纳米SiO2对酚醛环氧树脂改性研究
- 格式:pdf
- 大小:365.43 KB
- 文档页数:5
引言工业的飞速发展深刻变革着人们的生活与生产方式。
但其发展过程中的排放问题造成了巨大的环境污染。
因此,有效、安全、能耗低的光催化技术也成为当今的研发热点之一。
纳米二氧化钛是当前光催化技术常用的一种半导体材料。
其具有生物无毒性、高催化活性、成本较低等诸多优点。
但其结构上有一定的缺陷,例如:其禁带宽度为3.2eV、其电子空穴易复合等,这些使得其光催化性能降低。
因此,对二氧化钛进行改性以期改善其处理污水的效果是当今的热点话题之一。
一、二氧化钛光催化原理TiO2的光催化原理如图1所示。
其价带上的电子在吸收足够能量后,跃迁至导带,形成光生电子。
同时,价带上形成空穴,生成空穴——电子对。
空穴与光生电子对在电场的作用下发生分离,一同迁移到TiO2粒子的表面。
其中,空穴可以引发氧化反应,光生电子具有还原性,二者共同作用进而降解污染物。
图 1 二氧化钛光催化原理示意图但TiO2禁带宽度较宽,难以响应可见光;且电子与空穴自身复合率就较高。
以上原因都导致纳米TiO2的催化活性和催化效率较低,难以运用到光催化领域中。
二、纳米二氧化钛的制备1.微波水热法微波有助于加快化学反应,可用微波水热法制备纳米TiO2。
胡能等采用水热法制备了具有光催化活性的纳米TiO2。
继而对其结构、光学吸收与相态等方面进行表征分析,最后得出结论:在紫外光条件下,纳米TiO2能迅速降解废水里的染料等有机物,不仅对环境友好,同时具有高效率、稳定性强、节约能源等优点。
2.溶胶—凝胶法溶胶凝胶法是一种使用时间远超于微波水热法的新方法,其使用优点主要在于高混合性,反应物的分子在形成的凝胶中可以充分混合继而达到更加优秀的催化效果。
并且反应条件并不严苛,无须高温,能耗低,且反应大多数处于纳米状态。
但此法前期造价高昂,且反应时间较长,往往在几天或几周不等。
孙鹏飞等用溶胶—凝胶法合成的改性TiO2拥有较好的光催化性能,其中 Fe3+改性催化剂要优于B3+改性TiO2。
《腰果酚改性热固性酚醛树脂粘接性能研究》一、引言随着现代工业的快速发展,粘接技术已成为制造领域中不可或缺的一部分。
热固性酚醛树脂因其良好的物理性能和化学稳定性,在粘接应用中占据重要地位。
然而,其粘接性能受制于树脂本身的性质,为提升其使用效果,研究改进技术成为了迫切需求。
本文就腰果酚改性热固性酚醛树脂的粘接性能展开研究,通过分析其性能改善前后变化,旨在探讨改性后树脂的粘接性能及其潜在应用。
二、腰果酚改性热固性酚醛树脂的制备腰果酚是一种天然植物提取物,具有良好的生物相容性和反应活性。
本研究采用腰果酚作为改性剂,通过与热固性酚醛树脂进行化学反应,达到改善其粘接性能的目的。
具体制备过程包括:按照一定比例将腰果酚与酚醛树脂混合,在一定温度和压力下进行反应,最终得到改性后的热固性酚醛树脂。
三、腰果酚改性对热固性酚醛树脂粘接性能的影响1. 改性后树脂的物理性能:通过对比改性前后树脂的硬度、韧性、耐热性等物理性能,发现腰果酚的引入显著提高了树脂的韧性和耐热性。
2. 粘接强度的提升:对改性前后的树脂进行粘接测试,结果表明腰果酚改性后的树脂具有更高的粘接强度。
这主要得益于腰果酚与酚醛树脂之间的化学反应,使得树脂分子间形成了更强的交联网络。
3. 改善湿润性和渗透性:腰果酚的引入使得改性后树脂的湿润性和渗透性得到提高,有利于提高粘接过程中树脂与被粘物表面的接触和浸润,从而提高粘接效果。
四、腰果酚改性热固性酚醛树脂的应用根据腰果酚改性热固性酚醛树脂在粘接性能方面的优异表现,可将其应用于各种工业领域。
例如:在航空航天、汽车制造、电子封装等领域,利用其高粘接强度、耐高温和良好的物理性能,提高产品的质量和性能。
此外,腰果酚改性热固性酚醛树脂还可用于建筑、家具等领域,满足不同行业对高性能粘接材料的需求。
五、结论本研究通过腰果酚改性热固性酚醛树脂,显著提高了其粘接性能。
腰果酚的引入不仅提高了树脂的韧性和耐热性,还显著提高了其粘接强度和湿润性、渗透性。
聚硅氧烷改性环氧树脂的研究进展李晓茹,丛丽晓,张圣有,冯圣玉3(山东大学化学与化工学院,济南250100) 摘要:综述了制备聚有机硅氧烷改性环氧树脂的4种途径:含羟基或烷氧基的聚硅氧烷与环氧树脂的反应、含氨基的聚硅氧烷与环氧树脂的反应、含硅氢基的聚硅氧烷与环氧树脂的反应、含杂原子的聚硅氧烷与环氧树脂的反应,并讨论了聚有机硅氧烷改性环氧树脂对环氧树脂的相结构、机械性能和热稳定性的影响。
关键词:聚硅氧烷,硅树脂,环氧树脂,增韧中图分类号:TQ26411+7 文献标识码:A文章编号:1009-4369(2005)05-0033-04收稿日期:2005-04-14。
作者简介:李晓茹(1980—)女,研究生,主要从事有机硅高分子材料的研究与开发。
3联系人,E 2mail :fsy @ 。
环氧树脂是一种热固型聚合物,具有优异的防潮性、高模量及良好的尺寸稳定性,广泛用作涂料、粘接剂[1,2];环氧树脂因具有优良的疏水、耐温和耐化学试剂性能,以及优良的电性能和机械性能,还广泛用作复合材料和电子密封材料[3,4]。
然而,环氧树脂由于在固化过程中形成了高度交联的结构,致使其性脆、延展性低、易产生裂纹。
为了克服这些不足,常加入橡胶或热塑性改性剂以增加环氧树脂的韧性。
早期环氧树脂的增韧剂大都是羧基或胺基封端的丙烯腈-丁二烯橡胶、官能基封端的丙烯酸酯、聚亚苯基氧化物和亚烃基氧化物[5~7];近年来,出现了许多用聚硅氧烷作增韧剂的报道[8~10]。
聚硅氧烷的引入可赋予环氧树脂低玻璃化转变温度、低表面张力、柔韧性、阻燃性、耐热氧化性等。
聚硅氧烷改性环氧树脂能有效地防止断裂端的增长,从而改善环氧树脂的断裂韧性[11,12]。
然而将这两种不相容的树脂简单地混合在一起,会自成一相;随着时间的延长,体系出现相分离,材料不能充分发挥两种树脂各自的优良性能。
使二者结合为一体的方法是化学改性。
本文综述了聚硅氧烷改性环氧树脂的制备方法。
1 聚硅氧烷改性环氧树脂的制备方法聚硅氧烷改性环氧树脂可通过含羟基或烷氧基的聚硅氧烷、含氨基的聚硅氧烷、含硅氢基的聚硅氧烷及含杂原子的聚硅氧烷与环氧树脂的反应制得。
环氧树脂基本固化反应机理及其改性研究环氧树脂是一种功能性重要的高分子材料,广泛应用于各个领域中,如航空、汽车、电子、建筑等。
环氧树脂具有优异的化学稳定性、机械性能和热稳定性,同时也易于加工,因此被广泛应用。
其中,环氧树脂的固化反应机理及其改性研究是其应用的关键所在。
一、环氧树脂固化反应机理环氧树脂的固化反应主要是环氧基与活性氢、羟基、胺基等物质发生缩合反应,形成一个三维网络结构,这种网络结构能够有效地提高环氧树脂的热稳定性、耐化学性和抗冲击性。
环氧树脂的固化反应是一个复杂的化学反应过程,涉及到多种反应机理。
首先,环氧树脂与胺类催化剂发生加成反应,形成含有活性氢的酰胺中间体。
随后,酰胺中间体与环氧树脂发生缩合反应,形成的环氧酰胺化合物具有较高的反应活性。
最后,环氧酰胺化合物与胺类催化剂继续发生缩合反应,形成热稳定的三维网络结构。
值得注意的是,环氧树脂的固化反应是一个过程中的过程,即先形成线性高分子,然后再形成三维高分子。
其中,线性高分子的形成过程涉及到大量的催化剂的存在,而三维高分子的形成则与结构设计和调控有关,因此,环氧树脂的固化反应机理及其设计与调控是环氧树脂改性的重要方向之一。
二、环氧树脂的改性研究环氧树脂作为一种功能性重要的高分子材料,其改性技术近年来发展迅速,所涉及到的材料包括新型催化剂、改性树脂、耐高温树脂、卤化树脂、碳纤维等,这些材料均在一定程度上提高了环氧树脂的性能。
1. 新型催化剂环氧树脂的固化反应主要依赖于催化剂的存在,新型催化剂的应用可以显著提高环氧树脂的固化速率和反应活性,从而有效地提高环氧树脂的性能。
目前,常见的新型催化剂包括有机锡、有机钴、有机铁、吸湿化合物等。
2. 改性树脂改性树脂是一种将环氧树脂与其他化合物进行杂化的方法,其主要目的是提高环氧树脂的机械性能、热性能和耐化学性。
常见的改性树脂包括丙烯酸酯树脂、苯乙烯树脂等。
3. 耐高温树脂耐高温树脂是指在高温条件下,具有较高稳定性和机械性能的树脂。
环氧树脂如何进行表面改性环氧树脂是一种广泛应用于涂料、复合材料、电器绝缘材料等领域的热固性塑料。
其性能优良,但在实际应用中存在一些问题,例如黏附性差、耐候性差等。
因此,如何对环氧树脂进行表面改性,提高其性能,成为研究的热点之一。
一、表面处理法表面处理法是一种简单有效的改性方式。
主要有以下几种方法。
1、化学处理法化学处理法是利用特定的化学试剂处理环氧树脂表面,形成化学键,提高环氧树脂的表面活性和黏附性。
常用的化学试剂有酸、碱、有机硅、硅酸盐等。
其中,有机硅和硅酸盐是目前应用较广泛的化学试剂。
有机硅是一种无色透明的液态物质,具有极强的亲水性和覆盖性。
通过在环氧树脂表面覆盖一层有机硅分子,可以大大提高环氧树脂的表面活性和黏附性。
硅酸盐是一种中性物质,可以在环氧树脂表面形成化学键。
硅酸盐的改性效果优于有机硅,在环氧树脂涂层中应用较广泛。
2、放电处理法放电处理法是利用高压电场在环氧树脂表面形成微弱等离子体,在等离子体作用下使环氧树脂表面产生化学反应,形成化学键,提高环氧树脂的表面活性和黏附性。
该方法无需使用化学试剂,对环境无污染,是一种环保的表面处理方法。
3、光气处理法光气处理法是利用紫外线和氧气作用在环氧树脂表面产生光化学反应,形成羟基等官能团。
通过这些官能团可以形成与其他物质的化学键,提高环氧树脂的黏附性。
该方法适用于对环氧树脂表面粘附物清除较彻底的情况。
二、表面涂层法表面涂层法是在环氧树脂表面涂覆一层改性材料,以提高环氧树脂的性能。
目前应用较多的表面涂层材料有丙烯酸酯、聚乙烯醇、聚乙烯醇酸酯等。
1、丙烯酸酯丙烯酸酯分子具有极强的极性和覆盖性,可以覆盖在环氧树脂表面形成一层保护层。
该保护层可以提高环氧树脂的耐热性、耐候性、抗紫外线能力等。
2、聚乙烯醇聚乙烯醇是一种无毒无害的高分子材料,具有极强的亲水性。
将聚乙烯醇涂覆在环氧树脂表面可以提高环氧树脂的表面活性和黏附性,对环保无污染。
三、表面修饰法表面修饰法是通过在环氧树脂表面引入一定官能团,在官能团作用下形成化学键,提高环氧树脂的性能。
改性多壁碳纳米管对硼酚醛树脂在固化反应和热稳定性的影响摘要:一种由可溶性酚醛树脂和硼酸在少量溶剂下反应得来的硼酚醛树脂(BPR),X射线光电子能谱(XPS)表明,硼酸的反应程度为83.8%。
多壁碳纳米管(MWCNTs)由硝酸和4,40-二氨基甲烷和硼酸进行了修改。
修饰效果由傅里叶变换红外(FT-IR),热分析(TGA)技术和XPS确定。
并对BPR和改性的多壁碳纳米管(m-MWCNTs)/BPR的固化动力学和热行为进行了研究。
结果发现,固化的表观活化能(EA)随着M-MWCNTs 量的增加而下降。
但固化反应的顺序没有明显的变化。
TGA的结果表明, 1.0%多壁碳纳米管可提高m-MWCNTs/BPR纳米复合材料热分解温度(Td)到36.7和残炭率到6.2%。
这些关键的增强,必将有助于这个领域吸引更多的研究。
1、引言由苯酚和甲醛在碱的存在合成的普通酚醛树脂(PR)被广泛用作高分子复合材料和涂层材料。
一般来说,酚醛树脂被用于与有机或无机纤维和填料的化合。
这些化合物具有显着的热稳定性,阻燃性和耐热性[1-4]。
酚醛树脂应用的快速发展吸引了大量研究人员对提高其相关性能的关注。
一些研究者报道了通过添加硼、磷、硅或其他化合物来提高酚醛树脂的阻燃性能和热氧化电阻 [5-7]。
硼酚醛树脂具有优良性能,如热稳定性,机械强度和介电性能[8-10]。
碳纳米管是具有优异性能的石墨碳分子尺度管。
特别是,优良的机械强度,热稳定性,多壁碳纳米管的导热系数带来了大量的材料应用潜力方面的研究。
碳纳米管在多壁系统具有高达3000Wm-1K-1的导热能力[11]。
但因为尺寸较小和高比表面积,多壁碳纳米管很容易产生凝聚。
集聚现象对碳纳米管的性能产生了不利影响[12],因此许多研究都采取提高多壁碳纳米管在聚合物基体的分散度[13-16]。
为了提高多壁碳纳米管的潜在应用能力,必须使用官能团进行修饰再将多壁碳纳米管与所需的基质结合。
在各个领域都有关于一系列添加了碳纳米管的聚合物基质研究并取得了极大进展的报道。
有机硅改性环氧树脂的研究与应用进展摘要:环氧树脂是一种含有2个或2个以上环氧基团的高分子化合物,其与固化剂反应可生成具有热固性的三维网状结构。
固化环氧树脂具有优异的力学、耐化学、耐腐蚀性能,良好的热学性能、粘接性能和电气性能,且固化后收缩率低,尺寸稳定。
关键词:有机硅改性环氧树脂;研究;应用前言环氧树脂作为一类重要的热固性树脂,具有良好的电学性能、化学稳定性、优异的力学性能和粘接性能,应用领域十分广泛。
得益于环氧树脂优异的综合性能,环氧树脂广泛应用在涂料、粘接剂、电子产品封装、印刷电路板、航空、航天、军工等领域。
1改性方法1.1增容改性提高环氧树脂与有机硅的相容性是物理改性的重要研究方向。
以端羟基甲基苯基硅橡胶(PSi)和硅烷化环氧树脂(SERs)为主要原料,合成了四种不同结构和功能程度的SERs,并用于硅树脂涂层的改性,制备了一系列硅烷化环氧树脂涂层。
其中用环己基环氧树脂和氨基硅烷偶联剂(APTES)制备的SERs效果最好,可贮存30天以上。
所有改性有机硅涂料的附着力均为最高级0级,在30天的耐酸、耐碱、耐盐实验和在300℃下保温实验后,表现出优良的防腐性能和良好的耐热性能。
实验表明,与纯PSi相比,含有25wt%SERs的涂层具有更好的热性能,表现为延迟降解温度,800℃下残碳率大大提高。
SERs的加入提高了硅橡胶与环氧树脂的相容性,其中环氧基团增强了固化混合涂层的附着力。
1.2自分层涂层许多年来,对涂层的研究一直在不断增长,试图提高其工艺和性能。
一般,两层或三层的不同涂层被使用在基材上,以得到综合性能的涂层。
但每一层需要一个配方和一个特定的固化步骤,因此这个多层系统涉及许多复杂的操作和需要长时间的固化过程,而且在层与层之间的界面处可能会出现附着失效的现象,这些因素并不满足当前的工业生产要求。
自分层涂料根据相容性、表面能、分子间作用力等因素,由多种聚合物组成,形成的共混体系溶解在溶剂中,它们在使用后和固化阶段会自动分离,形成连续但功能不同的涂层。
有关环氧树脂的改性研究薛乐乐1.1前言1.1.1概述环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。
环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。
由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。
固化后的环氧树脂具有良好的物理、化学性能,它对金属和非金属材料的表面具有优异的粘接强度,介电性能良好,变定收缩率小,制品尺寸稳定性好,硬度高,柔韧性较好,对碱及大部分溶剂稳定,因而广泛应用于国防、国民经济各部门,作浇注、浸渍、层压料、粘接剂、涂料等用途。
我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,也生产各种类型的新型环氧树脂,以满足国防建设及国家经济各部门的急需。
1.2环氧树脂的分类环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐温胶、耐低温胶、水下,潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、涉嫌被固化胶、土木建筑胶16种:目前对环氧树脂胶黏剂的分类在行业中还有以下几种分发:按其主要组成分为纯环氧树脂胶黏剂和改型环氧树脂胶黏剂;按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子眼环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等;按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶;按其包装形态可分为单组分型胶、双组分胶和多组分型胶等;还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。
但目前以组分分类应用较多。
1.3环氧树脂的特性环氧树脂具有伸羟基和环氧基,伸羟基可以与异氰酸酯反应。
环氧树脂的改性研究进展曾莉;杨云峰;周华【摘要】环氧树脂(EP)是一类应用非常广泛的热固性树脂,在国名经济的发展中占有重要地位,本文综述了改性环氧树脂的最新研究状况,概述了环氧树脂的耐热改性、增韧改性以及阻燃性方面的研究进展,并对环氧树脂改性的新方法进行了展望。
%Epoxy resin(EP) was a kind of thermosetting resin and was widely applied,which occupied an important position in the development of economy.The latest research situation of modified epoxy resin was summarized,including the heat resistant modification,toughening modification and flame retardant.The progress in research of modified by epoxy resin on the new method was also discussed.【期刊名称】《广州化工》【年(卷),期】2011(039)022【总页数】3页(P20-21,24)【关键词】环氧树脂;改性;耐热性;增韧;阻燃性【作者】曾莉;杨云峰;周华【作者单位】中北大学理学院,山西太原030051;中北大学理学院,山西太原030051;中北大学理学院,山西太原030051【正文语种】中文【中图分类】TQ637环氧树脂(EP)是一类非常重要的热固性树脂,它是聚合物基复合材料中应用最广泛的基体树脂之一[1]。
加入固化剂固化后的环氧树脂具有良好的物理化学性能,它与材料的表面具有优异的粘接性能,介电性能良好且固化收缩率小,制品尺寸稳定性好,硬度高,柔韧性较好,对碱及大部分溶剂稳定,因而广泛应用于涂料、电子绝缘材料以及先进复合材料中增强材料的树脂基体等各领域,常用作浇注、浸渍、层压料、粘接剂、涂料等用途。
硅烷偶联剂KH570对纳米SiO2的表面改性及其分散稳定性一、本文概述随着纳米技术的迅速发展,纳米材料因其独特的物理化学性质在多个领域展现出广泛的应用前景。
其中,纳米二氧化硅(nano-SiO2)因其高比表面积、优异的物理和化学稳定性以及良好的光学性能等特点,被广泛应用于橡胶、塑料、涂料、陶瓷、医药等领域。
然而,纳米SiO2粒子由于具有高的比表面积和表面能,容易团聚形成大的颗粒,导致其分散稳定性差,限制了其在许多领域的应用。
因此,对纳米SiO2进行表面改性以提高其分散稳定性成为研究的热点。
硅烷偶联剂KH570作为一种重要的有机硅化合物,其分子结构中的乙烯基和甲氧基硅烷基团可以与纳米SiO2表面的羟基发生化学反应,形成稳定的化学键合,从而实现对纳米SiO2的表面改性。
本文旨在研究硅烷偶联剂KH570对纳米SiO2的表面改性效果及其分散稳定性的影响。
通过对比改性前后的纳米SiO2粒子的物理化学性质、表面形貌、分散稳定性等方面的变化,揭示硅烷偶联剂KH570对纳米SiO2的改性机理,为纳米SiO2在各个领域的应用提供理论基础和技术支持。
本文首先介绍纳米SiO2的基本性质和应用领域,然后阐述纳米SiO2分散稳定性的重要性以及目前常用的表面改性方法。
接着详细介绍硅烷偶联剂KH570的结构特点、改性原理及其在纳米SiO2表面改性中的应用。
通过实验研究和表征手段,探讨硅烷偶联剂KH570对纳米SiO2表面改性的效果及其对分散稳定性的影响。
总结硅烷偶联剂KH570在纳米SiO2表面改性中的应用前景,为相关领域的研究提供有益的参考。
二、材料与方法本实验主要使用的材料包括纳米SiO2粉末(购自某化学试剂公司,纯度≥5%,平均粒径约为20nm)、硅烷偶联剂KH570(购自某化学试剂公司,纯度≥98%)、无水乙醇(购自某化学试剂公司,纯度≥7%)、以及去离子水。
硅烷偶联剂KH570的制备采用标准的化学合成方法。
在无水乙醇中,将适量的KH570与催化剂混合,然后在恒定的温度下进行搅拌反应。