当前位置:文档之家› 分子生物学考试要点

分子生物学考试要点

分子生物学考试要点
分子生物学考试要点

分子生物学考试要点

第二章

1、染色体成分:DNA和蛋白质

2、染色体与染色质是同一种物质的两种形态。

为什么?伸展的染色质形态有利于在它上面的DNA储存的信息的表达,高度螺旋化的棒状染色体则有利于细胞分裂中遗传物质的平分。

3、真核细胞染色体的组成:

?其具体组成成分为:

?在真核细胞染色体中,蛋白质与相应 DNA 的质量之比约为

2:1,这些蛋白质在维持染色体结构中起着重要作用。

4、组蛋白是染色体的结构蛋白,其与 DNA 组成核小体。根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。

5、组蛋白的特性:①进化上极端保守性。②无组织特异性。③富含赖氨酸的特殊组蛋白H5。④肽链上氨基酸分布的不对称性。⑤组蛋白的修饰作用。⑥进化上极端保守性:保守程度从高到低依次为:H3=H4>H2B=H2A>H1。⑦无组织特异性。

⑧富含赖氨酸的特殊组蛋白H5

6、C值(C value):一种生物单倍体基因组DNA的总量。

C值谬误( C value paradox):指C值往往与种系进化的复杂度不一致,某些地低等生物却具有较大的C值。

7、染色体四级结构分别为:核小体、螺线管、超螺旋圆筒、染色单体

8、核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA 组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体的外面。每个核小体只有一个H1。

9、螺线管是由10nm染色质细丝盘绕形成的螺旋管状细丝,表现为30nm纤维。超螺旋圆筒:由30nm的螺线管缠绕而成,压缩比为40。染色单体由超螺旋圆筒再压缩5倍而成。

10、DNA的结构

DNA的一级结构:4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学结构。(DNA分子内部的两种作用力:碱基堆积与离子键)

DNA二级结构:是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。(DNA有三种构象:A-DNA、B-DNA、Z-DNA。

DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特

定空间结构。{包括超螺旋(正、负),线性双链中的纽结、多重螺旋等}

核酸变性指双螺旋区氢键断裂、空间结构破坏,形成单链状态的过程。(变性只涉及次级键的变化,磷酸二酯键的断裂称核酸降解。)

核酸变性后,260nm的紫外吸收值明显增加,称增色效应(Hyperchromic effect)。

把吸光度的增加且达到最大增量一半时的温度称为DNA的解链温度(melting temperature,Tm)或DNA的熔点。

DNA复制(起始、延伸和终止)(双向等速)

DNA的半保留复制: DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的,这种复制方式为半保留复制。

1958年,Meselson和Stahl研究了经15N标记3个世代的大肠杆菌DNA,首次证明了DNA半保留复制。

复制子(replicon)为生物体DNA的复制单位。

复制时,双链DNA要解开成两股链进行,使复制起点呈叉

状,被称为复制叉(Replication forks)。

复制起始点的共同特点:含有丰富的AT序列,它可能有利于DNA复制启动时双链的解开.

终止点:复制子中控制复制终止的位点称为复制终止点(terminus)。

双螺旋DNA的半不连续复制:前导链DNA的合成以5‘→3‘方向,随着亲代双

链DNA的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向按照5’→3‘方向合成一系列的冈崎

片段,然后再把它们连接成完整的后随链。

冈崎片段:在DNA复制时后随链(滞后链)由许多断断续续的小片段组成,这些小片段由冈崎发现。

原核生物DNA复制的特点:1.DNA 双螺旋的解旋?首先在拓扑异构酶I 的作用下解开负超螺旋,并由解旋酶解开双链,?接着由SSB 蛋白来稳定解开的单链,以保证该局部结构不会恢复为双链。2.DNA 复制的引发?首先由引发酶(一种RNA 聚合酶)在DNA 模板上合成一段RNA 链;?接着由DNA 聚合酶从RNA 引物3’ 端合成新DNA 链;?后随链的引发过程由引发体来完成。3.DNA链的延伸?前导链和滞后链由同一DNA聚

合酶Ⅲ(pol Ⅲ)二聚体延伸。?前导链的合成:由DnaG(primase)在复制起始位点附近合成1 个10~60nt 的RNA 引物,然后由pol Ⅲ把dNTP 加到该引物上。滞后链的合成:产生Okazaki fragments,由RNase 降解RNA 引物并由DNA聚合酶I (DNA pol I) 补上一小

段DNA 序列,由DNA ligase 把两个片段相连。? DNA 滞后链与主导链合成的不同步。4.复制的终止υ当复制叉前移,遇到约22 个碱基的重复性终止序列(Ter)时,Ter-Tus 复

合物能使DnaB 不再将DNA 解链,阻挡复制叉的继续前移。υ复制停止后,仍有50-100bp 未被复制,将由修复方式填补空缺,而后两链解开。在DNA 拓扑异构酶Ⅳ的作用下使复制叉解体,释放子链DNA。5.DNA聚合酶υ现已知大肠杆菌存在DNA 聚合酶I 、II、III、IV 和V。υ DNA 聚合酶IV 和V 主要在SOS 修复中起作用。

真核生物DNA 复制的特点I. 真核生物每条染色体上可以有多个复制起点。II. 真核生物DNA 在完成复制前不能开始新的复制,而原核生物则可以连续开始新的DNA 复制,一个

复制单元多个复制叉。III. DNA复制只能在分裂期进行。IV. 复制起点为自主复制序列(ARS),起始点识别复合物(ORC)。V. 复制叉移动速度慢,仅50bp/s,不到大肠杆菌的1/20。VI. 真核生物DNA 聚合酶有15 种以上,其中DNA聚合酶α 功能主要是引物合成。DNA聚合酶δ 主要负责DNA 的复制。还存在其它一些酶,ζ、η、ι、κ 等,有修复损伤功能。DNA复制的调控:原核细胞内复制叉的多少决定了复制起始频率的高低,复制起始频率的直接调控因子是蛋白质和RNA。真核细胞DNA 的复制调控。DNA 复制只发生在分裂期,其有3 个水平的调控:细胞生活周期水平的调控。也称限制点调控,即决定细胞停留在G1 还是进入S 期。υ染色体水平调控。决定不同染色体或同一染色体不同部位的复制子按一

定顺序在S 期进行复制。 复制子水平调控。决定复制的起始与否,这种调控从单细胞生物到高等生物是高度保守的。

修复过程

错配修复::(P58)

识别错配(Dam甲基化酶)复合物的形成,甲基化及非甲基化链的切开,DNA 外切酶切除含错配的部分DNA 链,DNA 聚合酶III 合成新链。

切除修复

碱基切除修复:形成去AP 位点AP核酸内切酶切除受损片段DNA 聚合酶I和DNA连接酶修复DNA链核苷酸切除修复:(P60)DNA 切割酶切割移去12-13个核苷酸(原核)或

27-29 个核苷酸(真核)的单链DNA,再由DNA 聚合酶I和DNA 连接酶修复DNA链。

重组修复又被称为“复制后修复”,修复的对象是子代DNA。

损伤的DNA先进行复制,在子代DNA损伤互补的部位出现缺口,通过分子间重组,先从同源DNA母链上将相应的核苷酸序列片段移至缺口处,然后再用新合成的序列补上母链重组产生的缺口。模板上的损伤始终留着。只是重组修复后合成的DNA 分子是不带有损伤的。进过多次复制后,损伤就被稀释了,在子代的细胞中只有一个细胞是带有损伤DNA的。

4. DNA 的直接修复

直接修复是把损伤的碱基回复到原来状态的一种修复。如在DNA 光解酶的作用下修复嘧啶二聚体(光修复)。

5. SOS 反应

SOS 反应是细胞DNA 受到损伤或复制系统受到抑制的危机状况下,细胞为求生存而产生的一种应急措施。SOS 反应包括诱导DNA 损伤的修复、诱变效应、细胞分裂的抑制等。SOS 反应广泛存在于原核和真核生物中,可产生两方面的作用:DNA 的修复、DNA 的变异。DNA的转座:移位(transposition),是由可移位因子(transposition element)介导的遗传物质重排现象。

转座子(transposon Tn):存在于染色体DNA上可自主复制和位移的基本单位。

分为:插入序列(insertional sequence,IS)和复合型转座子(composite transposon)。转座的遗传效应

DNA 转座的遗传学效应:I. 转座引起插入突变;II. 转座产生新的基因;III. 转座产生的染

色体畸变;IV. 转座引起的生物进化。

第三章

转录(transcription):指拷贝出一条与DNA 链序列完全相同的RNA 单链的过程。

翻译(translation):指以新生的mRNA 为模板,把核苷酸三联遗传密码子翻译成氨基酸序列、合成多肽链的过程。

启动子是一段位于结构基因5’端上游区的DNA 序列,能活化RNA 聚合酶,使之与模板DNA 准确地结合,并具有转录起始的特异性。

增强子:能强化转录起始的序列。

转录单元(transcription unit):一段从启动子开始至终止子结束的DNA 序列。

RNA 的结构特点:RNA 含有核糖和嘧啶,通常是单链线性分子。碱基配对规则:A-U,G-C。RNA 链自身折叠形成局部双螺旋。发夹结构(hairpin)、凸结构(bugle) 或环结构(loop) RNA 可折叠形成复杂的三级结构。

RNA链的合成都具有以下几个特点:RNA 按5’→3’方向合成。以DNA 双链中的反义链为模板。不需要引物参与。合成的RNA 有与DNA 编码链相同的序列(A-U)

转录的基本过程包括:1. 模板的识别2. 转录起始3. 转录延伸4. 转录终止

2.1 模板的识别:ν模板的识别阶段主要指RNA 聚合酶与启动子DNA 双链相互作用并与之相结合的过程。ν启动子是基因转录起始所必需的一段DNA 序列,是基因表达调控的上游顺式作用元件之一。ν真核细胞中的模板识别与原核细胞有所不同,需要一些转录调控因子(辅助蛋白),RNA 聚合酶才能识别启动子并形成转录前起始复合物(Preinitiation complex,PIC)。

2.2 转录起始:① 聚合酶与启动子可逆性结合形成封闭复合物(closed complex)。② 伴随着DNA 构象的变化,封闭复合物变成开放复合物(open complex),聚合酶全酶所结合的DNA 序列中有一小段双链被解开。③ 开放复合物与最初的两个NTP 相结合并在这两个核苷酸之间形成磷酸二酯键后即转变成包括RNA 聚合酶、DNA 和新生RNA 的三元复合物。15 ν一般情况下,该复合物可以进入两条不同的反应途径:υ一是合成并释放2 ~ 9 个核苷酸的短RNA 转录产物,即所谓的流产式起始;υ二是尽快释放σ亚基,转录起始复合物通过上游启动子区并生成由核心酶、DNA 和新生RNA 所组成的转录延伸复合物。ν转录因子(Transcription factor, TF):蛋白辅助因子。除了RNA 聚合酶之外,真核生物转录起始过程中至少还需要7 种辅助因子参与。

2.3 RNA 链的延伸νσ亚基脱落,RNA 聚合酶核心酶变构,与模板结合松弛,RNA 聚合酶沿模板DNA 链移动并使新生RNA 链不断伸长的过程。ν在核心酶作用下,NTP 不断聚合,RNA 链不断延长。ν DNA 转录循环假说。(教材P77)

转录延伸复合物核心酶···· DNA ···· RNA

2.4 转录终止ν RNA 聚合酶起始基因转录后,它就会沿着模板5‘—3’ 方向不断移动,合成RNA 链,直到碰上终止信号时才与模板DNA 相脱离并释放新生RNA 链。ν终止发生时,所有参与形成RNA-DNA 杂合体的氢键都必须被破坏,模板DNA 链才能与有意义链重新组合成DNA 链。ν大肠杆菌的终止子分为:不依赖ρ 因子的转录终止和依赖ρ 因子的转录终止。

只编码一个蛋白质的mRNA 称为单顺反子mRNA (monocistronicmRNA),把编码多个蛋白质的mRNA 称为多顺反子mRNA (polycistronic mRNA)。

多顺反子mRNA 是一组相邻或相互重叠基因的转录产物,这样的一组基因可被称为一个操纵子(operon)

真核细胞mRNA 的最大特点在于它往往以一个较大相对分子质量的前体RNA 出现在核内,只有成熟的、相对分子质量明显变小并经化学修饰的mRNA 才能进入细胞质,参与蛋白质的合成。所以,真核细胞mRNA 的合成和功能表达发生在不同的空间和时间范畴内。

原核生物中,mRNA 的转录和翻译不仅发生在同一个细胞空间里,而且这两个过程几乎是同步进行的,蛋白质合成往往在mRNA 刚开始转录时就被引发了。

一个原核细胞的mRNA 有时可以编码几个多肽。一个真核细胞的mRNA 最多只能编码一个多肽。原核生物常以AUG,有时GUG 甚至UUG 作为起始密码子。而真核生物几乎永远以AUG 作为起始密码子。

几乎所有mRNA 都可以被分成3 部分:1. 编码区:从起始密码子AUG开始,经一连串编码氨基酸的密码子直至终止密码子。 2. 位于AUG 之前的5’端上游非编码区 3. 位于终止密码子之后不翻译的3’端下游非编码区。

“基因”的分子生物学定义是:产生一条多肽链或功能RNA 所必需的全部核苷酸序列。

由DNA 转录生成的原始转录产物——核不均一RNA (hnRNA,heterogeneous nuclear RNA),即mRNA 的前体,经过5’ 加“帽”和3’ 酶切加多聚腺苷酸,再经过RNA 的剪接,编码蛋白质的外显子部分就连接成为一个连续的可读框(open reading frame,ORF)。

外显子(exon):基因中与mRNA 一致的序列。一个基因总是以外显子为起点和终点。

内含子(intron):基因中编码序列之间的介入序列,在原初转录物加工为mRNA 时被去除。组成性剪接:在高等真核生物中,内含子通常是有序或组成性地从mRNA 前体中被剪接,这种剪接方式称为组成性剪接。

自我剪接(self-splicing / autosplicing)

可变剪接又叫选择性剪接,指在个体发育或细胞分化时可以有选择性地越过某些外显子或某个剪接点进行变位剪接,产生出组织或发育阶段特异性mRNA,称为内含子的可变剪接RNA 编辑是指转录后的RNA 在编码区发生碱基的突变、加入或丢失等现象。

核酶(ribozyme) 指一类具有催化功能的RNA 分子,通过催化靶位点RNA 链中磷酸二酯键的断裂,特异性地剪切底物RNA 分子,从而阻断基因的表达。

剪切型核酶(只剪不接),剪接型核酶

第四章

mRNA 上每3 个核苷酸翻译成多肽链上的一个氨基酸,这3 个核苷酸就称为一个密码子(三联子密码)。

UAA、UGA 和UAG 是终止密码子。

遗传密码的性质:密码的连续性(commaless) 密码的简并性(degeneracy)

密码的普遍性(universality)密码的特殊性(specificity)密码子与反密码子的相互作用简并(degeneracy):由一种以上密码子编码同一个氨基酸的现象称为简并。

同义密码子(synonymous codon):对应于同一氨基酸的密码子。

不随机:一般发生在密码子的第三位。生物学意义:减少了变异对生物的影响

tRNA 的反密码子在核糖体内是通过碱基的反向配对与mRNA 上的密码子相互作用的。tRNA 的二级结构:不同tRNA 在结构上存在大量的共性,由小片段碱基互补配对形成三叶草形分子结构,有4 条根据结构或已知功能命名的手臂(arm or stem) 和3个环(loop)。tRNA 的L-形三级结构:结构形式满足了蛋白质合成过程中对tRNA 的各种要求而成为tRNA 的通式

氨酰-tRNA合成酶aminonacyl-tRNA synthetase (ARS )AA-tRNA 合成酶是一类催化氨基酸与tRNA 结合的特异性酶;

只有fMet-tRNAfMet 能与第一个P 位点相结合,其它所有tRNA 都必须通过A 位点到达P 位点,再由 E 位点离开核糖体。

每一个tRNA 结合位点都横跨核糖体的两个亚基,位于大、小亚基的交界面

由若干核蛋白体结合在一条mRNA 上同时进行多肽链的翻译所形成的念球状结构称为多聚核蛋白体(polysome)。

分子伴侣是一类序列上没有相关性但有共同功能的保守性蛋白质

翻译运转同步机制(cotranslationally) :某个蛋白质的合成和运转是同时发生的

翻译后运转机制(post-translationally) :蛋白质从核糖体上释放后才发生的运转

各种新生分泌蛋白的N 端有保守的氨基酸序列称信号肽。

前导肽(leader peptide)

第七章

从DNA 到蛋白质的过程称为基因表达(gene expression),对这个过程的调节就称为基因表达调控(gene regulation,gene control)。

Z 编码β-半乳糖苷酶,Y 编码β-半乳糖苷透过酶,A 编码β-半乳糖苷乙酰基转移酶

第八章

基因组(genome):一个细胞或病毒所携带的全部遗传信息或整套基因。

基因(gene):能产生一条肽链或功能RNA 所必须的DNA 片段。它包括编码区和其上下游区域,以及在编码片段间(外显子)的间断切割序列(内含子)。

基因表达(gene expression):基因经过转录、翻译,产生具有特异生物学功能的蛋白质分子或RNA 分子的过程。

基因表达调控(gene regulation):基因表达是受到内源及外源信号调控的,这种调控的过程称为基因表达调控。

真核基因表达调控一般规律(与原核相比):生活方式的不同,基因数量和结构,转录和翻译方式

生活方式

原核生物一般为自由生活的单细胞,只要环境条件合适,养料供应充分,它们就能无限生长、分裂,因此它们的调控系统就是要在一个特定的环境中为细胞创造高速生长的基础,或使细胞在受到损伤时,尽快得到修复。

基因数量和结构

真核生物(除酵母、藻类和原生动物等单细胞类之外)主要由多细胞组成,每个细胞基因组中蕴藏的遗传信息量及基因数量都大大高于原核生物。人类细胞单倍体基因组有3×109 bp,为大肠杆菌总DNA 的800 倍,噬菌体的10万倍左右!

转录和翻译方式

真核生物染色质被包裹在细胞核内,基因的转录(核内)和翻译(细胞质内)被核膜所隔开,核内RNA 的合成与转运,细胞质基质中RNA 的剪接和加工等都属于真核生物基因调控的范围。

扩大了真核生物基因调控的范围,使真核生物基因调控达到了原核生物所不可能拥有的深度和广度。

基因家族

在原核细胞中,密切相关的基因往往组成操纵子,并以多顺反子的方式进行转录。而真核细胞中的DNA 是单顺反子结构,很少置于同一启动子之下的操纵子。

真核细胞中许多相关的基因常按功能成套组合,被称为基因家族。同一家族的成员有时紧密排列在一起,成为一个基因簇;更多时候,分散在同一染色体不同部位,甚至位于不同染色体上,具有各自不同的表达调控模式。

内含子是指存在于原始转录物或基因组DNA 中,但不存在于成熟mRNA、rRNA 或tRNA 中的那部分核苷酸序列。

外显子与内含子的可变调控:组成型剪接,选择性剪接

基因转录调节的基本要素包括顺式作用元件(cis-acting element)、反式作用因子(trans-acting factor,又称跨域作用因子)和RNA 聚合酶(RNA polymerase)。

顺式作用元件是指启动子和基因的调节序列。主要包括启动子、增强子、沉默子等。这些序列组成基因转录的调控区,影响基因的表达。

启动子(Promoter)

真核基因启动子由核心启动子和上游启动子两个部分组成,是在基因转录起始位点(+1)及其5’上游大约100~200bp 以内的一组具有独立功能的DNA 序列,每个元件长度约为7~20bp,是决定RNA 聚合酶II 转录起始点和转录频率的关键元件。

核心启动子(core promoter):是保证RNA 聚合酶II 转录正常起始所必需的、最少的DNA 序列,包括转录起始位点及转录起始位点上游-25-30bp 处的TATA 盒。核心启动子确定转录起始位点并产生基础水平的转录。

上游启动子元件(upstream promoter element,UPE)包括通常位于-70bp 附近的CAAT 盒(CCAAT)和GC 盒(GGGCGG)等,能通过TFIID 复合物调节转录起始的频率,提高转录效率。

增强子是指能使与它连锁的基因转录频率明显增加的DNA 序列。

反式作用因子是指能够结合在顺式作用元件上调控基因表达的蛋白质或者RNA。

反式作用因子是能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质。

按功能状态的不同可将染色质分为活性染色质和非活性染色质,所谓活性染色质是指具有转录活性的染色质;非活性染色质是指没有转录活性的染色质。

基因扩增

是指某些基因的拷贝数专一性大量增加的现象,使细胞在短期内产生大量基因产物以满足生长发育之需,是基因活性调控的一种方式。

基因组拷贝数增加,即多倍性

将一个基因从远离启动子的地方移到较近的位点从而启动转录,被称为基因重排

DNA 甲基化主要形成5-甲基胞嘧啶(5-mC)和少量N6-甲基腺嘌呤(N6-mA)及7-甲基鸟嘌呤(7-mG)

日常型甲基转移酶,从头合成型甲基转移酶

组蛋白是组成核小体的基本成分,核小体是组成染色质的基本结构单元。

基因沉默(RNA silencing):指真核生物中由双链RNA 诱导的识别和清除细胞中非正常RNA 的一种机制。转录水平基因沉默,转录后基因沉默。

RNA干扰(RNA interference, RNAi):生物体内通过双链RNA 分子在mRNA 水平上诱导具有特异性序列的基因沉默的过程。

而今将统一介导这种沉默现象的小片段RNA 称为干扰小RNA(small interfering RNA, siRNA)

Exons ,

Introns, Constitutive splicing, alternative splicing, Gene family,

Cis-acting elements, Trans-acting factors, Transcriptional factors, Enhancer

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

分子生物学练习题及答案

分子生物学试题 一、名词解释 I. cDNA与cccDNA: cDNA是由mRNA通过反转录酶合成的双链DNA cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2?标准折叠单位:蛋白质二级结构单元a-螺旋与折叠通过各种连接多肽可以组成特殊几何排列的结构块, 此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3. CAP环腺苷酸(cAMP受体蛋白CRP(cAMP receptor protein ), cAMP与CRP结合后所形成的复合物称激活蛋白CAP (cAMP activated protein ) 4. 回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5. micRNA 互补干扰RNA或称反义RNA与mRNA序列互补,可抑制mRNA勺翻译。 6. 核酶:具有催化活性的RNA在RNA的剪接加工过程中起到自我催化的作用。 7. 模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9. 弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10. 魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生 这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 II. 上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA -35区的TGACA^增强子,弱化子等。 12. DNA探针:是带有标记的一段已知序列DNA用以检测未知序列、筛选目的基因等方面广泛应用。 13. SD序列:是核糖体与mRN黠合序列,对翻译起到调控作用。 14. 单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15. 考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS 区,与质粒连接构成。 16. 蓝-白斑筛选:含LacZ基因(编码3半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-3 -D-半乳 糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。 称之为蓝-白斑筛选。 17?顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。 18. Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5' 宀3'外切酶活性 19. 锚定PCR用于扩增已知一端序列的目的DNA在未知序列一端加上一段多聚 dG的尾巴,然后分别用多聚dC 和已知的序列作为引物进行PCR扩增。 20. 融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3. 原核生物中有三种起始因子分别是(IF-1 )、(IF-2 )和(IF-3 )。 4. 蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。 5. 启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6. 分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。

分子生物学试题及答案

分子生物学试题及答案

分子生物学试题及答案一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

除了5’ 3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。3.原核生物中有三种起始因子分别是(IF-1)、( IF-2 )和(IF-3 )。4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。 5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、( DNA重组技术)三部分。 7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:( hnRNA在转变为mRNA 的过程中经过剪接,)、

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36 个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10 区的TATA、-35 区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源D NA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5- 溴-4-氯-3- 吲哚-β-D- 半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ 基因不能表达,菌株呈白色,以此来筛 选重组细菌。称之为蓝- 白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。 18.Klenow 酶:DNA聚合酶I 大片段,只是从DNA聚合酶I 全酶中去除了5' → 3'外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用 多聚dC 和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1.DNA 的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2.RNA 酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1 )、(IF-2 )和(IF-3 )。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、(T2 噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA′3 末端多了一个多聚腺苷酸(polyA)尾巴)。9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP 的启动子S2 进行本底水平的永久型合成;同时需要一个依赖于

(完整版)分子生物学复习题及其答案

一、名词解释 1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA 所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列的长度为6~200碱基对。 20、基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。 21、基因簇:基因家族的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。 22、超基因家族:由基因家族和单基因组成的大基因家族,各成员序列同源性低,但编码的产物功能相似。如免疫球蛋白家族。 23、假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。 24、复制:是指以原来DNA(母链)为模板合成新DNA(子链)的过程。或生物体以DNA/RNA

分子生物学题库重点

一. 名词解释 1. C值及C值反常反应:所谓C值,通常是指一种生物单倍体基因组DNA的总量。真核细胞基因的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是C值反常现象。 2. 半保留复制:DNA生物合成时,母链DNA解开分为两股单链,各自为模板按碱基互补规律,合成与模板互补的子链。子代细胞的DNA,一股从亲本完全接受过来,另一股则完全从新合成。两个子细胞的DNA碱基序列一致。 3 半不连续复制:前导链连续复制而随从链不连续复制,就是复制的半不连续性。 4 引发体:复制的起始含有解螺旋酶.DNA C蛋白.引物酶和DNA复制起始区域的复合结构称为引发体。 5. DNA损伤:在复制过程中发生的DNA突变体称为DNA损伤。 6 转座子:是存在于染色体DNA上可自主复制和位移的基本单位。 7. 中心法则:通过DNA的复制把遗传信息由亲代传递给子代,遗传信息由DNA传递到RNA,最后翻译成特异的蛋白质.RNA还以逆转录的方式将遗传信息体传递给DNA分子。这种遗传信息的流向称为中心法则。 8 编码链:双链DNA中,不能进行转录的那一条DNA链,该链的核苷酸序列与转录生成的RNA的序列一致,又称意义链。 9. 转录因子:能直接或间接辨认和结合转录上游区段DNA的蛋白质,称反式作用因子。在反式作用因子中,直接或间接结合DNA聚合酶的,则称为转录因子。 10 RNA编辑:是某些RNA,特别是mRNA前体的一种加工方式,如插入,删除或取代一些核苷酸残基,导致DNA所编码的遗传信息发生改变,因为经过编辑mRNA序列发生了不同于模板DNA的变化。 11 cDNA:互补DNA,是以mRNA为模板,按碱基互补规律,合成与mRNA互补的DNA 单链。 12 RNA选择性剪接:是指不同的剪切方式从一个mRNA前体产生不同的mRNA剪接异构体的过程。 13 GU-AG法则:多数细胞核mRNA前体中内含子的5’边界序列为GU,3’边界,序列为AG。因此,GU表示供体先借点的5’端,AG代表接纳体衔接点3’端序列。习惯上,这种保守序列模式称为GU-AG法则。 14. 顺反子:遗传学上将编码一个多肽链的遗传单位,称为顺反子。真核mRNA只编码一种蛋白质,为单顺反子。 15. 翻译:以mRNA为模板,氨酰-tRNA为原料直接供体,在多种蛋白质因子和酶的参与下,在核糖体上将mRNA分子上的核苷酸顺序表达为有特定氨基酸顺序的蛋白质的过程。 16. 摆动假说:Crick为解释反密码子中某些稀有成分的配对以及许多氨基酸有2个以上的密码子的问题而提出的假说。 17. 氨酰-tRNA合成酶:是一类催化氨基酸和tRNA相结合的特异性酶。 18. SD序列:早在1974年,Shine就发现,几种细菌小亚基rRNA3’末端顺序为:5’—ACCUCCUA—3’,它可以和mRNA中离AUG顺序5’侧约9-13个碱基处有一段富含嘌呤碱基AGGA或GAGG互补,后来称此区域为SD。 19. 多核糖体:mRNA同时与若干个核糖体结合形成的念珠转结构,称为多核糖体。 20 核定位序列:蛋白质中的一种常见的结构域,通常为一短的氨基酸序列,它能与核载体相互作用,将蛋白质运进细胞核内。 21. 基因打靶:是指通过DNA定点同源重组,改变基因组中的某一特定基因,从而在生物活体内研究此基因的功能。

分子生物学整理

1.核酸与蛋白质的结构比较表如下: 核酸(Nucleic acids) 蛋白质(Proteins) DNA RNA 一级结构Primary structure 核苷酸序列 AGTTCT 或AGUUCU 的排列顺序 3,,5,- 磷酸二酯键 氨基酸排列顺序 肽键 二级结构Secondarystructure 双螺旋 主要是氢键,碱基堆积 力 配对(茎-环结构) (同左) 有规则重复的构象 (α-helix ,β-sheet, β-turn) 氢键 三级结构Tertiary structure 超螺旋RNA空间构象 一条肽链的空间构象 范德华力氢键疏水 作用盐桥二硫键等 四级结构Quaternarystructure 多条肽链 (或不同蛋白) 3.分离和纯化核酸:聚丙烯酰胺凝胶电泳(PAGE)与琼脂糖凝胶电泳(AGE)广泛用于核酸的分离、纯化 与鉴定 基因组DNA的分离与纯化:(一)酚抽提法(二)甲酰胺解聚法(三)玻棒缠绕法(四)DNA样品的进一 步纯化:纯化的方法包括透析、层析、电泳及选择性沉淀等 4原核生物与真核生物基因信息传递过程中的差异 1. DNA的复制 原核生物真核生物 DNA聚合酶DNA聚合酶Ⅰ、Ⅱ、ⅢDNA聚合酶α、β、γ、δ、ε五种,其中δ为主要的聚合酶, γ存在于线粒体中 原核的DNA聚合酶I具有5'-3'外切酶活性。真核生物的聚合酶没有5'-3'外切酶活性,需要一种叫FEN1 的蛋白切除5'端引物 DNA聚合酶III复制时形成二聚体复合物 起始复制地点:细胞质复制地点:细胞核 复制时间:DNA合成只是发生在细胞周期的S期 有时序性,即复制子以分组方式激活而非同步启动复制起点:一个起始位点,单复制子复制起点:多个复制起始位点,多复制子 起始点长度:长起始点长度:短 延长冈崎片段:比较长冈崎片段:比原核生物要短 引物:RNA,切除引物需要DNA聚合酶I 引物:较原核生物的短,除RNA外还有DNA,所以真核生 物切除引物需要核内RNA酶,还需要核酸外切酶。 终止基因为环状的DNA,复制的终止点ter,催 化填补空隙为DNA-polⅠ,DNA连接酶连 接冈崎片段成DNA链真核生物基因为线状的DNA,其复制与核小体的装配同步进行,复制后形成染色体,DNA-polε填补空隙,存在端粒及端粒酶防止DNA的缩短(RNA引物留下的空白无法填补时出现DNA的缩短)

分子生物学历年大题

2012年1月分子生物学自考试卷大题 26.半不连续复制 27.上游启动子元件 28.遗传密码 29.报告基因 30.锌指结构 31.简述DNA双螺旋结构模型 32.简述启动子的作用特点 33.简述原核生物蛋白质生物合成的起始过程 34.简述半乳糖操纵子的结构特点 35.简述在原核生物翻译水平上影响基因表达调控的因素 36.试述利用λ噬菌体构建基因组DNA文库的方法 37.试述真核生物基因表达调控的主要特点 2011年7月分子生物学自考试卷大题 26.SOS反应 27.RNA再编码 28.cDNA文库 29.RNA干扰 30.物理图谱 31.比较原核生物与真核生物在复制过程中的差异。 32.简述增强子的作用特点。

33.简述CAP对gal操纵子的作用。 34.真核生物在转录前对基因表达调控的方式有哪些? 35.反式作用因子有哪些结构特征。 https://www.doczj.com/doc/df10429195.html,c操纵子的调控机理。 37.试述蛋白质合成的基本过程,并比较原核与真核生物在蛋白质合成过程中的差异。 2010年10月: 26.C值反常 27.同工Trna 28.释放因子 29.细菌转化 30.选择性剪接 31.简述DNA复制的特点 32.核糖体上与翻译有关的位点有哪些? 33.简述操纵子的一般结构 34.简述真核生物DNA甲基化抑制基因表达的原因 35.简述细胞内癌基因的激活方式。 36.色氨酸操纵子在高色氨酸浓度和低色氨酸浓度时表达水平相差约600倍,但阻遏作用仅只能使转录水平降低70倍,请利用色氨酸操纵子的调控机制解释上述现象。 37.试比较原核生物与真核生物转录产物mRNA的异同。

2010年7月: 名词解释:同源域基因、基因定点突变、基因、遗传密码、冈崎片段简答:1.简述细胞中原癌基因转变为癌基因的主要途径。 2.简述sanger双脱氧链终止法测序基本原理。 3.简述原核生物蛋白质合成具体步骤。 4.简述大肠杆菌RNA聚合酶中a因子生物学功能。 简单应用:色氨酸操纵子调节作用。 论述:真核生物与原核生物在基因结构、转录和翻译主要差异。 2010年1月部分大题: 名词解释:中心法则、转座子、基因敲除、增强子、基因治疗 简单:1.简述原核生物RNA转录终止信号分类、结构特点。 2.简述tRNA mRNA tRNA各自生物学功能。 3.简述聚合酶链式反应(PCR)基本原理。 简单应用:乳糖操纵子的调节功能。 论述:真核生物基因表达可在多个层次上进行调控,根据发生先后顺序,叙述真核生物基因表达调控过程。 09年10月部分大题: 名词解释:半不连续复制、基因家族、基因扩增 简答:1.RNA编辑生物学意义。 2.转录与翻译不同点

分子生物学复习资料 绝对重点

分子生物学复习资料 (第一版) 一名词解释 1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。 2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。均为真核生物基因中的转录调控序列。顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly (A)加尾信号。反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA聚合酶、转录因子、转录激活因子、抑制因子。 3VNTR / STR—可变数目串联重复序列 / 短串联重复。均为非编码区的串联重复序列。 前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。(参考第7题) 4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。 5 ORF / UTR—开放阅读框 / 非翻译区。均指在mRNA中的核苷酸序列。前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参与翻译起始调控,为前者的多肽链序列信息转变为多肽链所必需。 6 enhancer / silencer—增强子 / 沉默子。均为顺式作用元件。前者是一段含多个作用元件的短DNA序列,可特异性与转录因子结合,增强基因的转录活性,可以位于基因任何位置,通常在转录起始点上游-100到-300个碱基对处;后者是前者内含的负调控序列,结合特异蛋白因子时,对基因转录起阻遏作用。 7 micro-satellite / minisatellite—微卫星DNA / 小卫星DNA 。卫星DNA是出现在非编码区的串联重复序列,特点是有固定重复单位且重复单位首尾相连形成重复序列片段,串联重复单位长短不等,重复次数大小不一。微卫星DNA即STR;小卫星DNA分为高度可变的小卫星DNA(即VNTR)和端粒DNA。(参考第3题) 8 SNP / RFLP—单核苷酸多态性 / 限制性片段长度多态性。前者是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性,它是人类遗传变异中最常见的一种,占所

分子生物学基础知识要点

Northern blot:是DNA/RNA的杂交,它是一项用于检测特异性RNA的技术,RNA混合物首先按照它们的大小和相对分子量通过变性琼脂糖凝胶电泳加以分离,凝胶分离后的RNA 通过southern印迹转移到尼龙膜或硝酸纤维素膜上,再与标记的探针进行杂交反应,通过杂交结果分析可以对转录表达进行定量或定性。它是研究基因表达的有效手段。与Southern blot 相比,它的条件更严格些,特别是RNA容易降解,前期制备和转膜要防止Rnase的污染。实验步骤:1.用具的准备2.用RNAZaP去除用具表面的RNase酶污染3.制胶4. RNA样品的制备5.电泳6.转膜7.探针的制备8.探针的纯化及比活性测定9.预杂交10.探针变性11.杂交12.洗膜13.曝光14.去除膜上的探针15.杂交结果 半定量PCR要求比普通PCR更严格一些,另外往往通过转膜后的同位素杂交检测或凝胶成像后的灰度测定比较样品间的差异。 半定量RT-PCR一般是在没有条件做实时PCR 的情况下使用,用于测定体内目的基因的表达增加减少与否,即通过目的基因跑出来的电泳带与管家基因(如β-actin)的电泳带的相对含量比较,观测目的基因表达增减,另外还要做一个β-actin的内参照对照。 实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1.实时荧光定量PCR无需内标 2.内标对实时荧光定量PCR的影响 Sybr green(荧光染料掺入法)和Taqman probe(探针法) 检测两种蛋白质相互作用方法 1共纯化、共沉淀,在不同基质上进行色谱层析 2蛋白质亲和色谱基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。 3免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高4 Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 1.酵母双杂交 2.GSTpull-down实验 3.免疫共沉淀 4.蛋白质细胞内定位 RACE是基于PCR技术基础上由已知的一段cDNA片段,通过往两端延伸扩增从而获得完整的3'端和5'端的方法 1.此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有 利用价值的信息 2.节约了实验所花费的经费和时间。 3.只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长 基因特异性引物(GSPs)应该是: 23-28nt 50-70%GC Tm值≥65度,Tm值≥70度可以获得好的结果 注意事项 1.cDNA的合成起始于polyA+RNA。如果使用其它的基因组DNA或总RNA,背景会很高

分子生物学课件整理朱玉贤

1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和 酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息 的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的 RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解 影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微 生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编 码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单 拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列 的长度为6~200碱基对。

分子生物学复习题

1、分子生物学的定义。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。 2、简述分子生物学的主要研究内容。 a.DNA重组技术(基因工程) (1)可被用于大量生产某些在正常细胞代谢中产量很低的多肽 ; (2)可用于定向改造某些生物的基因组结构 ; (3)可被用来进行基础研究 b.基因的表达调控 在个体生长发育过程中生物遗传信息的表达按一定时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)。 c.生物大分子的结构和功能研究(结构分子生物学) 一个生物大分子,无论是核酸、蛋白质或多糖,在发挥生物学功能时,必须具备两个前提: (1)拥有特定的空间结构(三维结构); (2)发挥生物学功能的过程中必定存在着结构和构象的变化。 结构分子生物学就是研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。它包括3个主要研究方向: (1) 结构的测定 (2) 结构运动变化规律的探索 (3) 结构与功能相互关系 d.基因组、功能基因组与生物信息学研究 3、谈谈你对分子生物学未来发展的看法? (1)分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类认识论上的重大飞跃。生命活动的一致性,决定了二十一世纪的生物学将是真正的系统生物学,是生物学范围内所有学科在分子水平上的统一。 (2)分子生物学是目前自然学科中进展最迅速、最具活力和生气的领域,也是新世纪的带头学科。

(3)分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以及信息科学等多学科相互渗透、综合融会而产生并发展起来的,同时也推动这些学科的发展。 (4)分子生物学涉及认识生命的本质,它也就自然广泛的渗透到医学、药学各学科领域中,成为现代医药学重要的基础。 1、DNA双螺旋模型是哪年、由谁提出的?简述其基本内容。 DNA双螺旋模型在1953年由Watson和Crick提出的。 基本内容: (1) 两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,两条链均为右手双螺旋。 (2) 嘌呤与嘧啶碱位于双螺旋的内侧,3′,5′- 磷酸与核糖在外侧,彼此通过磷酸二酯键相连接,形成DNA分子的骨架。 (3) 双螺旋的平均直径为2nm,两个相邻碱基对之间相距的高度即碱基堆积距离 为0.34nm,两个核苷酸之间的夹角为36。。 (4) 两条核苷酸链依靠彼此碱基之间形成的氢键相连系而结合在一起,A与T相配对形成两个氢键,G与C相配对形成3个氢键。 (5) 碱基在一条链上的排列顺序不受任何限制,但根据碱基互补配对原则,当一条多核苷酸的序列被确定后,即可决定另一条互补链的序列。

分子生物学考试,名词解释与考点(精要)

一,名词解释 1.(Northern blot)Northern印迹杂交。这是一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。Northern 印迹杂交的RNA吸印与Southern印迹杂交的DNA吸印方法类似,RNA印迹技术正好与DNA相对应,故被称为Northern印迹杂交。 (Southern blot)Southern印迹杂交是一种常用的DNA定量的分子生物学方法。一般利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量。 2.(cis-acting element)顺式作用元件。存在于基因旁侧序列中能影响基因表达的序列,它们的作用是参与基因表达的调控,本身不编码任何蛋白质, 仅仅提供一个作用位点, 要与反式作用因子相互作用而起作用。 (trans-acting factor)反式作用因子。是指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。 3. (VNTR )可变数目串联重复多态性。可变数目串联重复序列是重复单位为9~24bp,重复次数变化大,呈高度多态性的DNA序列,又称小卫星DNA,拷贝数10~1000不等。 (STR)短串联重复序列。又称微卫星DNA,是一类简单的寡核苷酸串联重复序列,其重复单位为2~6bp,重复次数10~60次左右,其长度通常小于150bp,分布在所有染色体中。 4.(viral oncogene)病毒癌基因。病毒(大多是逆转录病毒)具有的一种可以使宿主细胞发生癌变的基因。源自细胞中的正常基因。 (cell-oncogene)细胞癌基因。存在于正常的细胞基因组中,与病毒癌基因有同源序列,具有促进正常细胞生长、增殖、分化和发育等生理功能。在正常细胞内未激活的细胞癌基因叫原癌基因,当其受到某些条件激活时,结构和表达发生异常,能使细胞发生恶性转化。 5. (ORF) 开放阅读框。在mRNA的核苷酸序列中,有一段序列是一个特定蛋白质多肽链的序列信息,这一段核苷酸序列从起始密码子开始,到终止密码子结束。 (UTR)非翻译区。是mRNA分子两端的非编码片段。 6.(enhancer)增强子。存在于基因组中的对基因表达有调控作用的DNA调控元件。位置不定,结合转录因子后,可增强基因表达。 (silencer)沉默子。可降低基因启动子转录活性的一段DNA顺式元件。与增强子作用相反。 7.(microsatellite DNA)微卫星DNA。是一类简单的寡核苷酸串联重复序列,其重复单位为2~6bp,重复次数10~60次左右,其长度通常小于150bp,分布在所有染色体中。 (Minisatellite DNA) 小卫星DNA。可变数目串联重复序列是重复单位为9~24bp,重复次数变化大,呈高度多态性的DNA序列,拷贝数10~1000不等。 8. (RFLP)限制性片段长度多态性。是指基因型之间限制性片段长度的差异,这种差异是由限制性酶切位点上碱基的插入、缺失、重排或点突变所引起的。用于分析相关基因多态性的技术。即用同一种限制性内切酶,完全酶切来源于同一物种不同个体的基因组DNA,从而获得长度各异的DNA片段(酶切谱)。 (SNP)单核苷酸多态性。不同物种、个体基因组DNA序列同一位置上的单个核苷酸存在差别的现象。有这种差别的基因座、DNA序列等可作为基因组作图的标志。人基因组上平均约每1000个核苷酸即可能出现1个单核苷酸多态性的变化,其中有些单核苷酸多态性可能与疾病有关,但可能大多数与疾病无关。单核苷酸多态性是研究人类家族和动植物品系遗传变异的重要依据。 9. (cloning vector)克隆载体。可携带插入的外源DNA片段并可转入受体细胞中大量扩增的DNA分子。该分子中含有能够在受体细胞中自主复制的序列和筛选标记,常用于外源基因的克隆,如噬菌体或质粒。 (expression vector)表达载体。能使插入基因进入宿主细胞表达的克隆载体,包括原核表达载体和真核表达载体,可以是质粒、噬菌体或病毒等。典型的表达载体带有能使基因表达的调控序列,并在适当位置有可插入外源基因的限制性内切酶位点。 10.(optional exon)外显子选择。是指在不同的剪接方式中,某一个外显子(或几个外显子)可以在成熟的mRNA中保留,也可以通过剪接过程被去掉。所以,至少有两种剪接方式,一是外显子全部保留,二是删除一个或几个外显子。 (optional intron)内含子选择。是指在不同的剪接方式中,内含子可以被完全去掉,也可以有一个内含子被保留在成熟的mRNA中。有两种剪接方式,一是内含子全部删除,二是保留某一个内含子。 11.(promoter)启动子。DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域。在许多情况下,还包括促进这一过程的调节蛋白的结合位点。 (terminator)终止子。转录过程中能够终止RNA聚合酶转录的DNA序列。使RNA合成终止。。①转录过程产生RNA 的一段可终止转录的茎-环结构序列;②位于模板基因下游该结构所对应的DNA序列。在大肠杆菌中有依赖于ρ或不依赖于ρ的两类终止子。 12.(leader sequence)前导序列。mRNA 5′端的核苷酸片段。位于翻译起始密码子AUG之前。在真核生物中前导序列通常是不翻译的;在原核生物中,前导序列含有的SD序列可与核糖体小亚基的16S rRNA相配对,置起始密码子于核糖体上适当位置,以启动翻译过程。 (SD sequence)SD序列。信使核糖核酸(mRNA)翻译起点上游与原核16S 核糖体RNA或真核18S rRNA 3′端富含嘧啶的7核苷酸序列互补的富含嘌呤的3~7个核苷酸序列(AGGAGG),是核糖体小亚基与mRNA结合并形成正确的前起始复合体的一段序列。 13.(gene)基因。编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列

相关主题
文本预览
相关文档 最新文档