当前位置:文档之家› 焦炉煤气湿法脱硫工艺设计(修改)(优质参考)

焦炉煤气湿法脱硫工艺设计(修改)(优质参考)

焦炉煤气湿法脱硫工艺设计(修改)(优质参考)
焦炉煤气湿法脱硫工艺设计(修改)(优质参考)

1 绪 论

1.1概述 焦炉煤气粗煤气中硫化物按其化合态可分为两类:无机硫化物,主要是硫化氢(H 2S ),有机硫化物,如二硫化碳(2CS ),硫氧化碳(COS ),硫醇(25C H SH )和噻吩(44C H S )等。有机硫化物在温度下进行变换时,几乎全部转化为硫化氢。所以煤气中硫化氢所含的硫约占煤气中硫总量的90%以上,因此,煤气脱硫主要是指脱除煤气中的硫化氢,焦炉煤气中含硫化氢8~15g/m 3,此外还含0.5~1.5g/m 3氰化氢。

硫化氢在常温下是一种带刺鼻臭味的无色气体,其密度为1.539kg/nm 3。硫化氢及其燃烧产物二氧化硫(2SO )对人体均有毒性,在空气中含有0.1%的硫化氢就能致命。煤气中硫化氢的存在会严重腐蚀输气管道和设备,如果将煤气用做各种化工原料气,如合成氨原料气时,往往硫化物会使催化剂中毒,增加液态溶剂的黏度,影响产品的质量等。因此,必须进行煤气的脱硫。

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400 ℃) 和高温(> 400 ℃) 脱硫剂。

干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。

湿法脱硫又分为“湿式氧化法”和“胺法”。湿式氧化法是溶液吸收H2S 后,将H2S 直接转化为单质硫,分离后溶液循环使用。目前我国已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH 法、FRC 法、ADA 法和HPF 法。胺法是将吸收的H2S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS 法和氨硫联合洗涤法。湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。

1.2焦炉煤气的现状

煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气

脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA 、改良ADA 和栲胶法颇具代表性。

湿法脱硫可以处理含硫量高的煤气,脱硫剂是便于输送的液体物料,可以再生,且可以回收有价值的元素硫,从而构成一个连续脱硫循环系统。现在工艺上应用较多的湿法脱硫有氨水催化法、改良蒽醌二磺酸法(A.D.A 法)及有机胺法。其中改良蒽醌二磺酸法的脱除效率高,应用更为广泛。但此法在操作中易发生堵塞,而且药品价格昂贵,近几年来,在改良A.D.A 的基础上开发的栲胶法克服了这两项缺点。它是以纯碱作为吸收剂,以栲胶为载氧体,以2NaVO 为氧化剂。

基于此,在焦炉煤气脱硫工艺的设计中我采用湿式栲胶法脱硫工艺。

1.3栲胶的认识 早在1960年日本就有单宁及其盐类从气体重脱除H2S 并同时回收硫磺的小试验报道,但一直未在工业上应用。我国广西化工研究所、百色栲胶厂、广西林业科学研究所等单位合作于1977年8月完成栲胶法脱硫小试验后直接在都安氮肥厂,柳州化肥厂和上林氮肥厂进行了工业生产试验。1978年7月通过自治区技术鉴定。根据鉴定会的建议,由原化工部有关部门委托北京化工试验厂补做了中间试验并于1979年9月通过了中间试验鉴定。栲胶是由植物的皮,果,茎及叶的萃取液熬制而成的。其主要成分为丹宁,约占66%,以栲胶来配制脱硫液效果最佳。栲胶的主要成分为多种水解丹宁,是有许多结构相似的酚类衍生物所组成的多酚基化合物,由于其含有许多活泼的烃基,所以具有很强的吸氧能力,在脱硫过程中起着载氧的作用。碱性栲胶脱硫液是由栲胶,碳酸钠及偏钒酸钠等主要成分构成的水溶液。栲胶水溶液在空气中易被氧化,即丹宁中较活泼的羟基易被空气中的氧氧化,生成醌态化合物。特别是当溶液的PH 值大于9的时候,丹宁的氧化特别显著。由于栲胶水溶液在较高浓度时成为典型的胶体溶液,并且在较低温度时容易出现3NaVO 及3NaHCO 沉淀,因此在配制脱硫液前必须对栲胶水溶液进行熟化预处理。即将含栲胶20~33g/l ,Na 2CO 3380~133g/l 的栲胶谁溶液直接通蒸汽与空气,

在80~90°C 的条件下氧化10~24h ,破坏其胶性。然后加3NaVO 及软水或稀氨水,配制成含栲胶1.0~2.6g/l ,Na 2CO 3 22.3g/l ,3NaHCO 3.24 g/l, 3NaVO 2~2.5g/l 脱

硫液,送入脱硫液储存槽,稀释后使用。

脱硫过程中,酚类物质经空气再生氧化成醌态,因其具有较高电位,故能将低价钒氧化成高价钒,进而使吸收在溶液中的硫氢根氧化、析出单质硫。同时丹宁能与多种金属离子(如钒、铬、铝等)形成水溶性络合物;在碱性溶液中丹宁能用与铁、铜反应并在其材料表面形成丹宁酸性薄膜,因而具有防腐蚀作用。

由于栲胶水溶液是胶体溶液,在将其配制成脱硫液之前,必须对其进行预处理,以消除共胶体性和发泡性,并使其由酚态结构氧化成醌态结构,这样脱硫溶液才具有活性。在栲胶溶液氧化过程中,伴随着吸光性能的变化。当溶液充分氧化后,其消光值则会稳定在某一数值附近,这种溶液就能满足脱硫要求。通常制备栲胶溶液的预处理条件列举在表1中:

表1 制备栲胶溶液的与处理条件

将纯碱溶液用蒸汽加热,通入空气氧化,并维持温度80~90℃,恒温10h以上,让丹宁物质发生降解反应,大分子变小,表面活性物质变成非表面活性物质,达到预处理目的。

栲胶法脱硫工艺,将碱性栲胶溶液打入溶液循环槽,自循环槽出来,经过滤加压后

S,由裂脱塔出来的溶液进入裂脱再生塔,再生好的进入系统的裂脱塔,吸收气体中的H

2

溶液由塔底流到溶液循环槽,经过滤加压循环使用。脱硫溶液从循环槽出来后经过滤加

S,由变脱塔出来的溶液进入变脱溶液再生塔,再生好的压送到变脱塔,吸收气体中的H

2

工业锅炉及炉窑湿法烟气脱硫工程技术规范HJ462-2009

HJ 中华人民共和国国家环境保护标准 HJ 462-2009 工业锅炉及炉窑湿法烟气脱硫 工程技术规范 Wet flue gas desulfurization project technical specification of industrial boiler and furnace (发布稿) 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 2009-03-06发布 2009-06-01实施 环 境 保 护 部发布

目 次 前 言........................................................................II 1 适用范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (2) 4 总体设计 (3) 5 脱硫工艺系统 (4) 6 材料、设备选择 (9) 7 施工与验收 (10) 8 运行与维护 (11)

前 言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,执行国家《锅炉大气污染物排放标准》、《工业炉窑大气污染物排放标准》,防治工业锅炉及炉窑大气污染,改善环境质量,制定本标准。 本标准对工业锅炉及炉窑湿法烟气脱硫工程的术语和定义、总体设计、脱硫工艺系统、材料和设备选择、施工与验收、运行与维护提出了技术要求。 本标准为首次发布。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:浙江天蓝脱硫除尘有限公司、中国环境保护产业协会、北京市环境保护科学研究院、浙江大学环境工程研究所、杭州天蓝环保设备有限公司、北京西山新干线脱硫有限公司、六合天融(北京)集团公司、北京利德衡环保工程有限公司。 本标准环境保护部2009年3月6日批准。 本标准自2009年6月1日起实施。 本标准由环境保护部解释。

焦炉煤气湿法脱硫工艺设计(初稿)

河南城建学院 毕业设计 题目:焦炉煤气湿法脱硫工艺设计学生姓名:张炳麒 年级: 101209127 专业:化学工程与工艺 申报学位:学士学位 院系:化学与化学工程系 指导教师:李霞 完成日期:2011-05-15 2011年05月15日

摘要

目录 1﹒绪论 (1) 1.1概述 (1) 1.2焦炉煤气净化的现状 (1) 1.3栲胶的认识 (2) 1.4栲胶法脱硫的缺点 (3) 1.5设计任务的依据 (8) 2.生产流程及方案的确定·················································· 3.生产流程说明··························································3.1反应机理·························································· 3.2主要操作条件··························································3.3工艺流程·························································· 3.4主要设备介绍·························································· 4.工艺计算·························································· 4.1原始数据·························································· 4.2物料衡算·························································· 4.3热量衡算·························································· 5.主要设备的工艺计算和设备选型····································· 5.1主要设备的工艺尺寸··················································· 5.2辅助设备的选型··················································· 6 设备稳定性及机械强度校核计算············································6.1壁厚的计算··················································· 6.2 机械强度的校核···················································

动力波烟气脱硫工艺(湿法)

动力波烟气脱硫工艺(湿法) 现有的湿法烟气脱硫工艺均为外置塔体式,即在锅炉后部的烟道上加装脱硫塔,经过碱液在塔体内部对烟气的的喷淋、洗涤达到脱除烟气中二氧化硫的目的。一般塔体高度约8m以上,甚至更高(此高度为保证烟气在塔内的停留时间)。 其缺点: 1、浪费材料:由于锅炉烟气温度过高,加上二氧化硫具有强烈的腐蚀作用,所以在塔体的结构、强度方面要求都比较高,一般外塔体用碳钢或用麻石砌筑用以增加强度,内衬防腐材料用以防腐。 2、一次性投资高:单独设立塔体,要延长烟道,一次性投资费用高。 3、运行不可靠:传统的湿法脱硫工艺,采用的是塔体内喷淋工艺,即通过高压水泵将碱液输送到塔体内,通过喷嘴的雾化,使液滴与烟气中的二氧化硫接触达到脱硫的目的,为保证脱硫效果、保证碱液与二氧化硫气体的充分接触,就需要碱液的雾化程度很高,这样对喷嘴的要求就高,喷嘴使用寿命短。喷嘴一旦损坏,维修不方便。 4、运行液气比大,脱硫效率低:由于采用喷淋吸收,为保证烟气和碱液的充分接触,必须大量的碱液,液气比通常为1.5—2,脱硫效率最高达80%。 5、系统阻力大,运行费用高:由于单独设立塔体,增加、改动

烟道,增加脱水器,造成系统阻力增大,影响锅炉出力,同时高效雾化也需要高压泵的运行功率增大,所以运行费用就增大。 6、管路结垢严重,影响系统运行:由于脱硫液采用石灰水,所以在运行过程中会产生硫酸钙附着在管路和喷嘴内部,导致管路堵塞,影响系统运行。 动力波烟气湿法脱硫塔 动力波脱硫塔是通过设计适当的洗涤器喉管,来控制烟气在管内的速度,使烟气与碱液在喉管内形成一个泡沫区,在泡沫区内气液充分接触,强烈的湍动使混合强化并使接触面更新,从而获得极高的反应效率。动力波洗涤器不需要碱液的雾化程度过高,而靠洗涤器内部形成的湍流达到气、液的充分接触,这样就减少了喷嘴的堵塞了影响脱硫效果,同时也减少碱液泵的运行功率。烟气在动力波洗涤器喉管内流速设计为25—30米/秒。动力波洗涤塔长度为6---8m,其中湍动区长度为2.5m。 动力波脱硫塔根据现场需要,可水平安装,也可竖直安装,作为烟道的一部分,直径仅为烟道的1.3倍。 循环液: 循环液采用“双碱流程”工艺,主要是是为了克服循环液系统容易结垢的弱点和提高SO2的去除率。 系统运行前,将循环池中灌满一定浓度的NaOH和Ca(OH)2溶液,系统运行时,烟气中的SO2与循环液中的Ca2+和OH-反应,生成 Ca(SO4)2和水,其中硫酸钙沉淀在循环池中,可定期打捞,只有OH-

焦炉煤气湿法脱硫工艺设计初样

1 绪 论 1.1概述 焦炉煤气粗煤气中硫化物按其化合态可分为两类:无机硫化物,主要是硫化氢(H 2S ),有机硫化物,如二硫化碳(2CS ),硫氧化碳(COS ),硫醇(25C H SH )和噻吩(44C H S )等。有机硫化物在温度下进行变换时,几乎全部转化为硫化氢。所以煤气中硫化氢所含的硫约占煤气中硫总量的90%以上,因此,煤气脱硫主要是指脱除煤气中的硫化氢,焦炉煤气中含硫化氢8~15g/m 3 ,此外还含0.5~1.5g/m 3 氰化氢。 硫化氢在常温下是一种带刺鼻臭味的无色气体,其密度为1.539kg/nm 3。硫化氢及其燃烧产物二氧化硫(2SO )对人体均有毒性,在空气中含有0.1%的硫化氢就能致命。煤气中硫化氢的存在会严重腐蚀输气管道和设备,如果将煤气用做各种化工原料气,如合成氨原料气时,往往硫化物会使催化剂中毒,增加液态溶剂的黏度,影响产品的质量等。因此,必须进行煤气的脱硫。 1.2焦炉煤气净化的现状 煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA 、改良ADA 和栲胶法颇具代表性。 湿法脱硫可以处理含硫量高的煤气,脱硫剂是便于输送的液体物料,可以再生,且可以回收有价值的元素硫,从而构成一个连续脱硫循环系统。现在工艺上应用较多的湿法脱硫有氨水催化法、改良蒽醌二磺酸法(A.D.A 法)及有机胺法。其中改良蒽醌二磺酸法的脱除效率高,应用更为广泛。但此法在操作中易发生堵塞,而且药品价格昂贵,近几年来,在改良A.D.A 的基础上开发的栲胶法克服了这两项缺点。它是以纯碱作为吸收剂,以栲胶为载氧体,以2NaVO 为氧化剂。 基于此,在焦炉煤气脱硫工艺的设计中我采用湿式栲胶法脱硫工艺。 1.3栲胶的认识 栲胶是由植物的皮,果,茎及叶的萃取液熬制而成的。其主要成分为丹宁,约占

湿法脱硫毕业设计

. . ***学院 毕业设计说明书 年处理1亿M3烟气湿法脱硫工艺设计PROCESSING DESIGN OF THE WET PROCESS FLUE GAS DESULFURIZATION WHICH CAN DISPOSE 1 BILLION M3 EVERY YEAR 系别***系 专业*** 班级**班 学号** 姓名** 指导教师**

. . 摘要 本设计针对毕业设计任务书中所给出的烟气含量和脱硫要求,结合我国烟气脱硫的 技术现状而设计出的一套较完备的烟气脱硫系统。做此设计的目的是为烟气脱硫技术的国产化积极的作准备。 本设计的主要内容: 介绍了现有的烟气脱硫的工艺并进行分析之后决定了系统的脱硫方法为湿式石灰石-石膏法。介绍了一些主要的脱硫装置和类型,比较选择之后确定了吸收塔的类型、流程。对湿式石灰石-石膏烟气脱硫工艺的各个子系统进行了介绍并大致确定了本工艺中选用各子系统的的处理流程、装置和设备。设计了各设备的物料流量,操作压力,做了设备的选型。对所设计的烟气脱硫工艺进行了技术经济分析。 关键词:湿法石灰石-石膏法烟气脱硫物料衡算设备选型技术经济分析

. . Abstract According to the composition of the Flue Gas and the desurfurization request,combining with existing FGD technical process in our nation,this article designed a set of adequate FGD systems.The purpose of this artical is that do some prepares for the designing process of the FGD of our own country. This article's main work are: Analyzed and compared existing FGD technology of domestic and overseas ,chose the Limestone-Gypsum Wet Method Desurfurization Technology for Fume Gas.Introduced main equipment of the desurfurization ,then decided the type and the diagram flow of the absorber.Designed the arrangment of system's popes , design the equipment’s material flow, operating pressure made selection of equipment, Carried out economic and technical analysis of the FGD system designed. Key words: Limestone-Gypsum Wet Method Flue Gas Desulfuration Material Accounting Selection of equipment Technical and Economic Analysis

焦化煤气PDS法脱硫

煤气中的硫绝大部分以H2S的形式存在,而H2S随煤气燃烧后转化成SO2,空气中SO2含量超标会形成局域性酸雨,危害人们的生存环境,我国对燃烧发生炉煤气炉窑规定其SO2的最高排放浓度为900mg/m3;另一方面,SO2对诸如陶瓷、高岭土等行业的最终产品质量影响较大,鉴于以上因素,发生炉煤气中H2S的脱除程度业已成为其洁净度的一个重要指标。 1、煤气脱硫方法 发生炉煤气中的硫来源于气化用煤,主要以H2S形式存在,气化用煤中的硫约有80%转化成H2S进入煤气,假如,气化用煤的含硫量为1%,气化后转入煤气中形成H2S大约2-3g/Nm3左右,而陶瓷、高岭土等行业对煤气含硫量要求为20-50mg/Nm3;假如煤气中的H2S燃烧后全部转化成SO2为2.6g/m3左右,比国家规定的SO2的最高排放浓度指标高出许多。所以,无论从环保达标排放,还是从保证企业最终产品质量而言,煤气中这部分 H2S都是必须要脱除的。 煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。 冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。 2、干法脱硫技术 煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。 2.1氧化铁脱硫技术 最早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。现在TF型脱硫剂应用较广,该种脱硫剂脱硫效率较高,并可以进行塔内再生。 氧化铁脱硫和再生反应过程如下: (1)脱硫过程 2Fe(OH)3+3H2SFe2S3+6H2O Fe(OH)3+H2S2Fe(OH)2+S+2H2O Fe(OH)2+H2SFeS+2H2O (2)再生过程 2Fe2S2+3O2+6H2O4Fe(OH)3+6S 4FeS+3O2+6H2O4Fe(OH)2+4S

湿法烟气脱硫技术的研究现状与进展

1.研究背景 众所周知,二氧化硫是当今人类面临的主要大气污染物之一,根据15年来60多个国家监测获得的统计资料显示,由人类制造的二氧化硫每年达1.8亿吨,比烟尘等悬浮粒子1.0亿吨还多,己成为大气环境的第一大污染物。 在我国的能源结构中,能源结构中煤炭所占比例高达73%,石油为21%,天然气和水能仅占2%和4%。这个比例在一个相当长的时期内不会有根本性的改变。而据对主要大气污染物的分类统计分析,在直接燃烧的燃料中,燃煤排放的大气 污染物数量约占燃烧排放总量的96%,大气中90%S0 2,71%CO,85%的CO 2 ,70%的 NO以及70%的粉尘来自煤炭的直接燃烧。因此,我国的大气环境污染仍然以煤烟 型为主,主要污染物是二氧化硫和烟尘。目前我国S0 2 年排放量连续超过2000 万吨,超过欧洲和美国,使我国成为世界S0 2 排放第一大国。 二氧化硫污染对人类造成的危害己被世人所知,二氧化硫的污染属于低浓度、长期的污染,它的存在对自然生态环境、人类健康、工农业生产、建筑物及 材料等方面都造成了一定程度的危害。S0 2 污染排放问题已成为制约我国国民经 济发展的一个重要因素,对S0 2 排放的控制与治理己刻不容缓。其中,火力发电机组二氧化硫排放量的削减更成为了重中之重。 与此同时,气候变暖也已经成为一项全球性的环境问题,受到了许多国家的关注。人类活动所释放的二氧化碳是导致全球变暖的最重要的温室气体。其中火 电厂燃用矿物燃料所释放的CO 2 ,是全球二氧化碳浓度增加的主要原因之一。 随着我国经济的快速发展,控制能源消耗造成的环境污染,特别是控制燃煤造成的二氧化硫污染和二氧化碳的排放成为保证社会和经济可持续发展的迫切要求。 烟气脱硫是目前世界上唯一大规模商业化应用的脱硫方式,是控制酸雨和二氧化硫污染的主要技术手段。湿法石灰石一石膏烟气脱硫作为一种相对较成熟、脱硫效率较高的脱硫技术,得到了广泛的应用。石灰石- 石膏湿法烟气脱硫因其脱硫效率高、工艺成熟、安全性可靠性高、系统运行稳定、维护简单、投资成本与运行成本较低、脱硫副产物可综合利用等优势而成为目前火电厂烟气脱硫最常采用的工艺。世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。 2.湿法石灰石/ 石膏脱硫工艺原理 当采用石灰为吸收剂时,石灰粉经经破碎磨细成粉状后加水搅拌制成吸收浆。在吸收塔内,吸收浆液与烟气接触混合,烟气中的So2与浆液中的碳酸钙进行化学反应、再通过鼓入空气氧化,最终产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排人烟囱。脱硫石膏浆经脱水装置脱水后回收。 石灰或石灰石法主要的化学反应机理为:

焦炉煤气制氢新工艺

焦炉煤气变压吸附制氢新工艺的开发与应用焦炉煤气变压吸附(PSA)制氢工艺利用焦化公司富余放散的焦炉煤气,从杂质极多、难提纯的气体中长周期、稳定、连续地提取纯氢,不仅解决了焦化公司富余煤气放散燃烧对大气的污染问题;而且还减少了大量焦炭能源的耗用及废水、废气、废渣的排污问题;是一个综合利用、变废为宝的环保型项目;同时也是一个低投入、高产出、多方受益的科技创新项目。该装置首次采用先进可靠的新工艺,其经济效益、社会效益可观,对推进国内PSA技术进步也有重大意义。 1942年德国发表了第一篇无热吸附净化空气的文献、20世纪60年代初,美国联合碳化物(Union Carbide)公司首次实现了变压吸附四床工艺技术工业化,进入20世纪70年代后,变压吸附技术获得了迅速的发展。装置数量剧增,装置规模不断扩大,使用范围越来越广,主要应用于石油化工、冶金、轻工及环保等领域。本套大规模、低成木提纯氢气装罝,是用难以净化的焦炉煤气为原料,国内还没有同类型的装置,并且走在了世界同行业的前列。 1、焦炉煤气PSA制氢新工艺。 传统的焦炉煤气制氢工艺按照正常的净化分离步骤是: 焦炉煤气首先经过焦化系统的预处理,脱除大部分烃类物质;经初步净化后的原料气再经过湿法脱硫、干法脱萘、压缩机、精脱萘、精脱硫和变温吸附(TSA)系统,最后利用PSA制氢工艺提纯氢气,整个系统设备投资大、工业处理难度大、环境污染严重、操作不易控制、生产成本高、废物排放量大,因此用焦炉煤气PSA制氢在某种程度上受到一定的限制,所以没有被大规模的应用到工业生产当中。 本装置釆用的生产工艺是目前国内焦炉煤气PSA制氢工艺中较先进的生产工艺,它生产成本低、效率高,能解决焦炉煤气制氢过程中杂质难分离的问题,从而推动了焦炉煤气PSA制氢的发展。该工艺的特点是: 焦炉煤气压缩采用分步压缩法、冷冻净化及二段脱硫法等新工艺技术。 1.1工艺流程。 PSA制氢新工艺如图1所示。

湿法烟气脱硫除尘一体化技术

湿法烟气脱硫除尘一体化技术 根据世界卫生组织对60个国家10~15年的监测发现,全球污染最严重的 10个城市中我国就占了8个,我国城市大气中二氧化硫和总悬浮微粒的浓度 是世界上最高的。大气环境符合国家一级标准的不到1%,62%的城市大气中 二氧化硫年日平均浓度超过了3级标准(100mg/m3)。全国酸雨面积已占国土资源的30%,每年因酸雨和二氧化硫污染造成的损失高达1100亿元。1997 年下半年,世界银行环境经济专家的一份报告指出:中国环境污染的规模居世 界首位,大城市的环境污染状况在目前是世界上最严重的,全球大气污染最严 重的20个城市中有10个在中国。大气中的二氧化硫和氮氧化物与降水溶合成酸雨,现在中国是仅次于欧洲和北美的第三大酸雨区。大气污染严重破坏生态 环境和严重危害人体呼吸系统,危害心血管健康,加大癌症发病率,甚至影响 人类基因造成遗传疾病。 我国政府对二氧化硫和酸雨污染十分重视。1990年12月,国务院环委会 第19次会议通过了《关于控制酸雨发展的意见》;1992年国务院批准在贵州、长沙等九大城市开展征收工业烧煤二氧化硫排污费和酸雨结合防治试点工 作。1995年8月,全国人大常委会通过了新修订的《中华人民共和国大气污 染防治法》,规定在全国划定酸雨控制区和二氧化硫控制区,并在“两控区 ”内强化对二氧化硫和酸雨的污染控制。1998年1月,国务院正式批准《酸 雨控制区和二氧化硫控制区划分方案》。为了实现两控区的控制目标,国务 院文件还具体规定:新建、改造烧煤含硫量大于1%的电厂,必须建设脱硫的 设施。现有烧煤含硫量大于1%的电厂,要在2010年前分期分批建成脱硫设 施或采取其他相应结果的减排SO2的措施。 削减二氧化硫的排放量,控制大气二氧化硫污染、保护大气环境质量, 是目前及未来相当长时间内我国环境保护的重要课题之一。 二氧化硫污染控制技术颇多,诸如改善能源结构、采用清洁燃料等,但 是,烟气脱硫也是有效削减SO2排放量不可替代的技术。烟气脱硫的方法甚 多,但根据物理及化学的基本原理,大体上可分为吸收法、吸附法、催化法 三种。吸收法是净化烟气中SO2的最重要的应用最广泛的方法。吸收法通常 是指应用液体吸收净化烟气中的SO2,因此吸收法烟气脱硫也称为湿法或湿 式烟气脱硫。 湿法烟气脱硫的优点是脱硫效率高,设备小,投资省,易操作,易控制, 操作稳定,以及占地面积小。目前常见的湿法烟气脱硫有:石灰石/石灰— —石膏法抛弃法、钠洗法、双碱法、威尔曼——洛德法及氧化镁法等。 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理

烟气脱硫基本原理及方法

烟气脱硫基本原理及方 法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。 目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中

用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

湿法烟气脱硫除尘器实验装置设计

湿法烟气脱硫除尘器实验装置设计 组号: 9 班级:环工1302 姓名:李璐 学号:131702207 指导老师:张键 扬州大学环境科学与工程学院 2016年12月

目录 湿法烟气脱硫除尘实验指导书 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验装置及各部分组成(集体讨论完成) (4) 四、实验步骤 (7) 五、参数测定方法 (7) 六、实验注意事项 (9) 七、实验结果讨论 (9) 实验考核任务: 实验室完成的烟气脱硫性能实验是一种简单的模拟实验,距研究型试验装置有较大差异。试设计一套湿法烟气脱硫除尘实验装置(石灰石/石灰—石膏法)。装置含供风系统、烟气制备系统、喷淋塔反应器、浆液循环部分、烟气测量系统,主要测定参数为SO2浓度、烟气压力管内风速、烟气量、塔内粉尘浓度、浆液pH值、烟气流速、烟气温度等。要求有设计简图和实验指导书。 特别说明:1综合考查题完成时间为1个工作日;2.每组一题。小组成员在查阅相关资料和教材后讨论并相对独立完成,但每人需提交1份材料,必须注明个人完成内容和集体讨论完成内容,不注明且相似度大于50%的按抄袭计分;3.打印并同时提交电子文稿(word格式);4.题中涉及的规范、标准请查阅文献,相关数据及结论亦可查阅引用文献。请注明参考文献(包括规范、标准);5.所有设计实验装置均须附简图(须原创,不得粘贴参考文献中的附图);6.提交材料的字数不得少于5000字(含简图但不含参考文献)。7.根据作业质量,小组成员本次考查分数不一定相同。本课程最终成绩根据平时成绩(实验报告)(30%)、实验过程表现(10%)、考查成绩(60%)按占比确定。

湿法烟气脱硫培训教材

中国华电集团公司 石灰石—石膏湿法烟气脱硫工程 培训教材 版本:A版 中国华电集团公司 中国华电工程(集团)有限公司 2008-06

为了更好地促进火电厂烟气脱硫产业健康发展,提高电厂脱硫运行人员对脱硫系统的管理和运行水平,特编写本教材,教材针对石灰石—石膏湿法烟气脱硫系统(以下简称FGD)进行介绍,侧重于脱硫设备运行维护。 本培训教材按照中国华电集团公司要求,由华电集团公司安全生产部组织,中国华电工程(集团)有限公司编写。主要起草人:沈明忠、刘书德、陶爱平、王凯亮、沈煜辉、范艳霞、李文、谷文胜、张华等。

目录 1绪论 (7) 1.1 国家或行业相关标准 (7) 1.2 中国华电集团相关企业标准 (7) 1.3 石灰石—石膏湿法脱硫系统构成简述 (7) 1.3.1 系统简图 (7) 1.3.2 系统构成 (8) 2石灰石—石膏湿法脱硫技术简介 (10) 2.1 石灰石—石膏湿法脱硫化学机理 (10) 2.1.1 吸收原理 (10) 2.1.2 化学过程 (10) 2.2 影响脱硫系统性能的主要因素 (11) 2.3 脱硫系统水平衡问题 (11) 2.3.1 FGD系统的水损失 (12) 2.3.2 FGD系统的补充水 (12) 2.3.3 FGD系统的水平衡 (12) 3石灰石—石膏湿法烟气脱硫系统介绍 (14) 3.1 烟气系统及设备 (14) 3.1.1 烟气系统 (14) 3. 1.2 烟气系统主要设备 (15) 3.2 SO 吸收系统及设备 (18) 2 吸收系统 (18) 3.2.1 SO 2 吸收系统主要设备 (19) 3.2.2 SO 2 3.3 石灰石浆液制备、供应系统及设备: (19) 3.3.1 石灰石浆液制备及供应系统 (19) 3.3.2 石灰石浆液制备及供应系统主要设备 (22) 3.4 石膏脱水系统及设备 (24) 3.4.1 石膏脱水系统 (24)

焦炉煤气脱硫效率分析及工艺选择

焦炉煤气脱硫效率分析及工艺选择 煤气中的硫来自原料煤中,存在形式主要是 H2S,亦有少量有机硫(主要是COS)。H2S 不仅会造成环境的污染,还会腐蚀设备,使催化剂中毒,对生产造成很多不良影响,所以必须要脱去煤气中的硫。煤气脱硫即采用一定的技术手段将H2S、HCN 等有害物质从焦炉煤气中脱除,采用的工艺方法一般分为湿法和干法。 1 焦炉煤气脱硫技术 焦炉煤气常用的脱硫方法从脱硫剂的形态上来分包括干法脱硫技术和湿法脱硫技术。 1.1焦炉煤气干法脱硫技术 干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,同时脱除氰化物及焦油雾等杂质。干法脱硫又分为中温脱硫、低温脱硫和高温脱硫。常用脱硫剂有铁系和锌系,氧化铁脱硫剂是一种传统的气体净化材料,适宜于对天然气、油气伴生气、城市煤气以及废气中硫化氢含量高的气体。常温氧化铁脱硫原理是用水合氧化铁(Fe2O3·H2O)脱除 H2S,其反应包括脱硫反应与再生反应。 干法脱硫工艺多采用固定床原理,工艺简单,净化率高,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。但由于气固吸附反应速度较慢,工艺运行所需设备一般比较庞大,而且脱硫剂不易再生,运行费用增高,劳动强度大,不能回收成品硫,废脱硫剂、废气、废水严重污染环境。 1.2焦炉煤气湿法脱硫技术 湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢和氰化氢。常用的方法有氨水法、vasc法、单乙醇胺法、砷碱法、改良 ADA法、TH 法、苦味酸法、对苯二酚法、HPF 法以及一些新兴的工艺方法等。 1.2.1氨水法(AS 法) 氨水法脱硫是利用焦炉煤气中的氨,在脱硫塔顶喷洒氨水溶液(利用洗氨溶液)吸收煤气中 H2S,富含 H2S 和 NH3的液体经脱酸蒸氨后再循环洗氨脱硫。在脱硫塔内发生的氨水与硫化氢的反应是:H2S+2NH3·H2O→(NH4)2S+2H2O。AS 循环脱硫工艺为粗脱硫,操作费用低,脱硫效率在 90 %以上,脱硫后煤气中的 H2S 在200~500 mg·m-3。 1.2.2VASC 法 VASC 法脱硫过程是洗苯塔后的煤气进入脱硫塔,塔内填充聚丙烯填料,煤气自下而上流经各填料段与碳酸钾溶液逆流接触,再经塔顶捕雾器出塔。煤气中的大部分 H2S 和 HCN 和部分 CO2被碱液吸收,碱液一般主要是 Na2CO3或K2CO3溶液。吸收了酸性气体的脱硫富液与来自再生塔底的热贫液换热后,由顶部进入再生塔再生,吸收塔、再生塔及大部分设备材质为碳钢,富液与再生塔底

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关, 2又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, -,它们与溶解了的CaCO和SOHSO的反应3、气液界面处:参加反应的主要是323是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO在气流中的扩散,2 2、扩散通过气膜 3、 SO被水吸收,由气态转入溶液态,生成水化合物2 4、 SO水化合物和离子在液膜中扩散2 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO水化合物与溶解的石灰石粉发生反应)2 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO的物理、化学性质:无色有刺激性气味的有毒气体。密度比2 空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。SO为酸性氧化物,具有酸性氧化物的通性、2 还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原2剂。 ②. 三氧化硫SO的物理、化学性质:由二氧化硫SO催化氧化而得,无色易挥23发晶体,熔点16.8℃,沸点44.8℃。SO为酸性氧化物,SO极易溶于水,溶于33水生成硫酸HSO,同时放出大量的热,42③. 硫酸HSO的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点423,浓硫酸溶于水会放出大量的热,密度为1.84g/cm具有10.4℃,沸点338℃,为强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO被液相吸收的反应:SO经扩散作用从气相溶入液相中与水生成亚硫 22-+,当PHH 亚硫酸迅速离解成亚硫酸氢根离子HSO值较高时,和氢离子酸HSO3232-,要使SO吸收不断进行下去,必须中和HSO二级电离才会生成较高浓度的SO233++当,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子电离产生的HH 吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO溶解达到饱和后,SO的吸收就告停止,脱22硫效率迅速下降

焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析 (冶金工业规划研究院; Email:dengdpan@https://www.doczj.com/doc/dc2023494.html,) 潘登 摘要:简述了几种具有代表性的脱硫、脱氰工艺,分析了不同工艺特点。介绍 了常用的几种硫回收工艺,并总结了脱硫工艺组合硫回收工艺的原则和方法,为企业选择焦炉煤气净化工艺提供参考依据。 关键词:焦炉煤气,脱硫,硫回收,工艺分析 一.前言 炼焦煤在干馏过程中,煤中全硫的20~45%会转到荒煤气中,荒煤气中的硫 以有机硫和无机硫两种形态存在,有机硫主要有二硫化碳、噻吩、硫醇等,煤气 中95%以上的硫以H2S无机硫形态存在,由于荒煤气中的有机硫含量很少而且在煤气净化洗涤过程中大部分会被除去,因此焦炉煤气的脱硫主要是脱除煤气中的H2S,同时除去同为酸性的HCN。据生产统计焦炉炼焦生产的荒煤气中H2S 含量为2~15g/m3,HCN含量为1~2.5 g/m3。荒煤气中H2S在煤气处理和输送过程中,会腐蚀设备和管道危害生产安全,未经脱硫的煤气作为燃料燃烧时,会生成大量SO2,造成严重的大气污染,同时H2S含量较高的焦炉煤气用在冶炼,将严重影响钢材产品质量,制约高附加值优质钢材品种的开发。出于生产安全,环保要求及煤气有效利用方面考虑,那种五、六十年代老焦化厂采用荒煤气→冷凝鼓风工段→硫铵工段→粗苯工段的无脱硫工段老三段模式与绿色环保的现代生产理念相悖,这样焦炉煤气脱硫已经成为煤气净化不可或缺的重要组成部分。焦炉煤气脱硫,不但环保,而且还可以回收硫磺及硫酸等化学品,产生一定的经济效益。在淘汰落后产能以及清洁生产政策下,对煤气脱硫的要求是越来越高,《焦化行业准入条件》已明确要求焦炉煤气必须脱硫,脱硫后煤气作为工业或其它用时H2S含量应不超过250 mg/Nm3,若用作城市煤气,H2S含量应不超过20mg/Nm3。本文将对焦炉煤气常用脱硫工艺进行介绍,分析不同工艺的特点,同时对硫回收工艺作简要说明。 二.工艺概述 近年来,焦炉煤气脱硫技术经不断发展与完善已日益成熟和广泛应用,脱硫 产品以生产硫磺和硫酸工艺为主。煤气脱硫主要有干法脱硫和湿法脱硫两大类,

氨水法焦炉煤气脱硫的基本原理

范守谦(鞍山立信焦耐工程技术有限公司) 1 气体在液体中的溶解度——亨利定律 任何气体在一定温度和压力下与液体接触时,气体会逐渐溶解于液体中。经过相当长的时间,气相和液相的表观浓度不再发生变化,即处于平衡状态。这时,对于不同气体,如果组分在气相中的分压(对单组分气体即为总压)保持定值,则不同气体在液体中的浓度称为气体在液体中的溶解度。该组分在气相中的分压称为气相平衡分压,表示了气相的平衡浓度。 很多气体的液相平衡浓度X与气体的平衡分压P*有定量关系。如:二氧化碳为直线关系,硫化氢和氨只有在较大浓度范围时不呈直线关系,在浓度较小时,可视为直线关系。因此,在一定温度下,对于接近于理想溶液的稀溶液,在气相压力不大时,气液平衡后气体组分在液相中的浓度与它在气相中的分压成正比,即亨利定律。 P* =EX 式中的P* 为气体组分在气相中的分压,大气压;X为气体组分在液相中的浓度,分子分数; E 为亨利系数(与温度有关)。 上式经浓度单位换算后可改写为: C =HP* 式中的P*为气体组分在气相中的分压,mmHg;C 为气体组分在液相中的浓度,gmol;H为亨利系数,gmol/mmHg。

注:①亨利定律是一个稀溶液定律,它只适用于微溶气体; ②只适用于气相和液相中分子状态相同的组分。如: NH3(气态)? NH3(溶解态) NH3(溶解态)+H2O ? NH4OH ? NH+4 + OH- 用亨利定律时,应把NH+4的量减去,才能得到水溶液中氨的浓度C氨C氨=H0P *氨 式中的H0为氨在纯水中的亨利系数,kgmol/(m3·mmHg)。 温度,℃H0 20 0.099 40 0.0395 60 0.017 80 0.0079 90 0.0058 在氨水脱硫过程中 C氨=H氨·P *氨

湿法烟气脱硫的原理

湿法烟气脱硫的原理 湿法烟气脱硫的原理 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理 气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。 物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。 (2)化学吸收法的基本原理 若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。 在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。 物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中大量采用化学吸收法。用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。 (3)化学吸收的过程 化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。被吸收气体中的

焦炉 煤气 脱硫 新技术

焦炉煤气脱硫新技术 内容提纲 一、概述 (一)焦化厂工艺流程简介 (二)焦炉煤气中H2S的来源及脱硫的必要性 (三)焦炉煤气脱硫技术的分类 (四)焦炉煤气脱硫主要工艺设备 二、几种典型的焦炉煤气脱硫技术介绍 (一)氨水法(A.S法) (二)真空碳酸盐法(V.A.S.C法) (三)单乙醇胺法(索尔菲班法) (四)砷碱法 (五)蒽醌二磺酸法(改良A.D.A法) (六)萘醌二磺酸法(塔—希法T.X ) (七)苦味酸法(F.R.C法) (八)对苯二酚法 (九)H.P.F法 三、常用脱硫工艺的综述 四、焦炉煤气净化工艺流程选择 五、涟钢脱硫工艺运行现状分析 焦炉煤气脱硫新技术 ●一、概述 (一)焦化厂工艺流程简介 1、焦化厂工艺流程主要由备煤工序、炼焦工序、煤气净化化产回收工序组成,工艺流程图如下。 焦炉煤气脱硫新技术 ●一、概述 (一)焦化厂工艺流程简介 2、工作原理 (1)备煤工序 备煤是为焦炉制备装炉煤,采用的是先配煤后粉碎工艺流程。该流程是将堆放于煤场的各单种炼焦煤先按配煤比配合,再经锤式粉碎机进行粉碎,保证配合煤粒度<3mm粒级占80%,然后再送入煤塔,供炼焦使用。 焦炉煤气脱硫新技术 ●一、概述 (一)焦化厂工艺流程简介 2、工作原理 (2)炼焦工序 炼焦是将配合好的装炉煤装入炭化室内经过高温干馏炼制成焦炭和荒煤气。配合煤在焦炉炭化室内转变为焦炭,大体上要经过干燥、预热、胶质体生成、软化熔融、固化成半焦、焦炭成熟等六个阶段,如图所示。这六个阶段相互交错,不能截然分开。

焦炉煤气脱硫新技术 一、概述 (一)焦化厂工艺流程简介 2、工作原理 (2)炼焦工序 焦炉四大车是指装煤车、推焦车、拦焦车、熄焦车,是协助焦炉炼焦顺利完成的主要设备。 熄焦工艺:1#、2#焦炉熄焦系统采用先进的干熄焦技术,同时常规湿法熄焦系统作为备用;3#焦炉熄焦系统采用低水分湿法熄焦工艺。 筛焦:将冷却后的焦炭经筛分后分为冶金焦、焦丁、焦粉三级,分别用管式皮带或火车运往炼铁厂。 焦炉煤气脱硫新技术 一、概述 (一)焦化厂工艺流程简介 2、工作原理 (3)煤气净化化产回收工序 煤气净化工艺流程:是采用H.P.F法脱硫生产硫膏的流程。焦炉生产的荒煤气经冷凝冷却及去除焦油雾后,再经鼓风机加压送入H.P.F法脱硫工段。在脱硫工段经预冷塔、脱硫塔,将煤气中的硫化氢、氰化氢脱除。脱除硫化氢、氰化氢的煤气送入硫铵工段,煤气中的氨被吸收后进入终冷洗苯工段,在终冷洗苯工段将煤气中的粗苯用洗油洗出。经过上述净化后的煤气供工业用户使用,或进一步净化供民用。 冷凝冷却出来的焦油氨水通过澄清分离后,制得焦油产品。 吸收了硫化氢和氰化氢的脱硫液经再生塔产生硫泡沫,硫泡沫压滤后制得硫膏产品。 在洗苯塔中吸收了粗苯的含苯富油经蒸馏脱苯后制得粗苯产品。 焦炉煤气脱硫新技术 ●一、概述 ●(二)煤气中H2S的来源及脱硫必要性 1、煤气中H2S的形成:在炼焦过程中,配合煤中的大部分的S以无机盐的形式随焦炭带走,少部 分在高温下主要形成无机物的H2S和少量有机硫化物(CS2等)。有机硫化物在较高温度下继续发生反应,几乎全部转化为H2S,煤气中H2S所含硫约占煤气中总S量的90%以上。 2、H2S的性质:在常温下是一种带刺激臭味的无色气体,其密度为1.54kg/m3,燃烧时生成SO2和 H2O,有毒,在空气中含有0.1%时就能使人死亡。同时,H2S对钢铁有严重的腐蚀性。 3、煤气中H2S的含量:焦炉煤气中H2S的含量主要取决于炼焦入炉煤中的有机硫含量。入炉煤含 全硫一般为0.5-1.2%,其中10-20%转入焦炉煤气中。入炉煤挥发分和炼焦温度愈高,转入焦炉煤气中的H2S就愈多。焦炉煤气中含H2S一般为3-12g/m3。涟钢目前的H2S含量为3g/m3左右。 焦炉煤气脱硫新技术 一、概述 (二)煤气中H2S的来源及脱硫必要性 4、煤气脱除H2S的危害性:焦炉煤气中H2S严重腐蚀化产回收设备及煤气储存输送设施,污染厂 区环境。用作炼钢、轧钢等工业热源,煤气中H2S会降低钢材产品的质量,腐蚀加热设备。用作城市燃气,H2S及燃烧生产的SO2、HCN及其燃烧生成的N x O y均有毒,会严重影响环境卫生、人们身体健康。 5、不同用户对煤气H2S含量的要求:冶炼常规优质钢时,允许含量为1-2g/m3;冶炼一般钢时允 许含量为2-3g/m3;薄板允许含量为0.1g/m3。供化学合成时,允许含量为1-2mg/m3。供城市燃气用时,含量应低于20mg/m3。

相关主题
文本预览
相关文档 最新文档