当前位置:文档之家› 示波器基础培训资料

示波器基础培训资料

示波器探头基础知识

示波器探头基础知识 示波器探头原理---示波器探头工作原理 示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。探头有很多种类型号各有其特性,以适应各种不同的专门工作的需要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。这种探头通常对输入信号进行衰减。 我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。 屏蔽 示波器探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一普通导线来代替探头,那么它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、50或60Hz的电源的交流声甚至当地业余无线电爱好者那里接收到很多不希望的干扰信号,这类噪声甚至还能注入到被测电路中去所以我们首先需要的是屏蔽的电缆,示波器探头的屏蔽电缆通过探头尖端的接地线和被测电路连接,从而保证了很好的屏蔽。 一.探头构造图:

4. 一个探头,就算它只是简单的一条电线,它也可能是一个很复杂的电路。a)对于DC 信号( 0 Hz 频率),探头作为一对导线与一系列电阻,就向一个终端电阻一样。 b) AC 信号的特性变化是因为:电线具有分布电感(L),电线具有分布电容(C)。分布电感反作用于AC信号,在信号频率增加时,阻止AC信号通过。分布电容反作用于AC信号,在信号频率增加时,减小 AC信号电流通过的阻抗。这些反作用元件(L 和 C )的交互作用,与电阻元件(R)一起,成为随信号频率不同而变化的探头阻抗。

数字示波器基础知识

数字示波器基础知识 耦合 耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。 DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC 和:DC)都会影响示波器的波形显示。 AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。 和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。 输入阻抗 多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。 有些信号来自50Ω输出阻抗的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。 相加和反向 简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。 从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。 由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。 带宽

安捷伦-86100c 示波器中文

DCA-J Agilent 86100C 宽带示波器主机和模块 技术指标 四合一仪器 数字通信分析仪、 全功能高带宽示波器、时域反射计,同时还是一台抖动分析仪● ● ● ● ● ● ● ● 自动抖动和振幅干扰分解 内部生成码型触发 模块化平台,测试速率高达40 Gb/s 及以上的信号波形最宽的数据速率覆盖范围,具有光参考接收机,可 用于进行时钟恢复 内置S 参数和TDR 测量 兼容Agilent 86100A/B 系列、83480A 系列和54750 系列模块 小于200 fs 的固有抖动 开放的操作系统- Windows? XP Pro

目录概述 特性 测量 其他功能 技术指标 主机和触发 (包括精密时基模块)计算机系统和存储器 模块 概述 模块选型表 技术指标 多模/ 单模 单模 双电 TDR 时钟恢复 订货信息 2 3 7 8 12 14 15 16 17 19 20 21 22 25

infiniium DCA-J概述特性 四合一仪器 86100C Infiniium DCA-J是一台功能强大的仪器,它 集四种功能于一身: ·通用高带宽采样示波器:新增的码型锁定触发功能,显著增强了其作为通用示波器的用途 ·数字通信分析仪:新推出的眼线模式(Eyeline Mode)测试功能,为进行眼图分析增添了强大的工具 ·时域反射计 ·抖动分析仪 轻松选择所需的仪器模式,立即开始测量。 可以灵活地进行配置,满足用户需求 86100C 支持广泛的模块,可以同时测试光信号和 电接口信号。用户可以选择适合的模块,获得所需的 特定带宽、滤波功能和灵敏度。 码型锁定触发加强了采样示波器的功能 86100C 上的增强触发选件(选件001)为等时采样示波器提供了一项前所未有的重要能力。这种新的触 发机制可使DCA-J 以重复的输入数据码型生成触发, 即码型触发。以前,这种能力需要使用码型源才能向 示波器提供此类触发输出。PatternLock 自动检测码型 长度、数据速率和时钟速率,使得复杂的触发机制对 用户完全透明。 PatternLock 使86100C 工作起来给用户的感觉更像是一个实时示波器。它大大简化了在数据码型中对特 定比特位的研究工作。因此,熟悉实时示波器,但不 太熟悉等效时间采样示波器的用户也将能够快速使用 这款仪器。 PatternLock 为码型触发增加了一个全新的方式, 使得主机软件能够以出色的时基精度,在数据码型的 特定位置进行采样。这一功能是86100C 具备的许多新功能(将在下文中描述)的基础构件。抖动分析 DCA-J 中的“J”代表抖动分析。86100C 是一款具 有抖动分析功能的数字通信分析仪。86100C 增添了第 四种操作模式抖动模式。超高带宽、低固有抖动和先 进的分析算法,在抖动测量中提供了最高的精度。 随着电接口和光接口应用中数据速率的增加,抖 动日益成为一个测量挑战。把抖动分解为各种组成成 分进行分析也变得越来越重要。抖动分析可使用户深 入了解设备及系统设计中的抖动裕量和性能优化情况。 许多新兴标准都要求分解抖动,以满足标准。传统上, 抖动分离技术非常复杂,通常很难配置;而随着数据 速率的增加,能够分离抖动的仪器也变得非常有限。 DCA-J 可提供简单地单键设置和执行高级波形分析。抖动模式把抖动分解为各种组成成分,并把抖动 数据用各种信息量丰富的形式显示出来。抖动模式以86100C 支持的所有速率运行,消除了传统上从复杂的 抖动分析中传统数据速率的限制。86100C 在抖动分析 方面实现了几种关键特点: ·超低固有抖动(随机抖动和确定性抖动),实现了非常低的抖动本底噪声,提供了无可比拟的抖动测量 灵敏度。 ·高带宽测量通道,实现了极低的固有抖动,可对 40 Gb/s 及以上的所有数据速率进行抖动分析。 · PatternLock(码型锁定)触发技术提供了出色的采样效率,实现了非常快的抖动测量速度。 抖动分析功能分为两个软件包选件。选件200 是增强的抖动分析软件;选件201 是高级波形分析软件。选件200 包括: ·把抖动分解为总体抖动(TJ)、随机抖动(RJ)、确定性抖动(D J )、周期抖动(P J )、数据相关抖动(DDJ)、占空比失真(DCD)以及由码间干扰(ISI)引起的抖动。 ·以各种图形和表格形式显示抖动数据 ·把抖动数据导出为方便的定界文本格式 ·保存/ 调用抖动数据库 ·抖动频谱 ·隔离和分析子速率抖动(SRJ),即比特率的整数子速率(integer sub-rate)时的周期抖动。 · Bathtub 曲线显示 ·可以调节的总体抖动概率 Windows 是微软公司在美国的注册商标。 3

示波器基础使用说明和功能详细讲解

示波器基础使用说明和功能详细讲解 2009/7/30/10:56 来源:慧聪教育网 【慧聪教育网】示波器基础使用说明和功能 说明和功能 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测 量读数。而示波器则与共不同。示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形。 示波器和电压表之间的主要区别是: 1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值。但是电压表不能给出有关信号形状的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。 2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号。 显示系统 示波器的显示器件是阴极射线管,缩写为CRT,见图1。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来。 图1阴极射线管图 电子在从电子枪到屏幕的途中要经过偏转系统。在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X)偏转板和垂直(Y)偏转板组成。这种偏转方式称为静电偏转。 在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺。标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm。有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线。这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量。我们后面会讨论这个问题。 如上所述,受到电子轰击后,CRT上的荧光物质就会发光。当电子束移开后,荧光物质在一个短的时间内还会继续发光。这个时间称为余辉时间。余辉时间的长短随荧光物质的不同而变化。最常用的荧光物质是P31,其余辉时间小于一毫

Agilent 2000系列示波器

InfiniiVision 2000 X 系列示波器 技术资料 新一代示波器: 突破性技术为同等预算提供性能更优异的示波器

突破性技术为寻求经济型示波器的客户带来更高性能 Agilent InfiniiVision X 系列示波器概览 InfiniiVision 2000 X 系列 InfiniiVision 3000 X 系列 模拟通道2?和?4?个模拟通道 数字通道数MSO 型号标配?8?通道 可通过?DSOX2MSO 升级MSO 型号标配?16?通道 可通过?DSOX3MSO 升级带宽?(可升级)70、100、200 MHz 100、200、350、500 MHz 采样率1 GSa/s, 通道全开2 GSa/s, 半通道交叉模式2 GSa/s, 通道全开4 GSa/s, 半通道交叉模式存储器深度100 kpts 每通道2 Mpts 标配, 4 Mpts 可选(选件?DSOX3MemUp)波形更新速率 50,000?个波形/秒1,000,000?个波形/秒WaveGen 内置?20 MHz 函数发生器有?(选件?DSOX2WAVEGEN)有?(选件?DSOX3WAVEGEN)搜索和导航无有 串行协议分析无 有(多个选件)分段存储器有?(选件?DSOX2SGM)有?(选件?DSOX3SGM)模板极限测试有?(选件?DSOX2MASK)有?(选件?DSOX3MASK)AutoProbe 接口 无 有 安捷伦科技公司是市场上发展最为快速的示波器厂商: 我们致力于投资技术发展,为您解决测量难题。安捷伦对高新技术的孜孜以求为您带来了 InfiniiVision X 系列示波器,以满足较少的预算仍需求出色的性能、功能与灵活性客户的需求。无论您在工作中需要基础入门级的 示波器还是有较多分析能力的示波器,您都希望获得最大程度的投资回报。InfiniiVision X 系列示波器共有 26 种型号,确保为您提供既满足当前需求,又可在未来进行升级的产品。 是否需要更深的存储器或更多带宽? 请看?InfiniiVision 7000B 系列示波器 ● 2?或?4?个模拟通道以及?16?个可选的数字通道● 100 MHz ~ 1 GHz 带宽● 8 Mpts 存储器?(标配)● 搜索和导航功能 ● 提供串行协议分析应用软件● 提供?FPGA 动态探头应用软件 更多详情,请见 https://www.doczj.com/doc/e010060765.html,/find/7000

示波器的基础学习知识原理和使用

示波器的原理和使用 示波器是一种用途广泛的基本电子测量仪器,用它能观察电信号的波形、幅度和频率等电参数。用双踪示波器还可以测量两个信号之间的时间差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。在实际应用中凡是能转化为电压信号的电学量和非电学量都可以用示波器来观测。 【实验目的】 1.了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。2.学会使用示波器观测电信号波形和电压幅值以及频率。 3.学会使用示波器观察李萨如图并测频率。 图1-1 示波器结构图 【实验原理】 不论何种型号和规格的示波器都包括了如图1-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。 1.示波管的基本结构

示波管的基本结构如图1-2所示。主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。 (1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。示波器面板上的“辉度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚集作用,所以, H-灯丝;K-阴极;G1,G2- 控制栅极;A1-第一阳极;A2-第二阳极;Y-竖直偏转板;X-水平偏转板 图1-2 示波管结构图 第一阳极也称聚集阳极。第二阳极电位更高,又称加速阳极。面板上的“聚集”调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。有的示波器还有“辅助聚集”,实际是调节第二阳极电位。 (2)偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,一对水平偏转板。在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。 (3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般称为余辉时间)也不同。荧光屏前有一块透明的、带刻度的坐标板,供测定光点的位置用。在性能较好的示波管中,将刻度线直接刻在荧光屏玻璃内表面上,使之与荧光粉紧贴在一起以消除视差,光点位置可测得更准。2.波形显示原理

Agilent示波器使用

Agilent54621A/22A/24A示波器使用方法 以Agilent54622A示波器为例,介绍一下Agilent示波器的使用方法: 一、示波器的注意事项: 使用示波器首先要保证,示波器和测试机器不能共地,否则会造成炸机或损坏示波器,所以我们为保证安全使用示波器,一般会将示波器电源线地线剪掉。 为保证测试波形的正确有效性,须根据所测试的波形,选择正确合适的频率、幅值范围;为保证所测试波形的正确有效性,尽量不要将已经抓住的波形展开,避免因将波形展开而造成波形失真,最好在测试时就选择好正确量程范围。 二、前面板纵览: 如下图所示,54622A示波器的前面板: 通过示波器的前面板的纵览,示波器主要包括显示和控制面板: 1)、示波器显示包括通道采集、设置信息、测量结果,以及用于设置参数的软键,如图:

通过上图可看出,示波器显示具体有以下内容: 状态行:最上面一行,包括垂直、水平和触发设置信息; 显示区:显示区包括波形采集、通道识别符,以及模拟触发和地电平指示器; 测量行:测量行一般包括自动测量结果和游标测量结果,但它也能显示高级触发设置数据和菜单信息; 软键:可以使用这些软键为前面板键设置其它参数。 2)、控制面板如图: 我们首先看一下做出标识部分的旋钮、按键的功能,其它按键功能我们将在后面做详细讲解:标识1为水平扫描速度(时间/格)旋钮,当对其旋转时,注意所引起的状态行显示出扫描速度值的变化; 标识2为延迟时间旋钮,旋转时注意在状态行中它的量值的变化,它是用于水平移动的,中心值为0.00s处,可以进行左右移动,移动显示数值为时基参考点(零位中心值)和触发点(旋钮所在位置)间的距离; 标识3为扫描方式选择按键,可选择对波形采用何种方式扫描,在我们使用的这款示波器中,有三种选择方式: Main-采用主扫描模式测试波形,时间范围为50s~5ns; Roll-采用滚动模式测试波形,时间范围为50s~500ms; Delayed-采用延迟工作模式,此模式下波形分成两半,延迟扫描的图标会出现子阿显示屏首行中央,显示屏的上半部分显示主扫描,而下半部分显示延迟扫描; 标识4为Entry旋钮,许多软键可使用此键来选择量值; 标识5为2个通道的幅值调节范围,如果使用普通探棒,其幅值范围为50V~10MV,所以在测试超出此范围的波形时需使用差动探棒; 标识6为位置旋钮,用来垂直移动信号,如果信号已过校准零位,会随着转动位置旋钮短时显示电压值,指示参考地电平与屏幕中心的距离,还应注意屏幕左端的参考地电平符号随位

示波器基础(一)——示波器基础知识之一

示波器基础(一)——示波器基础知识之一1.1 说明和功能 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测量读数。而示波器则与共不同。示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形。 示波器和电压表之间的主要区别是: 1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值。但是电压表不能给出有关信号形状的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。 2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号。 显示系统 示波器的显示器件是阴极射线管,缩写为CRT,见图1。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来。

图1 阴极射线管图 电子在从电子枪到屏幕的途中要经过偏转系统。在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X)偏转板和垂直(Y)偏转板组成。这种偏转方式称为静电偏转。 在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺。标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm。有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线。这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量。我们后面会讨论这个问题。 如上所述,受到电子轰击后,CRT上的荧光物质就会发光。当电子束移开后,荧光物质在一个短的时间内还会继续发光。这个时间称为余辉时间。余辉时间的长短随荧光物质的不同而变化。最常用的荧光物质是P31,其余辉时间小于一毫秒(ms).而荧光物质P7的余辉时间则较长,约为300ms,这对于观察较慢的信号非常有用。P31材料发射绿光,而P7材料发光的颜色为黄绿色。 将输入信号加到Y轴偏转板上,而示波器自己使电子束沿X轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹。 影响屏幕的控制机构有:

是德科技keysight7000B系列示波器说明书技术资料安捷伦agilent

Agilent InfiniiVision 7000B 系列示波器 技术资料 提供最佳的信号可视性

2 为什么不考虑现在订购一台? 示波器是一种用来观测信号的工具。由于通用示波器除了显示传统示波器通道的信号之外, 还需要更大的空间以显示数字信号和串行信号, 因此具有高分辨率的大尺寸显示屏变得越来越重要。 想知道其中的奥秘吗? 安捷伦工程师开发的 I nfiniiVision 7000B 系列示波器采用了先进的技术,与市场上的任何其他示波器相比,可使您看到更多微小的信号细节和更多的偶然事件。请看 I nfiniiVision 7000B 系列示波器 — 业界最佳的信号查看产品。 体验 InfiniiVision 7000B 系列示波器卓越性能的最佳方法就是亲自去看一看。欢迎您现在就与安捷伦科技公司联系申请试用。 InfiniiVision 7000B 系列具有高达 1 GHz 的带宽。每个型号都配有 12.1 英寸 XGA LCD 大显示屏, 并且非常轻巧, 仅有 6.5 英寸深、13 磅重。 InfiniiVision 7000B 系列示波器有 14 种型号可供选择。 安捷伦还为客户先前购买的 7000 系列 DSO 提供了升级套件, 只需 5 分钟即可将 DSO 轻松升级至 MSO 。

3 InfiniiVision 7000B 系列为什么具有最佳信号可视性? 1. 最大的显示屏 示波器是一种显示被测信号波形的工具,而大尺寸、高分辨率显示屏可以提升示波器的显示能力。因为通用示波器除了要显示传统的示波器通道,还需要更大的空间来显示数字和串行信号,所以更大的显示屏变得越来越重要。 使用更大尺寸的显示屏,您能够同时轻松查看多达 20 个基于串行协议的通道。12.1 英寸的显示屏比同类产品几乎大了 40%。 2. 最快的架构 与其他任何一款示波器相比,可显示被测信号更多的细节。InfiniiVision 7000B 系列可显示其他示波器可能错过的抖动、偶然事件和微小的信号细节。旋转旋钮,仪器就可快速而轻松地响应。需要查看数字通道吗? 仪器同样可以灵敏地做出响应。需要解码串行数据包? Agilent InfiniiVision 系列具有业界唯一的硬件加速串行总线解码功能,能够在不影响模拟测量的同时进行串行调试。 InfiniiVision 示波器在先进的 0.13 μm ASIC 中集成了采集存储器、波形处理和显示存储器。这种已获专利的第三代技术(MegaZoom III)利用响应灵敏、始终可用的深存储器,每秒可采集高达 100,000 个波形。 3. 具有深入洞察力的应用软件 您还可以定制您的通用示波器。广泛的应用软件包可对特定应用的问题提供有价值的深入观察。(详细信息参见第 8-9页和第 13-14 页)。 硬件加速的串行解码 ? I 2 C 、SPI ? 内核辅助FPGA 调试? 安全环境? CAN/LIN ? 分段存储器? MIL-STD-1553? RS-232/UART ? 矢量信号分析 ? FlexRay ? I 2S ? DSO/MSO 离线分析? 模板测试 ? 功率测量

示波器探头补偿

课题研究报告 示波器探头补偿 学院:信息工程学院班级:电子 10-1 班姓名:学号:201010203008 201010203009 201010203012 完成时间:2011年12月26日

示波器探头补偿 ——讨论探头中串联的RC并联电路参数对测量结果的影响 课题背景 示波器探头不仅仅是把待测信号引入示波器输入端的一端导线,而且是测量系统的的重要组成部分。探头有很多种类型,以适应各种不同的专门工作需要。其中一类为有源探头,探头内包含有源电子元件,具有放大能力;不含有源原件的探头称为无源探头,其中只包含无源元件如电阻和电容。这种探头通常对输入信号进行衰减。为了有效抑制外界干扰信号,示波器探头通过屏蔽电缆与示波器输入连接,如图所示 当被测信号频率很高时,上图中与探头相连的屏蔽电缆的电容就不能忽略,探头的容性负载效应就非常明显,有可能导致探头在高频下无法使用。为此,可以在探头中增加一个和示波器输入端电路模型相串联的RC并联电路,以减小探头的容性负载效应,如下图所示,其中Ci为探头电缆的电容和示波器输入电路模型中电容合并后的等效电容。Rcmp和Ccmp分别为补偿电阻和补偿电容。

通过课题背景,我们知道在使用示波器时,当被测信号频率很高时,,探头的容性负载效应就会明显,导致探头在高频下无法使用。所以在探头中增加一个串联的RC并联电路,来减小探头的容性负载效应。 结合所学知识,电容具有通高频阻低频的性质,当低频信号通过时,电容对其阻碍作用非常明显,探头的负载主要是阻抗作用,所以容性负载效应不明显。当电路通有高频信号时,探头的负载主要是容抗作用,从而电路中容性负载效应很大,致使被测电路的信号发生变化,所以就不能准确地进行波形测量。为了减轻探头对被测电路的负载作用,应选择高阻抗、低容抗的探头。 当通有高频信号时,我们需要对其进行衰减,使得电路中容性负载效应减小,保证测量结果的准确性。 为此我们有了如下研究想法:示波器探头补偿电路可以简化为一个简单的RC串并联电路,用一标准示波器对电路信号进行检测,因为任何的不平衡将会带来波形的失真,通过改变RC电路的相关参数来观察波形的变化,从而来确定RC的哪些参数对测量结果的影响。再结合一阶电路时域分析中电路的零状态响应和全响应方面的知识,进行理论上的具体分析。

力科示波器探头使用指南

示波器探头基础系列之五 ——示波器探头使用指南 美国力科公司 概述: 本文旨在帮助读者对常用的示波器探头建立一个基本认识。此外,我们通过一系列的例子说明探头的不正确使用如何影响测量的结果。 理解探测问题 注意!连接示波器和待测物会给被测波形带来失真。 示波器上应该贴上上面类似的警告标签吗?或许是的。示波器同其它测量仪器一样,受制于各种测量问题——显然,示波器和待测物的连接会影响到测量,使用者理解这样的影响是非常重要的。随着示波器技术的发展,连接示波器和待测物的工具和技术已经变得非常成熟。 早期的示波器,测量带宽只有几百KHz数量级,常使用电缆连接电路。现代示波器使用各种连接技术以最小化测量误差。使用者应该熟悉示波器本身以及示波器连接电路的各种方法的特性和限制。 考虑示波器连接待测电路的方式如何影响测量,待测电路可以等效为包含内置电阻和电容的戴维宁等效电压源。同样,示波器输入电路和连接部分可以被等效为负载电阻和旁路电容。该模型如图1所示。当示波器连接信号源时,示波器的负载效应会减小测量到的电压。低频的损耗取决于电阻比率Rs和Ro。对于高频时的损耗,Cs和Co成了主要因素。另外一个影响是系统带宽由于示波器的容性负载而变小,这也会影响到动态时间量的测量,如脉冲上升时间Risetime。 图1 包括信号源和示波器的简单测量模型 示波器的设计者需要从两个方面入手来减少负载效应的影响: a.高阻探头,利用有源和无源电路来减少负载效应,这些电路包括补偿衰减器或者低容值场效应晶体管缓冲放大器。 b.对于高频应用的直接连接,示波器的输入电路采用50ohm的内部端接。在这些场合,示波器输入电路被设计成常数的50ohm负载阻抗。低电容的探头被设计为50ohm端接来减少负载效应。 如何选择合适的探头 通常,探头可以被分成三大类。1、无源高阻探头;2、无源低阻探头;3、有源探头。

示波器基本使用方法

示波器基本使用方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

示波器基本使用方法 荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 示波管和电源系统 1.电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 2.辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。 3.聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 2.3 垂直偏转因数和水平偏转因数 1.垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

示波器基础

示波器基础——测量和练习 1 如何进行测量 在本书的前两章中我们 介绍了示波器上可以用来影 响信号波形显示的各种控制 机构。在这一章里我们将要讲 座重要的波形参数,并且还将 介绍如何使用示波器来测量 这些参数。 示波器可以测量两个基 本的量,即电压和时间。从这 两个量出发,用手工的方法使 用光标或者用自动的方法进行所有其它波形参数的测量。 在进行测量时,了解自己的示波器的能力是很重要的。不要试图在一个20MHz的示波器上观察一个1 0MHz的方波,因为在这种情况下不可能看到方波的真实形状,10MHz的方波中包含有10MHz的正弦波基波,以及30MHz、50MHz、70MHz等的谐波。在10MHz的示波器上,也有可能看到30MHz谐波的部分效果(虽然其幅度不正确),但是下一个谐波分量的频率是示波器带宽的2.5倍!所以这时您在示波器上看到的波形将更象一个正弦波而不象方波(见图50)。 对于上升时间的测量来说,情况也是这样。如果您使用一台上升时间比被测信号的上升时间快10倍的示波器来进行测量,那么示波器本身的上升时间对测量的影响将几乎可以忽略。然而如果示波器的被测信号的上升时间相同,那么引起的测量误差可高达41%。 若干标准波形 三种最常见的波形是正弦波、三角波和方波(见图51)。这些波形在任何函数发生器上都可以找到,并且在实际工作中也常常遇到。

正弦波包含单一的频率分量;而方波和三角波则由很多不同的相关正弦谐波组成。方波由基波的奇次 谐波构成,三角波由基波的偶次谐波构成。 这些波形在时间上和幅度上都是对称的。 这些波形还有其变形形式,这通常是波 形发生对称变化的结果。这样一来,三角波 变成了锯齿波(从其开头而得名),而方波 变成了矩形波。 波形的一个完整的周波叫作一个周期。 一个周期就是从一个周波的某一点到下一个周波相应点所需要的时间(见图52)。 频率是在一秒钟之内所发生的波形的周波数。 所以如果我们用1秒除以一个周期所需的时间就得到了用Hz表示的频率。 例如,周期=1ms则 频率=1/10×10-3=1000Hz=1KHz 重复发生的波形称为重复性波形或周期性波形。这是最容易测量的波形。 对重复性波形或周期性波形最常测量的另一个参数是波形的幅度。幅度是一个波形上从最高点到最低之间的电压。这又称之为峰(一)峰值幅度或Vp-p(见图52)。

示波器常识讲课教案

示波器的触发功能 汪进进美国力科公司深圳代表处 我记得初入力科的时候,在关于示波器的三天基础知识培训中有一整天的时间都是在练习触发功能。“触发”似乎是初学者学习示波器的难点。我们常帮工程师现场解决关于触发 的测试问题的案例也很多。通常有些工程师只知道“Auto Setup”之后看到屏幕上有波形然后“Stop”下来再展开波形左右移动查看细节。因此,我有时候甚至接到这样的电话,质疑我们的示波器有问题,因为他在”Auto Setup”之后看到的波形总是在屏幕上来回“晃动”。但是当我问他触发源设置得对不对,触发电平设置得合适否,是否采用了合适的触发方式等问题时,我没有得到答案; 即使有时遇到我心目中的高手,我也常发现他们对触发的基本概念都没有建立起来。我喜欢在写作某个主题之前google一下,但是很遗憾我没有找到一篇堪称完整的启蒙文章。虽然三家示波器厂家的PPT讲稿中都有很多关于触发的,但细致介绍触发的 中文文章真的很少。当然,这也是幸运的,因为我的拙文也许将是很多工程师茅塞顿开的启蒙之作。 触发是数字示波器区别于模拟示波器的最大特征之一。数字示波器的触发功能非常地丰富,通过触发设置使用户可以看到触发前的信号也可以看到触发后的信号。对于高速信号的分析,其实很少去谈触发,因为通常是捕获很长时间的波形然后做眼图和抖动分析。触发可能对于低速信号的测量应用得频繁些,因为低速信号通常会遇到很怪异的信号需要通过触发来隔离。假如示波器的触发电路坏了,示波器仍然可以工作,只是这时候看到的波形在屏幕上来回“晃动”,或者说在屏幕上闪啊闪的。这其实相当于您将触发模式设置为“Auto”状态并把触发电平设置得超过信号的最大或最小幅值。示波器的采集存储器是一个循环缓存,新的数据会不断覆盖老的数据,直到采集过程结束。如图一所示。没有触发电路,这些采集的数据不断地这样新老交替,在屏幕上视觉上感觉波形在来回“晃动”。Auto Setup是自动触发设置,示波器根据被测信号的特点自动设置示波器的水平时基,垂直灵敏,偏置和触发条件,使得波形能显示在示波器上。其主要目的是保证波形能显示出来,这对于拿到示波器不知道如何使波形“出来”的新手是有用的。但如果不理解触发的概念,通过Auto Setup的设置就开始观察,测量甚至得出结论是不对的。示波器毕竟是工程师的眼睛,工程师需要透彻掌握这个工具,用好这双眼睛。 所谓触发,按专业上的解释是:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即实时捕获该波形和其相邻部分,并显示在屏幕上。触发条件的唯一

示波器基础知识

示波器基础知识 示波器是一种图形显示设备,它描绘电信号的波形曲线。这一简单的波形能够说明信号的许多特性:信号的时间和电压值、振荡信号的频率、信号所代表电路中“变化部分”信号的特定部分相对于其它部分的发生频率、是否存在故障部件使信号产生失真、信号的直流成份(DC)和交流成份(AC)、信号的噪声值和噪声随时间变化的情况、比较多个波形信号等。 1、示波器的发展过程 初期主要为模拟示波器 廿世纪四十年代是电子示波器兴起的时代,雷达和电视的开发需要性能良好的波形观察工具,泰克成功开发带宽10MHz的同步示波器,这是近代示波器的基础。五十年代半导体和电子计算机的问世,促进电子示波器的带宽达到10 0MHz。六十年代美国、日本、英国、法国在电子示波器开发方面各有不同的贡献,出现带宽6GHz的取样示波器、带宽4GHz的行波示波管、1GHz的存储示波管;便携式、插件式示波器成为系列产品。七十年代模拟式电子示波器达到高峰,行谱系列非常完整,带宽1GHz的多功能插件式示波器标志着当时科学技术的高水平,为测试数字电路又增添逻辑示波器和数字波形记录器。模拟示波器从此没有更大的进展,开始让位于数字示波器,英国和法国甚至退出示波器市场,技术以美国领先,中低档产品由日本生产。 模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和预前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器逐渐从前台退到后台。

但是在发展初期模拟示波器的某些特点,却是数字示波器所不具备的: ○操作简单:全部操作都在面板上可以找到,波形反应及时,数字示波器往往要较长处理时间。 ○垂直分辨率高:连续而且无限级,数字示波器分辨率一般只有8位至1 0位。 ○数据更新快:每秒捕捉几十万个波形,数字示波器每秒捕捉几十个波形。 ○实时带宽和实时显示:连续波形与单次波形的带宽相同,数字示波器的带宽与取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。 简而言之,模拟示波器为工程技术人员提供眼见为实的波形,在规定的带宽内可非常放心进行测试。人类五官中眼睛视觉神经十分灵敏,屏幕波形瞬间反映至大脑作出判断,细微变化都可感知。因此,刚开始模拟示波器深受使用者的欢迎。 中期数字示波器独领风骚 八十年代的数字示波器处在转型阶段,还有不少地方要改进,美国的TEK 公司和HP公司都对数字示波器的发展作出贡献。它们后来停产模拟示波器,并且只生产性能好的数字示波器。进入九十年代,数字示波器除了提高带宽到1G Hz以上,更重要的是它的全面性能超越模拟示波器。出现所谓数字示波器模拟化的现象,换句话说,尽量吸收模拟示波器的优点,使数字示波器更好用。 数字示波器首先在取样率上提高,从最初取样率等于两倍带宽,提高至五倍甚至十倍,相应对正弦波取样引入的失真也从100%降低至3%甚至1%。带宽1 GHz的取样率就是5GHz/s,甚至10GHz/s。 其次,提高数字示波器的更新率,达到模拟示波器相同水平,最高可达每秒40万个波形,使观察偶发信号和捕捉毛刺脉冲的能力大为增强。

ABCs of Probes

ABCs of Probes P rimer

ABCs of Probes Primer Precision Measurements Start at the Probe Tip As you'll learn in this primer,precision measurements start at the probe tip.The right probes matched to your oscilloscope are vital to achieving the greatest signal fidelity and measurement accuracy. Safety Summary When making measurements on electrical or electronic systems or circuitry,personal safety is of paramount importance.Be sure that you understand the capabilities and limitations of the measuring equipment that you’re using.Also,before making any measurements,become thoroughly familiar with the system or circuitry that you will be measuring.Review all documentation and schematics for the system being measured,paying particular attention to the levels and locations of voltages in the circuit and heeding any and all cautionary notations. Additionally,be sure to review the following safety precautions to avoid personal injury and to prevent damage to the measuring equipment or the systems to which it is attached.For additional explanation of any of the following precautions,please refer to Safety Precautions .— Observe All Terminal Ratings — Use Proper Grounding Procedures — Connect and Disconnect Probes Properly — Avoid Exposed Circuitry — Avoid RF Burns While Handling Probes — Do Not Operate Without Covers — Do Not Operate in Wet/Damp Conditions — Do Not Operate in an Explosive Atmosphere — Do Not Operate with Suspected Failures — Keep Probe Surfaces Clean and Dry — Do Not Immerse Probes in Liquids 2 To select the right probe for your specific application, please request the probe selection CD from your local Tektronix representative,or visit https://www.doczj.com/doc/e010060765.html,/accessories. Our continually expanding library of technical briefs,application notes and other resources will help ensure you get the most out of your probes and other equipment.Simply contact your local Tektronix representative or visit https://www.doczj.com/doc/e010060765.html,.

相关主题
文本预览
相关文档 最新文档