高技术通讯,2004(1):573-575.[4]FREEMAN L C.A set of measures of centrality based upon betweenness[J].Sociometry,1977,40(1):35-41.[5]谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法[J].系统工程理论与实践,2006,26(11):78-83.[6]陈勇,胡爱群,胡啸.通信网中节点重要性的评价方法[J].通信学报,2004,25(8):129-134.[7]陈静,孙林夫.复杂网络中节点重要度评估[J].西南交通大学学报,2009,44(3):426-429. [8]孙睿,罗万伯.网络舆论中节点重要性评估方案综述[J].计算机应用研究,2012,29(10):3 606-3 608.[8]叶春森,汪传雷,刘宏伟.节点重要度评价方法研究[J].统计与决策,2010(1):22-24. [9]李鹏翔,任玉晴,席酉民.网络节点(集)重要性的一种度量指标[J].系统工程,2004,22(4):13-20.。
复杂网络数据分析与预测研究复杂网络数据分析与预测研究随着互联网的发展,人们的生活和工作方式已经发生了翻天覆地的变化。
互联网的普及和数据的快速增长,为复杂网络数据分析和预测研究提供了更加广阔的空间。
复杂网络数据分析和预测研究是一门新兴的科学,它将计算机科学、统计学、数学和物理学等多个学科相结合,用于研究复杂系统中的数据分析和预测问题。
复杂网络是指由大量节点和边组成的网络,它们之间的关系非常复杂和多样化。
复杂网络数据分析和预测研究的目标是通过对复杂网络的分析和建模,揭示网络中隐藏的规律和特征,进而对网络未来发展趋势进行预测和控制。
复杂网络数据分析和预测研究的方法包括社区发现、节点重要性评估、网络结构分析、动态演化模型等。
其中,社区发现是指将网络中相互关联且密集连接的节点聚类成一个社区,以揭示网络中的群体结构和功能模块;节点重要性评估是指通过计算节点在网络中的度、介数、接近度等指标,评估节点在网络中的重要性;网络结构分析是指通过对网络拓扑结构进行分析,揭示网络中的特征和规律;动态演化模型是指通过对网络动态演化过程进行建模,预测网络未来的发展趋势。
复杂网络数据分析和预测研究在许多领域都有广泛的应用,如社交网络、金融风险管理、医疗健康、交通运输等。
在社交网络中,复杂网络数据分析和预测研究可以用于发现社交网络中的社区结构、预测用户行为和趋势等;在金融风险管理中,复杂网络数据分析和预测研究可以用于评估金融系统中的风险,发现金融市场中的异常波动等;在医疗健康领域中,复杂网络数据分析和预测研究可以用于对疾病传播进行建模和预测;在交通运输领域中,复杂网络数据分析和预测研究可以用于交通拥堵预测、路网优化等。
总之,复杂网络数据分析和预测研究是一门具有广泛应用前景的新兴学科,它将对我们理解复杂系统中的规律和特征、掌握未来发展趋势、优化决策等方面产生重要影响。
网络中心节点的重要性度量方法在网络中,中心节点是连接其他节点的重要枢纽,其在网络结构和功能上都具有重要的作用。
如何准确地量化中心节点的重要性是网络分析和数据挖掘领域的热门问题之一。
本文将介绍一些常见的网络中心节点的重要性度量方法。
一、度中心性(Degree Centrality)度中心性是最基础的网络中心节点的重要性度量方法之一,它以节点度数为基础,直接计算节点在网络中的重要性。
具有高度中心性质的节点往往连接着大量其他节点,如社交网络中的明星用户。
因此,度中心性可以用来评估节点在网络中的影响力和覆盖范围。
其计算方式如下:$C_D(v)=\frac{deg(v)}{N-1}$其中,$C_D(v)$表示节点$v$的度中心性,$deg(v)$表示节点$v$的度数,$N$表示网络中节点的数量。
二、接近度中心性(Closeness Centrality)接近度中心性是一种连接最短路径长度的网络中心节点的重要性度量方法。
该方法用节点到其他节点的最短路径长度之和表示其接近度,值越大表示节点距离其他节点越近。
具有高接近度中心性的节点可以更快地传递信息和影响其他节点,因此在物流配送和交通运输等领域有很多应用。
其计算方式如下:$C_C(v)=\frac{1}{\sum_{i \neq v}d(i,v)}$其中,$C_C(v)$表示节点$v$的接近度中心性,$d(i, v)$表示节点$i$到节点$v$的最短路径长度。
三、介数中心性(Betweenness Centrality)介数中心性是一种基于节点在其他节点间最短路径上出现次数的网络中心节点的重要性度量方法。
该方法考虑了节点在网络中的位置和连接方式,可以分析节点在信息的传播和威胁扩散中的作用。
高介数中心性的节点在网络中充当了桥梁或关键路径的角色,有助于信息扩散和传输。
其计算方式如下:$C_B(v)=\sum_{s \neq v \neq t \in V}\frac{\sigma_{st}(v)}{\sigma_{st}}$其中,$C_B(v)$表示节点$v$的介数中心性,$\sigma_{st}$表示节点$s$到节点$t$的最短路径数量,$\sigma_{st}(v)$表示节点$s$到节点$t$的最短路径经过节点$v$的数量。
电力网络中的节点重要性分析方法研究电力是现代社会不可或缺的基础设施,而电力网络的稳定运行对整个社会的发展具有重要意义。
电力网络中的节点是指电力系统中的供电设备、输电设备和负荷设备等各个关键节点。
对于电力网络的节点重要性分析,可以帮助我们识别和优化电力网络中的关键节点,从而提高电力系统的安全性、稳定性和可靠性。
本文将从准确性、可行性和适用性角度出发,探讨电力网络中的节点重要性分析方法的研究。
一、基于拓扑结构的节点重要性分析方法电力网络是一个复杂的系统,其节点和边的拓扑结构对系统的稳定性和可靠性有着重要影响。
基于拓扑结构的节点重要性分析方法主要通过分析节点在电力网络中的位置和连接方式,来评估其重要性。
例如,度中心性是指一个节点的连接数,即与其相邻的节点数量。
度中心性较高的节点通常具有重要的传输功能,因此在节点重要性分析中被视为关键节点。
此外,介数中心性是指一个节点在网络中的所有最短路径上出现的次数。
介数中心性较高的节点表明其在网络中具有重要的中介作用,可以帮助信息传递和能量传输。
因此,介数中心性也被广泛应用于节点重要性分析中。
二、基于电力流特性的节点重要性分析方法电力系统是一个能量传输和供应系统,节点的电力流特性对系统的运行有着重要影响。
基于电力流特性的节点重要性分析方法主要通过分析节点的功率注入、功率转移和潮流分布等因素,来评估节点的重要性。
例如,负荷重要性是指电力系统中各个负荷节点对系统潮流和电压的影响程度。
负荷重要性较高的节点通常具有较大的功率需求,其电力供应状况对系统的运行稳定性有着明显影响。
因此,在节点重要性分析中,负荷重要性是一个常用的指标之一。
另外,发电机重要性是指电力系统中各个发电节点对系统潮流和电压的影响程度。
发电机重要性较高的节点通常是电力系统的主要供能节点,其功率注入对系统的稳定性和可靠性有着重要影响。
因此,发电机重要性也是节点重要性分析中需要考虑的因素之一。
三、基于复杂网络理论的节点重要性分析方法电力网络可以看作是一个复杂网络,节点和边的关系具有复杂的非线性特性。
动态融合复杂网络节点重要度评估方法付凯;夏靖波;赵小欢【摘要】为挖掘复杂网络中的关键节点及提高网络鲁棒性,针对有/无线多网融合的层级网络,提出了动态融合复杂网络模型及其节点重要度评估方法.结合动态融合复杂网络的特点,定义了边连通概率、路径连通概率、网络连通概率、融合节点比例、融合节点分布和融合路径比例等与网络动态性和融合性相关的参数.在单层复杂网络节点重要度评估指标的基础上,设计了融合网络节点度中心性、节点介数中心性和节点融合中心性指标.其中,融合节点的节点融合中心性表示融合节点对网络融合的贡献程度,非融合节点的节点融合中心性表示非融合节点对网络融合的辅助作用程度,主要体现在作为融合节点之间的中继节点.最后,综合考虑网络拓扑结构、动态融合特性等因素进行节点重要度评估.以改进的动态交织风筝网络为例进行仿真分析,结果表明该方法能够比较全面地刻画节点在动态融合复杂网络中的重要性.利用NS2搭建由光通信网和卫星通信网融合构成的仿真实验网络,进一步验证了在仿真网络环境中本方法的有效性.%To seek key nodes and improve network robustness, the dynamic convergence complex network model and its node importance evaluation method are proposed for wired and wireless integrating layered networks. Considering characteristic of dynamic convergence complex networks, parameters including edge connection probability, path connection probability, network connection probability, convergence node proportion, convergence node distribution and convergence path proportion are designed. Based on node importance evaluation indexes in single-layer complex networks, the node degree centrality, node betweenness centrality and node convergence centrality indynamic convergence complex networks are presented. Node convergence centrality of convergence nodes indicates their contribution to network convergence, and that of non-convergence nodes indicates their auxiliary effect to network convergence, especially they are used as relay nodes among convergence nodes. At last, node importance evaluation is implemented considering network topology structure and its dynamic convergence characteristic. Typical example results of improved dynamic convergence kite networks show that the proposed method can comprehensively depict the node importance in dynamic convergence complex networks. Simulation network composed of fiber communication network and satellite communication network is designed by NS2, further indicating the effectiveness of the proposed method.【期刊名称】《哈尔滨工业大学学报》【年(卷),期】2017(049)010【总页数】8页(P112-119)【关键词】复杂网络;动态融合;节点重要度;度中心性;介数中心性;融合中心性【作者】付凯;夏靖波;赵小欢【作者单位】空军工程大学信息与导航学院,西安710077;95246部队,南宁530003;厦门大学嘉庚学院,福建漳州363105;95340部队,广西百色533616【正文语种】中文【中图分类】TP393复杂网络小世界效应[1]和无标度特性[2]的发现,掀起了国内外研究复杂网络的热潮.随着网络科学[3-4]的蓬勃发展,节点重要度评估进一步受到研究人员的关注,寻找复杂网络中的关键节点成为网络科学的重要研究内容.目前,节点重要度评估方法主要包括基于网络结构的方法和基于传播动力学的方法[5].度中心性、介数中心性[6]、特征向量中心性[7]等是典型的基于网络结构的评估指标,其依据是网络局部或全局属性信息.基于传播动力学的方法通过计算网络中节点的影响范围来衡量其重要度,如社会网络中关键节点的挖掘[8-9].上述评估指标主要针对单层复杂网络,随着研究的深入和应用的拓展,多种层级复杂网络模型[10]被相继提出.相互依存网络[11]描述了具有相互影响和依赖关系的网络模型,对于预防和控制复杂系统中的相继故障具有重要意义,如电力-计算机网等.陈宏斌等[12]提出了二元随机网的概念,它是一种特殊的二元网,不考虑同类节点之间的相互作用,如图书借阅网络等.邵峰晶等[13]提出多子网复合网络模型,通过网络加载和拆分等网络运算进行网络的复合与分解,实现复杂网络中同一子网元素间、不同子网元素间以及不同子网之间的相互关系等形式描述.超网络[14]是一种“高于而又超于现存网络”的网络,用以描述规模巨大、连接复杂、具有嵌套网络的大型复杂网络,如供应链网络等.以上层级复杂网络侧重不同子网之间的相互关系,而对于网络模型中的节点重要性未做深入研究.沈迪等[15]提出一种交织型层级复杂网,描述由两个具有部分相同节点、连接边属性近似的子网构成的层级复杂网络,并且定义了相关测度用于衡量子网之间的密切程度及节点中心性,但只适用于静态网络.而节点重要度评估问题已逐渐向动态变化的时变网络延伸,在拓扑结构变化的网络中发现关键节点更具有挑战性[16]. Basaras等[17]在介数和K-SHELL基础上提出了动态复杂网络中的关键节点发现算法,基于局部信息从而降低计算开销,更加适合动态网络中应用. Masaki[18]以动态变化的社会网络为背景,提出了加权动态复杂网络中的节点重要度评估方法.随着对网络应用的需求不断增强,多网系融合、有/无线并用成为未来网络的发展趋势.例如,手机、平板电脑等移动网络终端通过无线路由器实现对互联网的接入,就构成了有线的宽带互联网与无线的手机通信网之间的融合互联,而且网络带宽、信号强度等使得有线和无线信道的通信质量存在差异.为了在这种融合网络中发现关键节点、优化网络结构等,需要构建新的网络模型研究节点重要度评估问题.本文在文献[15]的基础上提出动态融合复杂网络(dynamic convergence complex networks,DCCN)模型,定义了与动态性和融合性相关的网络参数,结合网络动态融合特性改进了节点度中心性和介数中心性指标,并提出了节点融合中心性以反映各类节点对促进网络融合的贡献程度,在此基础上进行动态融合复杂网络节点重要度评估,最后通过仿真分析验证了方法的有效性.与现有模型相比,本文模型结合当前有/无线网络融合发展的需求,在融合网络的基础上又考虑了网络动态特性,并结合网络动态融合特性设计或改进节点中心性指标,能够比较全面地刻画节点在动态融合复杂网络中的重要性.1.1 理论基础设图Ga=Va,Ea是一个无环无向无权的单层复杂网络,Va={v1,v2,…,vn}表示网络a的节点集合,节点数量为Va=n,Ea={e1,e2,…,em}=Va×Va为网络a的边集合,边的数量为Ea=m.A=Aijn×n为网络a的邻接矩阵,取值为0或1,表示节点之间是否存在连接边.在图Ga中任意两个节点之间最长的路径称为图Ga的直径,记为Dnd.在单层复杂网络中,节点vi的度中心性定义为式中:gi为节点vi的度,n为网络的节点数.节点vi的介数中心性定义为式中:Nsp(s,t)为节点vs和vt之间的最短路径数量,Nsp(s,i,t)为节点vs和vt之间经过节点vi的最短路径数量.1.2 模型概述定义1 动态融合复杂网络.由两种以上单层复杂网络融合而成,且其中至少有一种为动态网络的层级网络称为动态融合复杂网络.动态融合复杂网络中的“动态”是指网络中的边以一定概率进行连通(主要指无线传输手段等间歇连接),而节点数量保持不变.网络动态性对介数等与路径相关的参数影响较大,而对度等基于网络局部属性的参数影响较小.动态融合复杂网络中的“融合”是指多个网络之间存在部分节点复用,节点之间可能存在两种以上属性的边.为方便研究,本文仅考虑由两种单层复杂网络组成的动态融合复杂网络,且其中一种为动态网络.动态融合复杂网络c(以下简称“融合网络”)由单层复杂网络a和b融合构成,Vc={v1,v2,…,vN}=Va∪Vb为融合网络的节点集,节点数量为表示融合网络的融合节点集,融合节点数量为M.Ec=Ea∪Eb为融合网络的边集,边的数量为Ec,由于边不存在复用,所以融合网络的边集即为各单层复杂网络的边集之和.C=A∪B=CijN×N为网络c的邻接矩阵,取值为0或1,表示融合网络的节点之间是否存在连接边,规定节点之间无连接边时取值为0,节点之间有1条或2条边时取值均为1.1.3 参数定义动态融合复杂网络最重要的特性是动态和融合,因此本文主要从动态和融合两方面设计网络参数.其中,网络连通参数主要包括边连通概率、路径连通概率和网络连通概率,用以描述网络的连通状况;网络融合参数主要包括融合节点比例、融合节点分布和融合路径比例,用以描述网络的融合程度.1.3.1 边连通概率在动态网络中,如果节点vi和vj之间存在连接边,则Pij表示该边的连通概率,并假定非动态网络中边的连通概率为1.令P=PijN×N为融合网络c的连通性矩阵,规定节点之间无连接边时取值为0,节点之间有1条边时为该边的连通概率,节点之间有2条边时取2条边的连通概率的最大值.1.3.2 路径连通概率设路径vi-vm-vn-…-vz-vj,则Qij(k)=Pim×Pmn×…×Pzj表示该路径的连通概率,为该路径上所有边的连通概率之积.值得注意的是,Qij(k)=Pim×Pmn×…×Pzj表示特定的一条路径(vi-vm-vn-…-vz-vj,其路径编号为k)的连通概率,而不是指节点vi和vj之间的路径连通概率,因为节点vi和vj可能存在多条路径(路径编号k取不同的值),而每一条路径都对应一个路径连通概率.1.3.3 网络连通概率网络连通概率定义为反映整个网络的平均连通状况.1.3.4 融合节点比例融合节点比例定义为表示网络节点集中融合节点所占的比例,从融合节点数量的角度反映网络融合程度,融合节点越多则越能促进网络的融合.1.3.5 融合节点分布融合节点比例在一定程度上反映了网络的融合程度,但还存在片面性.如果融合节点比较密集地分布在局部区域,那么与融合节点分散分布的情形相比,其对促进整个网络融合的作用会减弱.因此,定义融合节点分布为表示网络中融合节点的紧密程度,从融合节点位置的角度反映网络融合程度,融合节点在网络中的位置越分散则越能促进网络的融合.其中,Davg为融合节点之间的平均距离,Dnd为融合网络的直径.1.3.6 融合路径比例融合路径比例定义为表示最短路径中融合路径所占的比例,从消息传播的角度反映网络融合程度,融合路径越多则越能促进网络的融合.其中,Nsp为网络中所有节点对之间的最短路径的数量,Ncp为这些最短路径中融合路径的数量.融合路径是指包含两种边的路径,仅包含融合节点但只有一种边的路径不是融合路径.如图1所示,对于路径1-2-3-4,图1(a)、(b)为融合路径,而图1(c)不是融合路径.动态融合复杂网络的节点重要度评估主要是在网络拓扑结构的基础上,考虑动态及融合特性的影响.度中心性和介数中心性是节点重要度评估中最常用的指标,分别基于网络局部属性和全局属性反映单层复杂网络中节点的重要性.但对于动态融合复杂网络,其拓扑结构由于网络融合而具有新的变化,因此本文结合其特性进行重新定义.此外,提出节点融合中心性指标,从节点促进网络融合的角度反映其重要性.定义2 融合网络节点度中心性.融合网络中节点vi的度中心性定义为式中,Na为节点vi的邻居节点中属于单层复杂网络a的节点数量,Nb同理.从理论分析的角度,对于非融合节点,有Na=0或Nb=0,因此Di=di,即非融合节点的度中心性与经典度中心性的计算结果相同;对于融合节点,有Na≠0且Nb≠0,则0<<1,Di>di,即通过式(2)使其度中心性等到加强.并且考虑其邻居节点的性质,与节点vi相邻的不同单层网络节点的数量越均匀(即Na-Nb的值越小),vi对网络融合的贡献越大,因此其度中心性越得到加强(即Di的值越大).定义3 融合网络节点介数中心性.融合网络中节点vi的介数中心性定义为式中,j=Ncsp(s,i,t)为节点vs和vt之间经过节点vi的融合最短路径数量,即经过节点vi的最短路径中融合路径的数量.其中,Ncsp(s,i,t)的值越大,则对跨网信息传播越重要;Qst(k)为对应编号k的融合最短路径的连通概率(当j=0时,Qst(k)=0),反映融合最短路径的可靠性,这对于动态融合复杂网络中介数的计算是比较重要的.对比式(3)和式(1),由于0≤Qst(k)≤1,则从而Bi≤bi,即通过式(3)反映了网络动态特性对节点介数中心性的减弱作用.因此,融合网络节点介数中心性既突出了融合性的影响,又考虑了动态性的影响.定义4 融合网络节点融合中心性.融合网络中节点vi的融合中心性定义为对于融合节点,其融合中心性表示融合节点对网络融合的贡献程度.一旦网络拓扑参数确定,所有融合节点的融合中心性是一个与其位置特性无关的固定值,从宏观上反映网络中所有融合节点对网络融合的贡献程度.融合节点比例越低,融合路径比例越低,融合节点分布越密集,则网络的融合程度越低.而在网络融合程度低的情形下,融合节点发挥的作用就越大,从而融合节点对网络融合的贡献程度就越高.另外,加入参数Rncp考虑网络动态性对融合路径的影响,使指标的计算更加客观. 对于非融合节点,其融合中心性表示非融合节点对网络融合的辅助作用程度,主要体现在作为融合节点之间的中继节点.其中,Nacn为节点vi的邻居融合节点数量,ci为节点vi的融合聚类系数,反映其邻居融合节点之间的连通程度,定义为式中,fi为节点vi与其任意两个邻居融合节点之间所形成的三角形的个数.若gi=1或Nacn=0,则令ci=+.由于非融合节点的融合中心性主要体现在连通那些原本相互之间连通程度较弱的融合节点上,因此节点vi的邻居融合节点的比例越高,且它们之间的连通程度越弱,则非融合节点对网络融合的辅助作用程度越高.如图2所示,图2(a)、(b)、(c)中节点1的融合中心性分别为0.40、0.60、0.36.图2(b)比图2(a)的值高是因为融合节点比例增加,图2(c)比图2(b)的值低是因为融合聚类系数提高,节点1在连通融合节点3、4、5的作用上减弱了,其融合中心性也要降低.定义5 融合网络节点重要度.根据定义2~定义4,综合考虑局部位置信息、全局位置信息、网络融合特性3个方面,定义融合网络的节点重要度为式中,α、β、γ∈(0,1),且α+β+γ=1,通过3个参数的设置可以调节各中心性在最终节点重要度评估中的权重.一般来说,网络拓扑结构对节点重要度的影响是主要的,因此参数α和β应设置较大一些.融合中心性是在动态融合网络模型中对节点重要度评估的一个改进和补充,因此参数γ应设置小一些.3.1 典型算例为验证本文节点重要度评估方法的有效性,以文献[15]中的交织风筝网络为基础网络,并加入连边的动态特性以构成动态融合复杂网络(如图3所示).其中,单层网络a包含10个节点、18条边;单层网络b为动态网络,包含8个节点、13条边,边上的数值代表边的连通概率;融合网络c为网络a和b融合构成的网络,包含13个节点、31条边,其中5个融合节点分别由网络a和b中具有相同编号的节点融合形成.实验中设置参数α=0.4,β=0.4,γ=0.2,通过MATLAB 2010a进行仿真实验,分别计算单层网络a和b中各节点的度中心性和介数中心性,以及网络融合后各节点在融合网络中的中心性指标,仿真结果见表1~3.由表1可以看出,融合节点1、3、6、7、8的度中心性较高,一是网络融合后这些节点的度有所增加,二是式(2)使融合节点的度中心性得到加强,而非融合节点由于融合网络节点总数的增加而使其度中心性降低,说明本文计算节点度中心性考虑了网络融合的影响,这与文献[15]是类似的.节点3在融合网络中具有最高的度值并且得到加强,因而其度中心性排名最高.由表2可以看出,本文计算的所有节点的介数中心性都不高,虽然网络融合产生了更多的节点对和最短路径,但式(3)考虑融合路径和网络动态性后使计算结果较小.与文献[15]相比,虽然本文计算节点介数中心性的条件比较严格,但能够在动态融合的网络环境下真实反映信息传播对介数的贡献.节点3在各单层网络中就具有最高的介数中心性,网络融合后仍是许多融合最短路径所经过的节点,因此其介数中心性排名最高.节点6和8在单层网络中的介数中心性排名比较低,但网络融合后在融合最短路径上的贡献度较大,因此介数中心性排名比较靠前.同时,节点8比节点6的值稍高,是因为网络b左半部分的边连通概率比右半部分的高,这点在其他对称的节点对(如节点4、5、9和10、11和12)之间也有所体现,从而说明本文的指标能够反映网络连通性的影响.节点1的介数中心性不再是单层网络中的0,主要是网络融合后该节点在融合最短路径上有所贡献.节点2的介数中心性由网络a中的0.222变为0,是由于节点1和3之间的连边使节点2的两条邻边成为了冗余路径.如表3所示,融合中心性方面,融合节点的值为0.429,是融合节点比例、融合路径比例和融合节点分布等3个网络融合参数共同决定的,反映了融合节点对网络融合的贡献程度.非融合节点2、11、12、13的融合中心性较高,说明它们在辅助网络融合方面起到了较大作用,从网络拓扑中也可以看出它们都是连接融合节点的枢纽,在融合程度不高的网络中它们的重要性更是不能忽视.节点重要度方面,本文综合考虑网络拓扑结构和动态融合特性等因素,对节点重要度的评估是一个综合评价指标.5个融合节点的重要度位居前列,这也与指标设计的基本思想是一致的.对称节点对的重要度差异主要来自介数中心性的计算,最终反映了网络动态性对节点重要度的影响.非融合节点13的排名紧跟融合节点之后,主要在于其融合中心性的作用,体现了对非融合节点重要度的加强,使节点重要度评估更加全面、客观. 在节点重要度评估中,节点度中心性和融合中心性主要考虑网络融合性的影响,节点介数中心性主要考虑网络动态性的影响,并通过α、β、γ这3个参数的设置进行调节.由于节点度中心性和介数中心性是以网络拓扑结构为基础,而网络拓扑结构是节点重要度的主要影响因素,因此本文给参数γ一个较小的固定值,并考察参数α和β的不同变化对节点重要度的影响,仿真结果如图4所示.可以看出,随着α的增大,网络融合性的影响增强,融合节点的重要度有显著的提高.随着β的增大,网络动态性的影响增强,各节点的重要度均有所降低,尤其对节点9~12等介数中心性较小的节点影响较大,β=0.2时其重要度均排在节点13之前,而β=0.8时均排在节点13之后.3.2 仿真网络为进一步验证本文方法的适用性,利用NS2搭建仿真网络,仿真场景及其对应的网络拓扑如图5、6所示.该仿真网络由光通信网和卫星通信网融合构成,是典型的有线与无线混合组网的情景.网络中共有15个节点,其中有线节点7个(W1~W7),无线节点5个(M1~M4,B1),融合节点3个(B2~B4).网络中共18条链路,其中有线链路11条,无线链路7条.另外,仿真网络中仅反映无线节点之间的连通关系(即两个无线节点之间是否存在无线链路),而不考虑其运动情况.链路连通率反映了链路两端点之间成功发送或接收数据的情况,因此本文采用链路连通率计算无线链路的边连通概率.设置背景流量模拟网络中的数据传输情况,通过流量发生器的源/目的节点设置使数据流覆盖所有链路.仿真时间共100 s,以1s为时间间隔测量无线链路的连通率,并取仿真时间内测量所得的链路连通率的平均值作为该无线链路的边连通概率,计算结果见表4.设置参数α=0.4,β=0.4,γ=0.2,计算节点的度中心性、介数中心性、融合中心性和节点重要度,见表5.由表5可以看出,B2~B4等3个融合节点的度中心性和介数中心性相对其他非融合节点较高,反映了在动态融合网络环境中融合节点在拓扑结构上的重要性,而对于W1、W6、W7、M4等处于网络边缘的节点,其度中心性和介数中心性均较低.3个融合节点的融合中心性为0.491,而M1~M3等3个非融合节点的融合中心性较高,反映出它们对网络融合的辅助作用程度较大.综合3个中心性指标计算得出,3个融合节点的重要度较高,M3节点由于其融合中心性高而使其重要度也较高,W1、W6、W7、M4等节点由于各中心性指标均较低而使其重要度较低,其他节点的重要度处于中间的位置.通过上述分析,利用本文方法基本能够合理地反映不同节点在动态融合网络中的重要程度,进一步验证了在仿真网络环境中本文方法的有效性.1)针对有/无线多网融合的层级网络,本文综合考虑网络拓扑结构、动态融合特性等因素,提出了动态融合复杂网络模型及其节点重要度评估方法.以改进的动态交织风筝网络和NS2搭建的仿真实验网络为例进行仿真分析,结果表明,该方法能够比较全面地反映动态融合复杂网络中节点的重要度.2)本文定义的动态网络仅限于边的连通性变化,未考虑节点数量的增减[19],下一步可采用大规模有/无线融合通信网等真实网络进行验证.3)文中节点重要度的计算采用各中心性指标线性加权得出,参数设置比较简单,未来可考虑采用多属性决策[20]等方法作进一步研究.夏靖波(1963—),男,教授,博士生导师(编辑张红)【相关文献】[1] WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998,393(6684): 440-442. DOI: 10.1038/30918.[2] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512. DOI: 10.1126/science.286.5439.509.[3] 纽曼. 网络科学引论[M]. 郭世泽, 陈哲, 译. 北京: 电子工业出版社, 2014: 106.NEWMAN M E J. Networks: an introduction[M]. Guo S Z, Chen Z. Beijing: Publishng House of Electronics Industry, 2014: 106.[4] 周涛, 张子柯, 陈关荣, 等. 复杂网络研究的机遇与挑战[J]. 电子科技大学学报, 2014,43(1):1-5.DOI: 10.3969/j.issn.1001-0548.2014.01.001.ZHOU Tao, ZHANG Zike, CHEN Guanrong, et al. The opportunities and challenges of complex networks research[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(1):1-5. DOI: 10.3969/j.issn.1001-0548.2014.01.001.[5] 刘建国, 任卓明, 郭强, 等. 复杂网络中节点重要性排序的研究进展[J]. 物理学报, 2013,62(17):178901. DOI:10.7498/aps.62.178901.LIU Jianguo, REN Zhuoming, GUO Qiang, et al. Node importance ranking of complex networks[J]. Acta Physica Sinica, 2013, 62(17):178901. DOI:10.7498/aps.62.178901.[6] KOURTELLIS N, ALAHAKOON T, SIMHA R, et al. Identifying high betweenness centrality nodes in large social networks[J]. Social Network Analysis and Mining, 2013, 3(4):899-914. DOI: 10.1007/s13278-012-0076-6.[7] SOL L, ROMANCE M, CRIADO R, et al. Eigenvector centrality of nodes in multiplex networks[J]. Chaos, 2013, 23(3):033131.DOI: 10.1063/1.4818544.[8] SAITO K, KIMURA M, OHARA K, et al. Efficient discovery of influential nodes for SIS models in social networks[J]. Knowledge and Information Systems, 2012, 30(3): 613-635. DOI: 10.1007/s10115-011-0396-2.[9] ZHOU Jingyu, ZHANG Yunlong, CHENG Jia. Preference-based mining of top-K influential nodes in social network[J]. Future Generation Computer Systems, 2014, 31:40-47. DOI: 10.1016/j.future.2012.06.011.[10]张欣. 多层复杂网络理论研究进展:概念、理论和数据[J]. 复杂系统与复杂性科学, 2015,12(2):103-107. DOI: 10.13306/j.1672-3813.2015.02.016.ZHANG Xin. Multilayer networks science: concepts, theories and data[J]. Complex Systems and Complexity Science, 2015, 12(2):103-107. DOI: 10.13306/j.1672-3813.2015.02.016. [11]BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010(464):1025-1028.DOI: 10.1038/nature08932. [12]陈宏斌, 樊瑛, 方锦清, 等. 二元随机网[J]. 物理学报, 2009, 58(3):1383-1390.CHEN Hongbin, FAN Ying, FANG Jinqing, et al. Bielemental random networks[J]. Acta Physica Sinica, 2009, 58(3):1383-1390.[13]邵峰晶, 孙仁诚, 李淑静, 等. 多子网复合复杂网络及其运算研究[J]. 复杂系统与复杂性科学, 2012, 9(4):20-25.SHAO Fengjing, SUN Rencheng, LI Shujing, et al. Research of multi-subnet composited complex network and its operation[J]. Complex Systems and Complexity Science, 2012,9(4):20-25.[14]郭进利, 祝昕昀. 超网络中标度律的涌现[J]. 物理学报, 2014, 63(9):090207.DOI:10.7498/aps.63.090207.GUO Jinli, ZHU Xinyun. Emergence of scaling in hypernetworks[J]. Acta Physica Sinica, 2014, 63(9):090207. DOI:10.7498/aps.63.090207.[15]沈迪, 李建华, 张强, 等. 交织型层级复杂网[J]. 物理学报, 2014, 63(19):190201.DOI:10.7498/aps.63.190201.SHEN Di, LI Jianhua, ZHANG Qiang, et al. Interlacing layered complex networks[J]. Acta Physica Sinica, 2014, 63(19):190201. DOI:10.7498/aps.63.190201.[16]HOLME P, SARAMAKI J. Temporal networks[J]. Physics Reports, 2012,519(3):97-125.。
复杂网络的结构分析和研究方法随着互联网和社交媒体的飞速发展,复杂网络已经成为研究的一个热点话题。
复杂网络的结构分析和研究方法也越来越受到重视。
本文将介绍复杂网络的结构特征、常用的分析方法以及其在不同领域的应用。
一、复杂网络的结构特征复杂网络是由大量节点和边组成的网络,节点和边之间的联系不仅仅是简单的二元关系,还可能包含权重、方向和时序等信息。
复杂网络有以下几个典型的结构特征:1.小世界结构:复杂网络中节点之间的距离很短,一般不超过6个节点。
这种结构类似于“六度分隔”理论,可以用于解释信息传播和社交网络中的熟人链。
2.无标度结构:复杂网络中存在少量的高度连接的节点(称为“超级节点”),这些节点的度数呈现幂律分布,呈现出“富者愈富”的特点。
这种结构特征可以用于解释互联网和社交媒体中一些热门话题的爆发。
3.聚类结构:复杂网络中的节点往往聚集在一起,形成一个个社群或组织,这种结构特征可以用于解释互联网上的各种社交群体。
以上三个结构特征是复杂网络中最为常见的,也是最为基本的结构特征。
但是,实际应用中,复杂网络的结构往往更加复杂,需要采用各种分析方法。
二、复杂网络的分析方法1.节点中心性分析:节点中心性反映了一个节点在网络中的重要程度。
常用的节点中心性指标包括度中心性、介数中心性、接近中心性等。
度中心性是指节点的度数,即与一个节点相邻的边数。
介数中心性是指一个节点在所有节点对之间的最短路径中经过的次数。
接近中心性是指一个节点到其他节点的平均距离。
这些指标可以用来寻找网络中的重要节点,进行节点排序和划分社群等。
2.社区检测算法:社区检测算法是一种将节点划分为不同社群的方法。
其中最著名的算法是Louvain算法,该算法通过最大化每个社群的内部连接和最小化不同社群之间的连接来实现社区划分。
3.网络度分布分析:网络度分布是指在一个网络中,单个节点的度数的分布情况。
度分布可以呈现出不同的形态,如泊松分布、幂律分布等,不同类型的度分布对应了不同的网络结构特征。
基于贡献度的社交网络中的节点重要度分析研究社交网络是人们日常生活中非常重要的一部分,可以通过社交网络来获取信息、交流感情、结交朋友等。
随着社交网络的不断发展,人们越来越重视社交网络中的节点重要度分析,因为这能够帮助我们更好地了解社交网络的运作机制,提高我们对社交网络的利用效率。
基于贡献度的节点重要度分析是一种比较常用的分析方法,下面将对其进行详细探讨。
一、贡献度的概念和意义贡献度是指一个节点在社交网络中的贡献程度,体现了一个节点在社交网络中的重要性和影响力。
一个高贡献度的节点具有比较大的影响力,可以引领其他节点的行为,为社交网络的发展做出重要贡献。
二、基于贡献度的节点重要度分析方法基于贡献度的节点重要度分析方法主要是通过对节点的重要度指标进行计算和分析,以了解节点在社交网络中的贡献程度和重要程度。
常用的节点重要度指标包括度中心性、接近中心性、介数中心性、特征向量中心性等。
1.度中心性度中心性是指一个节点与其他节点相连接的数量,数量越多则度中心性越高,其对节点的贡献度也就越高。
2.接近中心性接近中心性是指一个节点与其他节点的距离,距离越近则接近中心性越高,表示该节点可以更轻松地与其他节点建立联系,具有比较高的影响力。
3.介数中心性介数中心性是指一个节点在社交网络中充当中介的角色,负责联系其他节点之间的通信,这种节点比较少,但其对社交网络的稳定性和经济性都具有重要作用。
4.特征向量中心性特征向量中心性是指基于社交网络的图理论,通过计算节点的特征向量矩阵来得到节点的重要性指标,综合反映了一个节点在整个网络中的地位和影响力。
三、基于贡献度的节点重要度分析应用场景基于贡献度的节点重要度分析方法的应用场景非常广泛,主要包括以下几个方面:1.社交网络的用户管理通过对用户的贡献度分析,可以对用户进行分类和管理,发现具有潜在贡献的用户和社交网络的建设者,有利于提升社交网络的优质用户群体。
2.社交网络的广告投放通过对节点的重要度分析,可以发现对广告具有影响力的节点,有利于社交网络中的广告投放,提高广告投放的效果。
基于科研合作网的网络模型研究和节点重要度判定分析建立引用或共同作者网络并给出检索概率是衡量学术研究的方法之一。
20世纪的数学家Paul Erd s有500多个合著论文者,且发表了1400篇研究论文。
数学家们经常通过分析Erd s 的强大的合著网络来测定自己与Erd s的差距。
本文通过分析与Erdos合作过的合作者网络的属性,证实了此网络具有无标度网络特征。
分析网络中节点的度中心性、介数中心性和接近中心性,得到他们之间的关联,并得出在此类网络中的节点重要度判定方法。
标签:复杂网络合作者网络度中心性介数中心性接近中心性20世纪60年代,由著名数学家Erdos和Renyi提出的ER随机图模型开启了复杂网络理论研究的大门。
1998年,Watts和trogatz引入了小世界网络模型,以描述从完全规则网络到完全随机网络的转变。
1999年Barabasi和Albert指出:许多实际的复杂网络的连接度分布具有幂律形式,该类网络被称为无标度网络。
无标度网络的节点度分布服从幂律分布,无标度网络的连接分布极不均匀,网络中大量节点拥有少量的连接,而少量节点却拥有网络的大多数连接。
现实世界中许许多多的复杂网络,如Internet、邮件系统、科研合作网络、新陈代谢系统、食物链、社会关系网等,都是无标度或小世界的网络。
[1-5]一、网络模型的建立与网络拓扑特性笔者从Erdos合作者关系中(https:///users/grossman/enp/Erdos1.html)获得了与Erdos合作者的文档资料,构建了一个与Erdos直接合作的合作者之间的网络。
我们将里面的每一位作者视为顶点,如果两个作者曾经合作发表过论文,那么他们之间就有一条边相连。
我们用从18000个关系中提取出511个节点,得到这511个节点的邻接矩阵即合作者网络。
并通过计算得到了网络的平均度、网络密度、平均长度、聚类系数和度分布。
(见表1)二、合作者网络中节点的重要程度我们考虑各个节点在Erdos1网络中连接重量级作者不同,我们从三个影响因子对他的影响出发判断此网络中的节点的重要程度。
节点重要度贡献的复杂网络节点重要度评估方法张喜平;李永树;刘刚;王蕾【摘要】引入m阶邻居节点的概念,提出了一种基于m阶邻居节点重要度贡献的复杂网络节点重要度方法,并引入α和γ两个参数,用于调节节点重要度评估对节点自身特性及m阶邻居节点的依赖程度.综合考虑了节点自身及1到m阶邻居节点的重要度贡献.为检验算法的有效性,采用ARPA网络拓扑并针对算法在不同m取值条件下的节点重要度情况进行了评估.评估结果显示,与度值法、介数法、节点删除法等评估方法相比,具有更高的评估精度,能显著地区分复杂网络中节点之间的重要性差异,能准确地确定网络中关键节点,保证节点重要度评估的准确性;此外,实验结果还揭示了一个重要动力学现象,即当邻居节点所考察的深度m值大于网络的平均路径长度L时,该方法可得到可靠且精度较高的评估结果.【期刊名称】《复杂系统与复杂性科学》【年(卷),期】2014(011)003【总页数】8页(P26-32,49)【关键词】节点重要度;m阶邻居节点;重要度贡献;复杂网络【作者】张喜平;李永树;刘刚;王蕾【作者单位】西南交通大学地球科学与环境工程学院,成都610031;重庆邮电大学软件工程学院,重庆400065;西南交通大学地球科学与环境工程学院,成都610031;西南交通大学地球科学与环境工程学院,成都610031;西南交通大学地球科学与环境工程学院,成都610031【正文语种】中文【中图分类】O213.2;N94自复杂网络的“小世界效应”[1]和“无标度特性”[2]发现以来,众多领域的科学家[3-9]纷纷开始研究各种现实系统的复杂特性。
随着复杂网络特性研究的不断深入,如何在复杂网络环境下保证网络的可靠性和抗毁性已经成为复杂网络研究的重要课题[10]。
鲁棒但又脆弱已被证实为无标度网络最重要和最基本的特征之一,并且其根源在于无标度网络中的度分布不均匀性[11-12]。
因此,对复杂网络节点重要度的评估是一项很有意义的工作,有助于寻找关键节点,并通过对这些关键节点的重点保护以提高整个网络的可靠性[10]。
复杂网络中节点重要度评估研究
复杂网络在各领域中的发展和应用,不仅改善了人类的生活质量也促进了社会生产率的提高。
但是,复杂网络也对社会生活产生了一定的负面影响,如传染病的迅速传播,交通运输网络的拥堵,航班航线的延误,城市电力网络的崩溃等。
因此,为了对复杂网络系统进行有效地预测和控制,需要对复杂网络系统进行深入细致地分析和研究,识别和评估影响网络结构和功能的重要节点。
本文针对复杂网络系统的脆弱性问题,利用复杂网络节点蕴含的局部信息和全局信息,提出四种中心性算法,实现对复杂网络节点重要度的评估,主要研究内容及创新点如下:(1)利用复杂网络的局部信息,提出基于网络扩散机制的节点重要度评估算法。
网络中节点影响的扩散机制是指信息流在网络的传播过程中,一个节点对其他节点的影响只影响给该节点的最近邻居节点或者是该节点下一个最近邻居节点。
基于该机制,本文提出扩散中心性算法识别和评估网络中的重要节点。
该算法主要考察了节点本身的局部信息的影响以及距离节点第二层的邻居的邻居节点信息的影响来评价节点的重要性。
利用SI疾病传播模型对算法进行评价,通过在真实网络中的实验比较分析,验证了网络扩散中心性算法的有效性。
(2)利用复杂网络的全局信息,提出基于网络全局效率和随机游走机制的节点重要度评估算法。
1)基于网络全局效率原理,提出网络全局效率中心性算法。
该算法与传统中心性的不同之处在于更注重网络的动力学过程及网络的全局结构信息,是通过对网络边的消除来定义网络的效率,而不是移除网络的节点。
利用SI疾病传播模型对算法进行评价,通过在真实网络中的实验比较分析,验证了网络全局效率中心性算法的有效性。
2)基于网络随机游走原理,提出吸收中心性算法。
考虑信息流在网络中随机游走的全局拓扑结构,该算法利用网络节点到达吸收节点的时间来衡量网络中节点的重要度。
利用SI疾病传播模型对算法进行评价,通过在真实网络中的实验比较分析,验证了吸收中心性算法的有效性。
(3)利用复杂网络的局部和全局信息,提出基于中心性融合的节点重要度评估算法。
不同的中心性算法在网络节点重要度评估方面都存在着一定的局限性,采用不同中心性算法也会产生不同的节点重要度排序结果。
为了解决这一问题,结合几种利用复杂网络的局部信息、全局信息设计的中心性算法,提出多中心性融合算法来进行节点重要度评估,该算法可以弱化中心性算法之间的差异和不足。
利用SI疾病传播模型对算法进行评价,通过在真实网络中的实验比较分析,验证了融合中心性的有效性。