催化裂化油浆中催化剂粉末的分离
- 格式:doc
- 大小:95.00 KB
- 文档页数:16
催化油浆的利用催化裂化是炼油企业加工的重要装置之一,并随着原油劣质化和催化掺炼渣油工艺的应用,需增加外甩油浆量。
但因燃油税制的改进,市场需求萎缩,这些油浆大多作为廉价重质燃料油销售。
国营炼油企业受体制影响,进行油浆深加工或拓展油浆的应用会承受各种羁绊,尤其是安全、员工老龄化等因数影响,不愿重视,也不愿去为。
民营企业因人才缺乏、又无科研机构,不能搞。
而我公司占据地利,正是好时机。
其原因1.我国炼油企业中的催化裂化比例大,每年催化油浆产出数量大,原料来源容易。
2. 催化油浆的芳烃含量高,芳烃更是一种宝贵的资源,稍加处理可以进一步提高其市场价格和经济效益。
3.可作丙烷脱沥青剂和沥青改性剂、生产针状焦市场的发展前景看好。
在确定催化油浆加工方案前,我们首先要对其性能作初步了解。
催化油浆的性质催化油浆是减压蜡油和减压渣油经过催化裂化反应后进入分馏塔,再经蒸馏分离所得的塔底重质组分油。
与减压渣油相比,催化油浆密度大(≥1.0g/cm3),粘度、康氏残炭低。
从族组成分析,催化油浆比减压渣油的芳烃含量高,胶质含量低;其次是馏分轻,催化油浆的50%馏出温度多数在500℃以下,而减压渣油的500℃馏出量,通常只有5%左右[1]。
多个炼油企业的减压渣油和催化油浆性质数据分别如下表-1、2。
表-1 减压渣油性质表-2 催化油浆性质上述统计显示:油浆含有30~40%的饱和烃是优质蜡油,含蜡量高的催化油浆可返催化装置再次回炼;50~70%左右的芳烃是一种极有价值的化工产品,探索催化油浆的深加工有广阔的市场和良好的经济效益。
催化油浆的利用方法一、催化油浆作燃料油焦化装置原料国内延迟焦化装置掺炼催化油浆已积累了一定的经验,但是,随着焦炭和燃料油、沥青市场价格的波动,延迟掺炼催化油浆的效益时好时坏,我们把它作为备用手段。
二、.催化油浆作燃料油催化油浆作燃料油首先要解决的如何脱出油浆中催化剂颗粒。
常用的过滤法和萃取法一直没有形成规模产业,影响催化油浆全部作燃料油。
催化裂化工艺流程图
催化裂化工艺是一种重要的石油炼制工艺,用于将较重的石油馏分转化成轻质石油产品,如汽油和石脑油。
下面是一份简单的催化裂化工艺流程图:
流程图中的主要步骤包括:
1. 进料处理:原料石油馏分先通过预热器加热至适宜的反应温度,并与催化剂预热。
2. 进料加氢:进料从底部进入主反应器,在高温高压下与催化剂接触,催化剂中的氢气将原料中的杂质和硫化物还原,净化进料。
3. 进料裂化:进料在主反应器中与催化剂的接触引发裂化反应,将较重的石油馏分分解成较轻的链烃和芳烃。
4. 反应产物分离:反应产物通过塔顶冷凝器冷却后,首先进入冷凝器,将汽油分离,并进入汽油分离塔。
从塔顶得到的汽油经过加热器再次加热,然后进入汽油进料分馏塔。
5. 汽油分馏:汽油进料分馏塔通过不同温度段的分离,将汽油分成不同馏分。
轻质汽油区域产生的馏分主要是高辛烷值汽油,中间汽油区域产生的馏分主要是普通汽油,重质汽油区域产生的馏分主要是馏分油。
6. 回收催化剂:经过一段时间的运行,催化剂会失去活性,需
要进行再生。
失活的催化剂先进入烧结器,经过高温高压下的燃烧,将催化剂上的焦炭燃尽,然后再通过再生器进行冷却和再生处理,以恢复催化剂的活性。
7. 副反应物处理:裂化反应中产生的副反应产品,如烯烃和轻烃物质,需要进一步分离和处理,以获得高纯度的汽油产品。
催化裂化工艺流程图中所示的步骤仅为简化版,实际上,催化裂化工艺还涉及到许多其他辅助设备和操作,如冷却器、分离器、压力控制系统等。
同时,催化裂化工艺的细节还会因炼油厂的具体条件和要求而有所不同。
催化裂化装置油浆固含量高问题分析及对策研究摘要:2.0Mt/a催化裂化装置自2017年检修以来,烟气粉尘浓度<180mg/m3,再生系统运行正常,油浆固含量一直较高,平均数值为8.8g/L。
长期运行会使油浆系统换热设备、管线、阀门磨损,容易造成设备损坏、油浆泄漏着火等严重后果,造成非计划停工事件,严重影响装置安全平稳高效运行。
基于此,对催化裂化装置油浆固含量高问题分析及对策研究进行研究,以供参考。
关键词:催化裂化;VQS;催化剂;固含量;长周期运行引言催化油浆中含有大量重芳烃等有价值的化工原料,但因其中含有一定比例的催化剂粉尘,使其成为催化裂化产品中利用价值最低的馏分。
催化油浆一般作燃料油出售,价值较低。
催化油浆中大量带短侧链稠环(3~5环)的芳烃是生产炭黑、针状焦、碳纤维、橡胶软化剂及填充油、塑料增塑剂、重交通道路沥青及导热油等高附加值产品的优质原料,但对其固体含量有严格要求,催化油浆偏高的固体颗粒含量,限制了油浆的利用。
1技术现状常规石油固液分离技术包括沉积、离心沉积、静电分离、蒸馏分离、过滤分离等。
从技术可靠性和工业应用的角度来看,过滤技术得到了广泛的应用。
过滤过滤方法具有设备简单、分离效率稳定、分离效果不受设备运行条件或原料特性变化的影响。
但是,在中国引进这项技术后,由于家用催化发芽工艺和原料特性的不同,油页岩中橡胶和沥青含量较高,设备运行不安全,滤管容易堵塞,过滤器经常更换(必须在1 ~ 2小时后切换进行反冲洗)。
此外,过滤元件堵塞后很难清洁再生,因此经常需要更换过滤元件,维护成本很高。
当前的主要问题是过滤管堵塞得太快,难以完全再生。
随着过滤时间的增加,过滤管逐渐失效。
2油浆固含量高原因分析2.1旋风分离器失效2.0Mt/a催化裂化装置配置有6组两级串连的内置旋风,分离器设计偏离催化剂规格将导致旋风分离效率降低,进而使得油气中带出催化剂细粉增多,进入分馏塔油浆系统。
旋风分离器在设计之初严格按照选用催化剂规格进行核算设计,最有可能的问题则来自催化剂运行过程中的因水热稳定性差、磨损等原因产生大量细粉,而旋风作为静设备只能捕集预设范围内的催化剂颗粒,进而导致了催化剂细粉的丢入和油浆系统固含量的上升。
催化裂化油浆脱固的方法与流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!催化裂化油浆脱固是指在催化裂化过程中,通过一系列物理和化学方法,从油浆中去除固体颗粒的过程。
简述催化裂化工艺流程催化裂化的流程主要包括三个部分:①原料油催化裂化;②催化剂再生;③产物分离。
原料喷入提升管反应器下部,在此处与高温催化剂混合、气化并发生反应。
反应温度480~530℃,压力0.14~0.2MPa (表压)。
反应油气与催化剂在沉降器和旋风分离器(简称旋分器),分离后,进入分馏塔分出汽油、柴油和重质回炼油。
裂化气经压缩后去气体分离系统。
结焦的催化剂在再生器用空气烧去焦炭后循环使用,再生温度为600~730℃。
5.1反应部分原料经换热后与回炼油混合经对称分布物料喷嘴进入提升管,并喷入燃油加热,上升过程中开始在高温和催化剂的作用下反应分解,进入沉降器下段的气提段,经汽提蒸汽提升进入沉降器上段反应分解后反应油气和催化剂的混合物进入沉降器顶部的旋风分离器(一般为多组),经两级分离后,油气进入集气室,并经油气管道输送至分馏塔底部进行分馏,分离出的催化剂则从旋分底部的翼阀排出,到达沉降器底部经待生斜管进入再生器底部的烧焦罐。
5.2再生部分再生器阶段,催化剂因在反应过程中表面会附着油焦而活性降低,所以必须进行再生处理,首先主风机将压缩空气送入辅助燃烧室进行高温加热,经辅助烟道通过主风分布管进入再生器烧焦罐底部,从反应器过来的催化剂在高温大流量主风的作用下被加热上升,同时通过器壁分布的燃油喷嘴喷入燃油调节反应温度,这样催化剂表面附着的油焦在高温下燃烧分解为烟气,烟气和催化剂的混合物继续上升进入再生器继续反应,油焦未能充分反应的催化剂经循环斜管会重新进入烧焦罐再次处理。
最后烟气及处理后的催化剂进入再生器顶部的旋风分离器进行气固分离,烟气进入集气室汇合后排入烟道,催化剂进入再生斜管送至提升管。
5.3烟气利用再生器排除的烟气一般还要经三级旋风分离器再次分离回收催化剂,高温高速的烟气主要有两种路径,一、进入烟机,推动烟机旋转带动发电机或鼓风机;二、进入余热锅炉进行余热回收,最后废气经工业烟囱排放。
催化裂化的装置简介及工艺流程概述催化裂化技术的发展密切依赖于催化剂的发展.有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。
选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。
催化裂化装置通常由三大部分组成,即反应/再生系统、分馏系统和吸收稳定系统。
其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下:(一)反应––再生系统新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统.积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气.待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~680℃)。
再生器维持0。
15MPa~0。
25MPa(表)的顶部压力,床层线速约0.7米/秒~1。
0米/秒。
再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。
烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱.再生烟气温度很高而且含有约5%~10%CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽.对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。
催化裂化油浆中催化剂粉末的分离 摘要:文章采用破乳-絮凝沉降分离工艺处理湛江东兴催化裂化油浆,在实验室考察了破乳剂和絮凝剂加量、沉降温度及沉降时间对催化裂化油浆中催化剂粉末脱除的影响。选择NS-885为破乳剂,添加量110μg/g,聚丙烯酰胺为絮凝剂,用量1000μg/g,加入30%的葡萄糖水溶液,沉降温度90℃,时间8 h,可以有效地脱出油浆中催化剂粉末,油浆中固体粉末的脱除率可达78.64%。 关键词:催化裂化油浆;破乳;絮凝;催化剂粉末;固体粉末脱除率 目录 催化裂化油浆催化剂固体粉末分离 ....................... 错误!未定义书签。 第一章 绪论 ............................................................................................. 3 1.1油浆综合利用的背景.................................................................................................... 3 1.2综合利用催化裂化油浆的可行性 .................................................................................. 4 1.3油浆的净化分离技术分析............................................................................................. 4 1.4 化学沉降剂技术分析 ................................................................................................. 5 1.4.1沉降剂的技术分析 ............................................................................................. 5 1.4.2破乳剂技术分析 ................................................................................................. 6 1.4.3沉降技术分析 .................................................................................................... 6 1.5本文研究的目的和内容 ................................................................................................ 7
第二章 实验部分 ..................................................................................... 8
2.1实验药品 ..................................................................................................................... 8 2.2实验仪器与设备........................................................................................................... 8 2.3原料性质的测定方法.................................................................................................... 8 2.4原料性质 ..................................................................................................................... 9 2.5实验流程 ..................................................................................................................... 9
第三章 结果与讨论 ................................................................................11 3.1破乳剂的筛选与量的选择............................................................................................ 11 3.2絮凝剂(聚丙烯胺)量的选择.....................................................................................12 3.3不同沉降温度的影响...................................................................................................13 3.4 不同沉降时间的影响..................................................................................................14
第四章 结论 ........................................................................................... 15 参考文献 ..................................................................................................................16 第一章 绪论 1.1油浆综合利用的背景 能源是一个国家经济增长和社会发展的重要物质基础。我国是一个能源消耗大国,能源更为紧缺。随着经济的发展,尤其是近年来国际石油价格大幅走高,我国石油的供需矛盾将会不断加剧,能源紧张局面日益突出,同时,不可再生的石化能源正面临枯竭的危险,能源短缺和能源消费所引起的环境问题己经成为制约我国可持续发展的瓶颈之一。 据估计,现在世界常规石油可采储量约3500亿吨。目前年产42亿吨,预计2035年前后产量将达到峰值,在一段时期保持略有波动的稳定产量,然后逐步下降。我国情况同样不容乐观,预计2050年前国内年产量2亿吨左右,然后缓慢下降。由于需求持续增长,势将面临供不应求的局面,因此必须尽早采取一系列补充替代措施。根据我国经济发展速度,2020年原油消费至少将达4.5亿吨,若缺口额全靠进口原油,则进口依赖程度将达55%以上;2050年原油消费将达7亿吨(若不采取多种节油措施,数值将是9亿吨以上),全球性的石油供应短缺和我国对石油需求的不断增大是今后的主要趋势,这对我国能源安全十分不利。所以现在必需在现有石油加工工艺中改善,将原油的利用价值进一步提高。 催化裂化是炼油行业的一个重要的二次加工手段,是生产液化石油气和高辛烷值汽油的主要装置,我国到1998年底炼油能力已达24455万吨/年,催化裂化能力已达8429万吨(含催化裂解167万吨/年),约占原油加工量的34.4%,传统的蜡油原料明显不足,为扩大原料来源,提高炼油行业的加工深度,向深加工要效益,故在原料中掺入一定量的常压渣油、焦化蜡油,减压渣油,导致原料越来越重,质量越来越差。原料中烷烃最容易裂化,环烷烃类次之,芳烃类化合物最难裂化,故反应产物中稠环芳烃和胶质等越来越多,生焦越来越多,导至再生温度提高,装置处理能力下降。国内炼厂都采取减少油浆回炼比,外甩部分油浆的措施,像南京炼油厂从1986年开始甩油浆,FCC进料150吨/时,有10吨油浆返回进料,外甩油浆8吨左右,约占进料的5%,结果再生器温度降低15℃左右,装置处理能力约提高10%,当然各炼厂情况不完全相同,外甩油浆量在5—10%,我国每年排放油浆总量达750万吨左右。 如果这些油浆直接排放掉,不但会浪费日益缺少的石油资源,还会造成严重的环境污染。因此我们必须发展对催化裂化油浆的综合利用。 1.2综合利用催化裂化油浆的可行性 油浆中含有催化裂化流化床中夹带出来的催化剂微颗粒, 其颗粒含量一般为1000~ 80000μg/g, 微颗粒直径约5μm 左右, 随流化床操作而异。油浆中固体含量脱至500μg/g时, 可以用来生产炭黑或橡胶填充剂; 脱至100μg/g时, 可以用来生产针状焦; 脱至10~ 20μg/g时, 可以用来生产碳纤维。因此, 脱除油浆中的固体物质是利用好油浆的前提。
1.3油浆的净化分离技术
如何脱除催化油浆中的催化剂粉末是一个热门课题。脱除FCC油浆中催化剂粉末的技术有:自然沉降技术、静电分离技术、过滤分离技术、离心分离技术、沉降剂脱除技术等。 自然沉降技术具有设备简单、 运行成本低、 操作容易等特点, 被很多厂家所采用。但其净化效率较低,速度慢,时间长,而且沉降需要大量的储罐, 不安全, 因此此法只用于油浆中微颗粒的简单分离。现已逐渐被淘汰。 静电分离技术是美国 70 年代发展起来的一种新型液固体系分离技术, 适用于固体颗粒直径很小(10- 5~ 10- 6m) 颗粒浓度相对较低且液相电阻率又较大的体系。由于其具有分离速度快、 效果好、 操作简便、 维修费用低、 流体压降小而不需要增加动力设备、 设备紧凑、 安装方便等优点,在国外得到了广泛的应用。 静电分离技术是基于 “点吸附” 原理, 使含微颗粒的液流流经电场作用下的填料床层, 微颗粒在高压电场中被极化, 并被吸附在填料上(如玻璃珠) , 从而使液流得以净化。 当填料床层因吸附微颗粒达饱和后,采用反冲洗液流流经床层使填料再生, 然后再进行下一轮的吸附操作。虽然国内已掌握此项技术, 华东理工大学联合化学反应工程研究所对静电分离过程的机理也进行了一定的研究, 但对较深入的问题还未完全掌握, 操作经验也不够丰富, 尚不能形成设计能力。加上静电分离效果受油浆性质和操作条件的影响较大 ,特别对胶质沥青质较高的重油催化裂化油浆的适应性不好。所以此项技术在国内难以推广。 过滤技术是通过一种过滤介质将油浆中的催化剂粉末拦截在油浆以外而实现分离净化的 ,过滤介质为不锈钢粉末或丝网烧结而成的多孔金属过滤器。目前过滤技术在国内应用较为普遍 ,大约已有十几套过滤装置建成投用 ,其中多数为进口设备和技术。虽然过滤方技术的净化效果较好 ,但投资较高 ,而且 ,过滤操作通常在 300 ℃以上的高温条件下进行 ,像重油催化裂化油浆这样的物料容易生焦使滤孔堵塞 ,导致过滤器性能下降甚至无法运行。