自动控制原理研究性课题
- 格式:docx
- 大小:579.35 KB
- 文档页数:16
自动控制原理自动控制原理是一门研究如何利用各种控制方法和技术来实现系统自动化控制的学科。
它涉及到信号处理、传感器、执行器、控制器等多个方面的知识,是现代工程领域中非常重要的一门学科。
一、概述自动控制原理的基本目标是通过对系统的测量和分析,设计出合适的控制策略,使系统能够在给定的性能要求下自动调节和控制。
在自动控制系统中,通常会有一个或多个输入信号(也称为控制量),这些信号通过传感器进行测量,并经过控制器进行处理,最终输出到执行器上,以实现对系统的控制。
二、自动控制系统的基本组成部分1. 传感器:传感器是自动控制系统中的重要组成部分,用于将被控对象的状态转化为电信号或其他形式的信号。
常见的传感器有温度传感器、压力传感器、速度传感器等。
2. 执行器:执行器是控制系统中的输出部分,根据控制信号的指令,将能量转化为机械运动或其他形式的输出。
常见的执行器有电动阀门、电机、液压缸等。
3. 控制器:控制器是自动控制系统中的核心部分,负责接收传感器测量的信号,并根据设定的控制策略进行处理,最终生成控制信号输出给执行器。
常见的控制器有比例控制器、积分控制器、微分控制器等。
4. 反馈环节:反馈环节是自动控制系统中的重要组成部分,通过测量被控对象的输出信号,并将其与期望的控制信号进行比较,从而实现对系统的调节和控制。
三、自动控制系统的基本原理1. 反馈控制原理:反馈控制是自动控制系统中最基本的控制原理之一。
它通过对系统的输出进行测量,并将测量结果与期望的控制信号进行比较,从而生成误差信号,再根据误差信号进行控制器的调整,使系统的输出逐渐趋向于期望值。
2. 开环控制原理:开环控制是自动控制系统中另一种常见的控制原理。
它没有反馈环节,控制器的输出直接作用于执行器,从而实现对系统的控制。
开环控制常用于对系统的输入进行精确控制的场景,但对于系统的稳定性和鲁棒性要求较高的情况下,一般会采用反馈控制。
3. 控制策略:控制策略是指控制器根据系统的特性和要求,设计出的控制算法和参数设置。
《自动控制原理》实验指导书梅雪罗益民袁启昌许必熙南京工业大学自动化学院目录实验一典型环节的模拟研究--------------------------1 实验二典型系统时域响应和稳定性-------------------10 实验三应用MATLAB进行控制系统根轨迹分析----------15 实验四应用MATLAB进行控制系统频域分析------------17 实验五控制系统校正装置设计与仿真-----------------19 实验六线性系统校正-------------------------------22 实验七线性系统的频率响应分析---------------------26 附录:TDN—ACP自动控制原理教学实验箱简介----------31实验一 典型环节的模拟研究一. 实验目的1.熟悉并掌握TD-ACC +设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
二.实验内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。
1.比例环节 (P)A 方框图:如图1.1-1所示。
图1.1-1B 传递函数:K S Ui S Uo =)()( C 阶跃响应:)0()(≥=t Kt U O 其中 01/R R K =D 模拟电路图:如图1.1-2所示。
图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
E 理想与实际阶跃响应对照曲线:① 取R0 = 200K ;R1 = 100K 。
② 取R0 = 200K ;R1 = 200K 。
2.积分环节(I)A .方框图:如右图1.1-3所示。
图1.1-3B .传递函数:TSS Ui S Uo 1)()(=C .阶跃响应: )0(1)(≥=t t Tt Uo 其中 C R T 0=D .模拟电路图:如图1.1-4所示。
自动控制原理课程设计一、引言自动控制原理课程设计是为了帮助学生深入理解自动控制原理的基本概念、原理和方法,通过实际项目的设计与实现,培养学生的工程实践能力和创新思维。
本文将详细介绍自动控制原理课程设计的标准格式,包括任务目标、设计要求、设计方案、实施步骤、实验结果及分析等内容。
二、任务目标本次自动控制原理课程设计的目标是设计一个基于PID控制算法的温度控制系统。
通过该设计,学生将能够掌握PID控制算法的基本原理和应用,了解温度传感器的工作原理,掌握温度控制系统的设计和实现方法。
三、设计要求1. 设计一个温度控制系统,能够自动调节温度在设定范围内波动。
2. 使用PID控制算法进行温度调节,实现温度的精确控制。
3. 使用温度传感器实时监测温度值,并将其反馈给控制系统。
4. 设计一个人机交互界面,能够实时显示温度变化和控制系统的工作状态。
5. 设计一个报警系统,当温度超出设定范围时能够及时发出警报。
四、设计方案1. 硬件设计方案:a. 使用温度传感器模块实时监测温度值,并将其转换为电信号输入到控制系统中。
b. 控制系统使用单片机作为主控制器,通过PID控制算法计算控制信号。
c. 控制信号通过电路板连接到执行器,实现温度的调节。
d. 设计一个报警电路,当温度超出设定范围时能够触发警报。
2. 软件设计方案:a. 使用C语言编写单片机的控制程序,实现PID控制算法。
b. 设计一个人机交互界面,使用图形化界面显示温度变化和控制系统的工作状态。
c. 通过串口通信将温度数据传输到电脑上进行实时监控和记录。
五、实施步骤1. 硬件实施步骤:a. 搭建温度控制系统的硬件平台,包括温度传感器、控制系统和执行器的连接。
b. 设计并制作电路板,将传感器、控制系统和执行器连接在一起。
c. 进行硬件连接调试,确保各个模块正常工作。
2. 软件实施步骤:a. 编写单片机的控制程序,实现PID控制算法。
b. 设计并编写人机交互界面的程序,实现温度变化和控制系统状态的实时显示。
可编辑修改精选全文完整版《自动控制原理(经典部分)》课程实验教学大纲课程编号课程名称(中文)自动控制原理(经典部分)课程名称(英文)Theory of Automatic Control(classical)实验性质非独立设课课程属性专业基础适用专业自动化先修课程数学分析,高等代数,复变函数与积分变换,电路,模拟电子技术,数字电子技术总学时90 实验学时18 总学分 5制定单位信息与电气工程学院制定时间一、实验的性质、目的和任务《自动控制原理》课是自动化专业的专业基础课程,自动控制原理实验课程是一门理论验证型实验课程,结合自动控制理论课开设了一系列相应的实验,使学生理论与实践结合,更好的掌握控制理论。
通过实验,学生可以了解典型环节的特性、模拟方法及控制系统分析与校正方法,掌握离散控制系统组成原理、调试方法;使学生加深对控制理论的理解和认识,同时有助于培养学生分析问题和解决问题的工程综合能力,拓宽学生的专业面和知识面,为以后的深入学习与工作打下扎实的基础。
二、实验的基本内容与要求序号实验项目学时数内容与要求实验属性必开选开1 典型环节的时域响应2 (1)掌握自动控制原理实验箱的使用方法。
(2)学习用电路构成所需要的系统仿真模型(传递函数)。
(3)掌握典型环节模拟电路的研究方法,观测各种典型环节的阶跃响应曲线。
(4)通过对典型电路分析和实验,掌握系统数学模型的理论建模方法和实验测定法。
验证√2 典型系统瞬态响应和稳定性分析2 (1)掌握瞬态性能指标的测试技能。
(2)了解参数变化对系统瞬综合√态性能和稳定性的影响。
(3)研究二阶系统阻尼系数ξ和自然振荡频率ωn与系统结构之间的关系。
(4)按实验步骤绘出实验线路、标出原始数据,画出输出波形图。
3 线性系统的根轨迹分析2 (1)掌握绘制根轨迹的基本法则。
(2)掌握闭环主导极点的概念。
(3)了解闭环极点的分布与系统性能的关系。
综合√4 线性系统的频率响应分析2 (1)学习测量系统(或环节)频率特性曲线的方法和技能。
《自动控制原理》课程简介课程编号:A1620025课程名称:自动控制原理学分/学时:4/64开课学期:第5学期课程类型:专业必修课程课程性质:必修先修课程:《高等数学A(1)》、《高等数学A(2)》、《线性代数》、《电路》、《复变函数与积分变换》、《模拟电子技术》、《数字电子技术》、《信号与系统分析》适用专业:自动化考核方式:考试考核形式:大作业、期中测试、实验评估、期末考试等组合形式建议教材:(1)谢克明编著.自动控制原理(第3版).电子工业出版社,2010年(2)常熟理工学院电气及自动化工程学院自编讲义.自动控制原理实验指导书,校内讲义,2015年内容简介:《自动控制原理》课程是一门研究自动控制系统的基本概念、基本原理和基本分析与设计方法的基础工程课程,本课程主要内容包括自动控制系统建模、自动控制系统分析和自动控制系统设计(校正)三个方面。
通过本课程的教学,让学生掌握分析与综合SISO自动控制系统的经典控制理论与方法,并能初步结合实际,分析和设计控制系统,以及在MATLAB与Simulink支持下对控制系统进行计算机辅助分析和设计。
为今后进一步深入学习和研究其他控制理论与控制系统设计打下坚实的基础。
自动控制原理Automatic Control Theory课程编号:A1620025学分:4学时:64学时(讲课:56学时实验:8 学时实践:0学时)学时:周开课学期:第5学期课程类型:专业必修课程课程性质:必修先修课程:《高等数学A(1)》、《高等数学A(2)》、《线性代数》、《电路》、《复变函数与积分变换》、《模拟电子技术》、《数字电子技术》、《信号与系统分析》适用专业:自动化建议教材:(1)谢克明编著.自动控制原理(第3版).电子工业出版社,2010年(2)常熟理工学院电气及自动化工程学院自编讲义.自动控制原理实验指导书,校内讲义,2015年主要参考书:(1)胡寿松主编.自动控制原理(第5版).科学出版社.2007年(2)李友善主编.自动控制原理(第3版).国防工业出版社.2005年(3)富兰克林,鲍威尔主编; 李中华,张雨浓译著.自动控制原理与设计.人民邮电出版社.2007年开课学院:电气与自动化工程学院修订日期:2018年9月一、课程说明《自动控制原理》课程是自动化专业学生学习和掌握自动控制系统的基本概念、基本原理和基本分析与设计方法的基础工程课程,它是自动化专业的一门专业必修课程,在第五学期开设。
自动控制课题设计
作为自然语言处理AI,我并不擅长具体的技术设计,但是我
可以为您提供一些设计自动控制课题的思路和建议:
1.明确课题要求和目标。
自动控制涉及很多领域和应用场景,
需要明确具体问题、要求和目标。
比如,设计一个自动控制系统,控制温度在一定范围内稳定;设计一个自动化生产线,提高生产效率和精度等等。
2.选择合适的控制算法和方法。
自动控制算法和方法种类繁多,需要根据具体问题和要求选择合适的算法和方法。
常见的控制方法包括PID控制、模糊控制、神经网络控制、自适应控制
等等。
3.硬件和软件的设计。
自动控制涉及到硬件和软件两个方面的
设计。
在硬件设计方面,需要考虑传感器、执行机构和控制器等;在软件设计方面,需要编写控制系统的程序,进行模拟、调试和优化等。
4.考虑可行性和稳定性。
自动控制系统需要考虑可行性和稳定性。
可行性包括系统是否能够实际应用,能否在长期运行中提供可靠的控制效果等;稳定性则涉及到系统在环境变化和干扰下的稳定性和鲁棒性。
5.测试和验证。
自动控制系统需要进行实验和测试,验证其控
制效果和稳定性。
测试和验证过程中需要进行数据采集和分析,调整系统参数,并根据实验结果优化算法和方法等。
希望上述提供的思路和建议能对您有所帮助,祝您顺利完成自动控制课题设计!。
自动控制摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。
最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。
自动控制理论是自动控制科学的核心。
自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。
经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。
因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。
本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。
1自动控制理论发展概述自动控制是指应用自动化仪器仪表或自动控制装置代替人自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。
对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。
对一些恶劣环境下的控制操作,自动控制显得尤其重要。
自动控制理论是与人类社会发展密切联系的一门学科,是自动控制科学的核心。
自从19世纪Ma xw el l对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初Ny q ui s t,Bo de,H a rr is,E va ns,Wi e nn er,N ic ho l s等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。
电气工程专业“自动控制原理”课程创新与实践研究作者:朱军楠来源:《科技探索》2014年第04期中图分类号:TP13 文献标识码:A 文章编号:1007-0745(2014)04-0191-01摘要:目前很多工科院校在自动控制原理实验教学课程中还存在一些问题,影响整体教学质量的提高,主要表现在实验内容、实验方式、考核方法以及管理机制上。
针对这些问题需要提出关于课程实验教学的改革措施。
关键词:自动控制原理实验课改革创新作为电气信息类专业的重要专业基础课之一,自动控制原理具有理论性强,学生对抽象的教学内容很难理解,由于自动控制原理课程具有很浓厚的工程背景,教学的目标是回归到工程实际中进行指导系统设计和调试。
因此,对于自动控制原理课程中的实践教学需要非常重视,然而目前很多高校长久以来都存在课程实验教学模式单一的问题,教学内容缺乏新意,反复使用陈旧的内容,教学方法枯燥乏味,传统的教学方法限制了学生才能和主观能动性的发挥,降低学生的学习效率,束缚了学生的个性和创新意识,因此自动控制原理实验课的创新非常重要。
1.教学改革方向1.1 选择性教学培养高素质工程技术人才的重要基础是建立一个结构合理的课程体系。
在具体的教学内容中不能出现重复现象,需要在有限的学时内合理安排课程内容,有侧重地将比较核心的课程内容进行安排。
在具体教学方法中要避免重复降解,节省学时,优化教学内容和教学质量。
大部分学生认为教师也要根据学生对课程的理解,建立不同的授课目标,从不同的侧重点和不同的角度出发,有选择地安排教学内容,对于不同课程间存在知识重叠的部分进行优化,让学生有更多的学时用于对所学知识的吸收消化。
1.2 专业特色化在对学生进行电气工程以及自动化的课程教学时,需要以专业为导向,培养学生的专业技能,结合学科中的具体理论以及实际工程技术进行教学,在学习知识的同时也能够得到技能的训练,突出本专业的特色。
由于自动控制原理课程是电气工程以及自动化专业的基础课,其理论知识贯穿于两个专业之间,包含的如电力系统稳态分析、电力系统暂态分析等等所涉及的电力系统频率控制等相关方面的知识都很重要。
自动控制原理实验实验一 控制系统的数学模型一、 实验目的1. 熟悉Matlab 的实验环境,掌握Matlab 建立系统数学模型的方法。
2. 学习构成典型环节的模拟电路并掌握典型环节的软件仿真方法。
3. 学习由阶跃响应计算典型环节的传递函数。
二、 实验内容1. 已知图1.1中()G s 和()H s 两方框相对应的微分方程分别是:()610()20()()205()10()dc t c t e t dtdb t b t c t dt+=+=且满足零初始条件,用Matlab 求传递函数()()C s R s 和()()E s R s 。
图1.1 系统结构图2. 构成比例环节、惯性环节、积分环节、比例-积分环节、比例-微分环节和比例-积分-微分环节的模拟电路并用Matlab 仿真;3. 求以上各个环节的单位阶跃响应。
三、 实验原理1. 构成比例环节的模拟电路如图1.2所示,该电路的传递函数为:21().R G s R =-图1.2 比例环节的模拟电路原理图2. 构成惯性环节的模拟电路如图1.3所示,该电路的传递函数为:221(),,.1R KG s K T R C Ts R =-==+图1.2 惯性环节的模拟电路原理图3. 构成积分环节的模拟电路如图1.3所示,该电路的传递函数为:1(),.G s T RC Ts==图1.3 积分环节的模拟电路原理图4. 构成比例-积分环节的模拟电路如图1.4所示,该电路的传递函数为:2211()1,,.R G s K K T R C Ts R ⎛⎫=-+== ⎪⎝⎭图1.4 比例-积分环节的模拟电路原理图5. 构成比例-微分环节的模拟电路如图1.5所示,该电路的传递函数为:221()(1),,.R G s K Ts K T R C R =-+==图1.5 比例-微分环节的模拟电路原理图6. 构成比例-积分-微分环节的模拟电路如图1.6所示,该电路的传递函数为:121211212121121()1(1)()()()()()p d i f p i i ff i f f f f f d f f G s K T s T s R R R R C K R R C T R CT R R C R R C R R R R R R CC T R R C R R C⎛⎫=++ ⎪⎝⎭++=+==+++++=+++图1.6 比例-积分-微分环节的模拟电路原理图四、实验要求1.画出各环节的模拟电路图。