第七章 数值积分、微分
- 格式:pdf
- 大小:175.94 KB
- 文档页数:26
数值微分与数值积分数值微分与数值积分是现代计算机科学中非常重要的数学工具。
它们可以用来处理各种研究。
在本文中,我们将讨论这两种方法的基础原理,以及它们在不同领域中的应用。
什么是数值微分?数值微分是指对给定函数进行求导的一种数值方法。
在实际应用中,函数的导数通常很难求得解析解,这时需要使用数值微分的方法来进行近似计算。
数值微分通常是通过在函数的某个点进行差分计算来完成的。
考虑一个函数$f(x)$在某个点$x_0$进行微分的情况。
我们可以计算$f(x_0+h)$和$f(x_0-h)$,其中$h$是一个小的正数。
然后,我们可以计算$[f(x_0+h) - f(x_0-h)]/2h$来得到$f'(x_0)$的近似值。
数值微分的应用非常广泛。
在科学和工程领域中,它通常用于计算物理量相关的导数。
例如,流体力学中的速度梯度、量子力学中的波函数导数,都可以使用数值微分进行近似计算。
此外,在金融领域中,数值微分也可用于计算期权价格等任意变量导数的近似解。
什么是数值积分?数值积分是指对给定函数进行积分的一种数值方法。
与数值微分类似,函数的积分通常很难求得解析解,而不得不使用数值积分的方法来近似计算。
在数值积分中,我们通常使用数值积分公式来计算定义在一个区间$[a,b]$上的函数(如果积分问题是无限积分,我们需要进行变形,将其转化为有限积分问题)。
数值积分公式通常基于插值方法,即将函数转化为一个多项式,并对多项式进行积分。
数值积分也应用广泛。
在科学和工程领域中,它通常用于计算面积、物质质量,以及探测信号的峰值等。
在金融领域中,数值积分也可用于计算期权定价公式的近似解。
数值微分和数值积分的误差分析在应用数值微分和数值积分时,误差是一个重要的考虑因素。
误差源可以来自于采样、采样噪声、近似方法等。
通常,我们使用误差分析来评估误差大小。
数值微分的误差通常归因于选取的$h$值。
当$h$太大时,我们会失去一些重要的信息,如函数的局部斜率。
数值积分与微分方程数值解法数值积分和微分方程数值解法是数值计算中的重要组成部分,在科学计算、工程分析和实际问题求解中起着不可或缺的作用。
本文将介绍数值积分的基本概念和常用方法,以及微分方程数值解法的应用和实现过程。
一、数值积分的基本概念和常用方法数值积分是求解定积分近似值的方法,通过将连续函数的积分转化为离散形式的求和,以达到近似计算的目的。
常用的数值积分方法包括矩形法、梯形法、辛普森法等。
(1)矩形法:将积分区间等分为若干子区间,然后在每个子区间内取点,用函数在相应点处的取值近似代替该子区间内的函数值,最后将所有子区间的函数值相加得到近似积分值。
(2)梯形法:与矩形法类似,但是将每个子区间近似为一个梯形,通过计算梯形的面积来近似计算积分值。
(3)辛普森法:将积分区间等分为若干子区间,然后在每个子区间内取三个点,根据这三个点构造出一个二次函数,并用该二次函数的积分来近似计算积分值。
二、微分方程数值解法的应用和实现过程微分方程数值解法是对微分方程进行近似求解的方法,通过离散化微分方程来构造数值格式,然后通过数值计算来求解。
常用的微分方程数值解法包括常微分方程的欧拉法、改进欧拉法和龙格-库塔法,以及偏微分方程的有限差分法、有限元法等。
(1)常微分方程数值解法:- 欧拉法:根据微分方程的定义,将微分项近似为差分项,通过迭代逼近真实解。
- 改进欧拉法:在欧拉法的基础上,通过利用两个点的斜率来逼近解的变化率,提高精度。
- 龙格-库塔法:通过多次迭代,根据不同的权重系数计算不同阶数的近似解,提高精度。
(2)偏微分方程数值解法:- 有限差分法:将偏微分方程中的一阶和二阶导数近似为差分项,通过离散化区域和时间来构造矩阵方程组,然后通过求解线性方程组来获得数值解。
- 有限元法:将区域进行剖分,将偏微分方程转化为变分问题,通过选取适当的试函数和加权残差法来逼近真实解。
总结:数值积分和微分方程数值解法是数值计算中重要的工具,能够帮助我们处理实际问题和解决科学工程中的复杂计算。
数值积分与微分方法
数值积分
数值积分也叫数值分析,它是一种利用数学模型和计算机技术计算实际问题的方法。
它是一种数学技术,用于解决实际问题中的积分问题,摆脱了定积分的困难,使积分问题更加简单。
主要实现原理是:将积分区间分割成多个短短的积分区间,然后根据其中一种计算方法将积分区间拆分成更小的正方形,计算每一个小正方形的面积加起来,从而得到整个区间的积分值。
数值积分的常见方法有梯形法和辛普森公式,梯形法的原理是将积分区间拆分成多个梯形,将每个梯形的面积加起来,从而得到整个区间的积分值;辛普森公式的原理是将积分区间拆分成多个正方形,分别计算每一个正方形的面积,然后加起来,从而得到整个区间的积分值。
数值积分是一种有效的解决实际问题的方法,它可以用来计算复杂的函数的积分,也可以用来解决实际应用中的复杂问题。
例如,在电力系统中,真实的变动数据可以用数值积分来求解真实的电力发电量。
微分方法
微分方法是一种利用微分几何理论解决数学问题的方法,它通过计算曲面与曲线之间的特征关系,来找出最优解。
第七章 高斯数值积分法对于等参单元推导载荷列阵和刚度矩阵时,需计算如下形式的积分:其中被积函数一般比较复杂,甚至得不到显式。
因此,通常采用数值积分代替函数积分,即在单元内部选取某些点,先计算被积函数在这些点的函数值,然后用这些系数(称为加权系数,简称权)乘上这些函数值,再求总和作为近似积分值。
在有限元法中通常采用精度较高的高斯数值求积分法。
首先介绍一维高斯求积公式式中,()k f ξ是被积函数f 在积分点k ξ处的函数值;k w 是加权系数;n 是所选积分点的数目。
例如取一个积分点01=ξ(此时即1=n ),该点的函数值为1f (如图4.9 (a)),并取加权系数21=w ,则积分这是一种最简单的计算方法,只有当函数()ξf f =是一条直线时,即()ξf f =线之下是一个梯形才是精确的,若()ξf f =是任意曲线,则此计算结果是相当粗糙的。
为了改善精度,在11+≤≤-ξ范围内,取两个对称点1ξ,2ξ其函数值分别为()1ξf 和()2ξf 如图7.1(b ),但是横坐标1ξ、2ξ以及相应的权1w 和1w 需要确定。
为此设()ξf 为三次式,即则而由高斯求积公式于是由式(c )和(d )两式得即为了在3210,,,c c c c 取任意数值时式(d )都是精确的,因此上式两边对应的系数必须相等,则有因此解得实根值得说明的是,上面确定的两个积分点的高斯求积公式(d )对于被积函数是四次以下(不包括四次)的多项式是完全精确的,否则是近似的表达式。
另外,如图7.1(b )所示,用两个矩形面积来表示函数()ξf 在区间[—1,十1]与轴ξ所围的面积,这就是式(d )的几何意义。
图7.1 被积函数f 在积分点处的数值以相同的方法可以处理由3个函数值所组成的近似积分,如图7.1(c )。
对不同的积分点数可确定相应的积分点坐标和加权系数,由此构成高斯积分表,见表7.1。
下面讨论二维、三维的高斯求积公式,对于二重积分可先对ξ积分,而把η视为常量,此时引入一维的高斯求积公式,则有再对η积分有将式(e )代入式(f ),则可得二维的高斯求积公式用相同的方法可以导得三维的高斯求积公式在实际计算中,为了保证计算精度,并且不过分增加计算工作量,高斯积分中的积分点数n 通常可根据等参单元的节点数来选取,对于讨论的平面8节点等参单元和空间20节点等参单元都可以取3=n 。