当前位置:文档之家› 数学 平行四边形的专项 培优 易错 难题练习题及答案

数学 平行四边形的专项 培优 易错 难题练习题及答案

数学 平行四边形的专项 培优 易错 难题练习题及答案
数学 平行四边形的专项 培优 易错 难题练习题及答案

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.(1)、动手操作:

如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .

(2)、观察发现:

小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.

(3)、实践与运用:

将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大

小.

【答案】(1)125°;(2)同意;(3)60°

【解析】

试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到

∠EFC′=∠EFC=125°;

(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;

(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.

试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,

∴∠AEB=70°,

∴∠BED=110°,

根据折叠重合的角相等,得∠BEF=∠DEF=55°.

∵AD∥BC,

∴∠EFC=125°,

再根据折叠的性质得到∠EFC′=∠EFC=125°.; (2)、同意,如图,设AD 与EF 交于点G

由折叠知,AD 平分∠BAC ,所以∠BAD=∠CAD . 由折叠知,∠AGE=∠DGE=90°, 所以∠AGE=∠AGF=90°, 所以∠AEF=∠AFE . 所以AE=AF ,

即△AEF 为等腰三角形.

(3)、由题意得出:∠NMF =∠AMN =∠MNF , ∴MF =NF ,

由折叠可知,MF =PF , ∴NF =PF ,

而由题意得出:MP =MN , 又∵MF =MF , ∴△MNF ≌△MPF ,

∴∠PMF =∠NMF ,而∠PMF +∠NMF +∠MNF =180°, 即3∠MNF =180°, ∴∠MNF =60°.

考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定

2.已知90AOB ∠=?,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .

(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由. (2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.

(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段

CE 的长度.

【答案】(1)详见解析;(2)详见解析;(334【解析】 【分析】

(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证

()CGD CHE ASA ???,可得;(3)根据()CGD CHE ASA ???,可得

2OE OD OH OG OC -=+=. 【详解】

解:(1)∵90AOB ∠=?,90MCN ∠=?,CD OA ⊥, ∴四边形ODCE 为矩形. ∵OP 是AOB ∠的角平分线, ∴45DOC EOC ∠=∠=?, ∴OD CD =,

∴矩形ODCE 为正方形, ∴2OC OD =

,2OC OE =.

∴2OD OE OC +=

.

(2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H , ∵OP 平分AOB ∠,90AOB ∠=?,

∴四边形OGCH 为正方形, 由(1)得:2OG OH OC +=,

在CGD ?和CHE ?中,

90CGD CHE CG CH

DCG ECH ??∠=∠=?

=??∠=∠?

, ∴()CGD CHE ASA ???, ∴GD HE =, ∴2OD OE OC +=

.

(3)2OG OH OC +=,

()CGD CHE ASA ???,

∴GD HE =.

∵OD GD OG =-,OE OH EH =+, ∴2OE OD OH OG OC -=+=,

∴32OC =, ∴34CE =

CE 的长度为34.

【点睛】

考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.

3.现有一张矩形纸片ABCD (如图),其中AB =4cm ,BC =6cm ,点E 是BC 的中点.将纸片沿直线AE 折叠,点B 落在四边形AECD 内,记为点B ′,过E 作EF 垂直B ′C ,交B ′C 于F .

(1)求AE 、EF 的位置关系;

(2)求线段B ′C 的长,并求△B ′EC 的面积.

【答案】(1)见解析;(2)S△B′EC=108 25

【解析】

【分析】

(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;

(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,

∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.

【详解】

(1)由折线法及点E是BC的中点,

∴EB=EB′=EC,∠AEB=∠AEB′,

∴△B'EC是等腰三角形,

又∵EF⊥B′C

∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,

∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,

即AE⊥EF;

(2)连接BB'交AE于点O,由折线法及点E是BC的中点,

∴EB=EB′=EC,

∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;

又∵△BB'C三内角之和为180°,

∴∠BB'C=90°;

∵点B′是点B关于直线AE的对称点,

∴AE垂直平分BB′;

在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2

将AB=4cm,BE=3cm,AE=5cm,

∴AO=16

5

cm,

∴BO22

AB AO

12

5

cm,

∴BB′=2BO=24

5

cm,

∴在Rt △BB 'C 中,B ′C =22BC BB '-=5

18

cm , 由题意可知四边形OEFB ′是矩形, ∴EF =OB ′=125

, ∴S △B ′EC =

*111812108

225525

B C EF '?=??=.

【点睛】

考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.

4.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”. 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.

理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .

应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .

(1)求证:△AOB 和△AOE 是“友好三角形”;

(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.

探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,请直接写出△ABC 的面积.

【答案】(1)见解析;(2)12;探究:2或2.

【解析】

试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE 是平

行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;

(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、

△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.

探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.

试题解析:(1)∵四边形ABCD是矩形,

∴AD∥BC,

∵AE=BF,

∴四边形ABFE是平行四边形,

∴OE=OB,

∴△AOE和△AOB是友好三角形.

(2)∵△AOE和△DOE是友好三角形,

∴S△AOE=S△DOE,AE=ED=AD=3,

∵△AOB与△AOE是友好三角形,

∴S△AOB=S△AOE,

∵△AOE≌△FOB,

∴S△AOE=S△FOB,

∴S△AOD=S△ABF,

∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.

探究:

解:分为两种情况:①如图1,

∵S△ACD=S△BCD.

∴AD=BD=AB,

∵沿CD折叠A和A′重合,

∴AD=A′D=AB=×4=2,

∵△A′CD与△ABC重合部分的面积等于△ABC面积的,

∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,

∴DO=OB,A′O=CO,

∴四边形A′DCB是平行四边形,

∴BC=A′D=2,

过B作BM⊥AC于M,

∵AB=4,∠BAC=30°,

∴BM=AB=2=BC,

即C和M重合,

∴∠ACB=90°,

由勾股定理得:AC=,

∴△ABC的面积是×BC×AC=×2×2=2;

②如图2,

∵S△ACD=S△BCD.

∴AD=BD=AB,

∵沿CD折叠A和A′重合,

∴AD=A′D=AB=×4=2,

∵△A′CD与△ABC重合部分的面积等于△ABC面积的,

∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,

∴DO=OA′,BO=CO,

∴四边形A′BDC是平行四边形,

∴A′C=BD=2,

过C作CQ⊥A′D于Q,

∵A′C=2,∠DA′C=∠BAC=30°,

∴CQ=A′C=1,

∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;

即△ABC的面积是2或2.

考点:四边形综合题.

5.猜想与证明:

如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.

拓展与延伸:

(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.

(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.

【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.

【解析】

试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据

RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.

试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,

又∵∠FME=∠AMH,FM=AM,

在△FME和△AMH中,

∴△FME≌△AMH(ASA)

∴HM=EM,

在RT△HDE中,HM=DE,

∴DM=HM=ME,

∴DM=ME.

(1)、如图1,延长EM交AD于点H,

∵四边形ABCD和CEFG是矩形,

∴AD∥EF,

∴∠EFM=∠HAM,

又∵∠FME=∠AMH,FM=AM,

在△FME和△AMH中,

∴△FME≌△AMH(ASA)

∴HM=EM,

在RT△HDE中,HM=EM

∴DM=HM=ME,

∴DM=ME,

(2)、如图2,连接AE,

∵四边形ABCD和ECGF是正方形,

∴∠FCE=45°,∠FCA=45°,

∴AE 和EC 在同一条直线上, 在RT △ADF 中,AM=MF , ∴DM=AM=MF , 在RT △AEF 中,AM=MF , ∴AM=MF=ME , ∴DM=ME .

考点:(1)、三角形全等的性质;(2)、矩形的性质.

6.问题情境

在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME. 特例探究

(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系; (2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸

(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.

【答案】(1)MB =ME ,MB ⊥ME ;(2)ME 3.证明见解析;(3)ME =MB·tan 2

α

. 【解析】 【分析】

(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可; (2)结论:3.只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM?tan 2

α

.证明方法类似;

【详解】

(1) 如图1中,连接CM .

∵∠ACD=90°,AM=MD,

∴MC=MA=MD,

∵BA=BC,

∴BM垂直平分AC,

∵∠ABC=90°,BA=BC,

∠ABC=45°,∠ACB=∠DCE=45°,

∴∠MBE=1

2

∵AB∥DE,

∴∠ABE+∠DEC=180°,

∴∠DEC=90°,

∴∠DCE=∠CDE=45°,

∴EC=ED,∵MC=MD,

∴EM垂直平分线段CD,EM平分∠DEC,

∴∠MEC=45°,

∴△BME是等腰直角三角形,

∴BM=ME,BM⊥EM.

故答案为BM=ME,BM⊥EM.

(2)ME=3MB.

证明如下:连接CM,如解图所示.

∵DC⊥AC,M是边AD的中点,

∴MC=MA=MD.

∵BA=BC,

∴BM垂直平分AC.

∵∠ABC=120°,BA=BC,

∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°.∴∠MBE=1

2

∵AB∥DE,

∴∠ABE+∠DEC=180°,

∴∠DEC=60°,

∴∠DCE=∠DEC=60°,

∴△CDE 是等边三角形, ∴EC =ED . ∵MC =MD ,

∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =

1

2

∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°. 在Rt △BME 中,∵∠MEB =30°, ∴ME =3MB .

(3) 如图3中,结论:EM=BM?tan

2

α.

理由:同法可证:BM ⊥EM ,BM 平分∠ABC , 所以EM=BM?tan 2

α. 【点睛】

本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.

7.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC (1)求证:AC 是⊙O 的切线;

(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.

【答案】(1)见解析;(2)30. 【解析】

【分析】

(1)由等角的转换证明出OCA OCE ??≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ?为等边三角形,而得出

60BOE ∠=?,根据三角形内角和即可求出答案. 【详解】

(1)证明:∵CD 与⊙O 相切于点E , ∴OE CD ⊥, ∴90CEO ∠=?,

又∵OC BE ,

∴COE OEB ∠=∠,∠OBE=∠COA ∵OE=OB ,

∴OEB OBE ∠=∠, ∴COE COA ∠=∠, 又∵OC=OC ,OA=OE , ∴OCA OCE SAS ??≌(), ∴90CAO CEO ∠=∠=?, 又∵AB 为⊙O 的直径, ∴AC 为⊙O 的切线;

(2)解:∵四边形FOBE 是菱形, ∴OF=OB=BF=EF , ∴OE=OB=BE ,

∴OBE ?为等边三角形, ∴60BOE ∠=?, 而OE CD ⊥, ∴30D ∠=?. 故答案为30. 【点睛】

本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.

8.如图1,在长方形纸片ABCD 中,AB=mAD ,其中m ?1,将它沿EF 折叠(点E. F 分别在边AB 、CD 上),使点B 落在AD 边上的点M 处,点C 落在点N 处,MN 与CD 相交于点P ,连接EP .设

AM

n AD

=,其中0

(1)如图2,当n=1(即M 点与D 点重合),求证:四边形BEDF 为菱形; (2)如图3,当1

2

n =

(M 为AD 的中点),m 的值发生变化时,求证:EP=AE+DP ; (3)如图1,当m=2(即AB=2AD),n 的值发生变化时,BE CF

AM

-的值是否发生变化?说明理

由.

【答案】(1)证明见解析;(2)证明见解析;(3)值不变,理由见解析. 【解析】

试题分析:(1)由条件可知,当n=1(即M 点与D 点重合),m=2时,AB=2AD ,设AD=a ,则AB=2a ,由矩形的性质可以得出△ADE ≌△NDF ,就可以得出AE=NF ,DE=DF ,在Rt △AED 中,由勾股定理就可以表示出AE 的值,再求出BE 的值就可以得出结论. (2)延长PM 交EA 延长线于G ,由条件可以得出△PDM ≌△GAM ,△EMP ≌△EMG 由全等三角形的性质就可以得出结论.

(3)如图1,连接BM 交EF 于点Q ,过点F 作FK ⊥AB 于点K ,交BM 于点O ,通过证明△ABM ∽△KFE ,就可以得出EK KF AM AB =,即BE BK BC

AM AB

-=,由AB=2AD=2BC ,BK=CF 就可以得出

BE CF

AM -的值是12

为定值. (1)∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠A=∠B=∠C=∠D=90°. ∵AB=mAD ,且n=2,∴AB=2AD .

∵∠ADE+∠EDF=90°,∠EDF+∠NDF=90°,∴∠ADE=∠NDF . 在△ADE 和△NDF 中,∠A =∠N ,AD =ND ,∠ADE =∠NDF , ∴△ADE ≌△NDF (ASA ).∴AE=NF ,DE=DF . ∵FN=FC ,∴AE=FC .

∵AB=CD ,∴AB-AE="CD-CF." ∴BE="DF." ∴BE=DE .

Rt △AED 中,由勾股定理,得222AE DE AD =-,即22

22AE AD AE AD ()=--,

∴AE=

3

4

AD. ∴BE=2AD-34

AD=5

4.

5

5

433

4

AD

BE AE AD ==. (2)如图3,延长PM 交EA 延长线于G ,∴∠GAM=90°. ∵M 为AD 的中点,∴AM=DM .

∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠A=∠B=∠C=∠D=90°,AB ∥CD. ∴∠GAM=∠PDM .

在△GAM 和△PDM 中,∠GAM =∠PDM ,AM =DM ,∠AMG =∠DMP , ∴△GAM ≌△PDM (ASA ).∴MG=MP .

在△EMP 和△EMG 中,PM =GM ,∠PME =∠GME ,ME =ME , ∴△EMP ≌△EMG (SAS ).∴EG=EP . ∴AG+AE=EP .∴PD+AE=EP ,即EP=AE+DP .

(3)

1

2

BE CF AM -=,值不变,理由如下: 如图1,连接BM 交EF 于点Q ,过点F 作FK ⊥AB 于点K ,交BM 于点O , ∵EM=EB ,∠MEF=∠BEF ,∴EF ⊥MB ,即∠FQO=90°. ∵四边形FKBC 是矩形,∴KF=BC ,FC=KB. ∵∠FKB=90°,∴∠KBO+∠KOB=90°.

∵∠QOF+∠QFO=90°,∠QOF=∠KOB ,∴∠KBO=∠OFQ. ∵∠A=∠EKF=90°,∴△ABM ∽△KFE. ∴

EK KF AM AB =即BE BK BC AM AB

-=. ∵AB=2AD=2BC ,BK=CF ,∴1

2

BE CF AM -=. ∴

BE CF

AM

-的值不变.

考点:1.折叠问题;2.矩形的性质;3.全等三角形的判定和性质;4.勾股定理;5.相似三角形的判定和性质.

9.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.

(1)如图1,当AD=2OF时,求出x的值;

(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.

【答案】(1)x=﹣1;

(2)S=﹣(x﹣)2+(0<x<1),

当x=时,S的值最大,最大值为,.

【解析】

试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到

CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,

求得OF=OM=解方程,即可得到结果;

(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据

全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)?x,根据二次函数的性质即可得到结论.

试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,

∴CM=ME,

∴AE=2OM=2OF,

∴OM=OF,

∴,

∴BF=BE=x,

∴OF=OM=,

∵AB=1,

∴OB=,

∴,

∴x=﹣1;

(2)过P作PG⊥AB交AB的延长线于G,如图2,

∵∠CEP=∠EBC=90°,

∴∠ECB=∠PEG,

∵PE=EC,∠EGP=∠CBE=90°,

在△EPG与△CEB中,

∴△EPG≌△CEB,

∴EB=PG=x,

∴AE=1﹣x,

∴S=(1﹣x)?x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,

∴当x=时,S的值最大,最大值为,.

考点:四边形综合题

10.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作?OBFC,连接OF与BC交于点H,再连接EF.

(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;

(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;

(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.

【答案】(1)见解析;

(2)EF⊥BC仍然成立;

(3)EF=BC

【解析】

试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;

(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到

AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;

(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和

AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.试题解析:(1)连接AH,如图1,

∵四边形OBFC是平行四边形,

∴BH=HC=BC,OH=HF,

∵△ABC是等边三角形,

∴AB=BC,AH⊥BC,

在Rt△ABH中,AH2=AB2﹣BH2,

∴AH==BC,

∵OA=AE,OH=HF,

∴AH是△OEF的中位线,

∴AH=EF,AH∥EF,

∴EF⊥BC,BC=EF,

∴EF⊥BC,EF=BC;

(2)EF⊥BC仍然成立,EF=BC,如图2,

∵四边形OBFC是平行四边形,

∴BH=HC=BC,OH=HF,

∵△ABC是等腰三角形,

相关主题
文本预览
相关文档 最新文档