阻变随机存储器(RRAM)综述(自己整理)
- 格式:doc
- 大小:9.36 MB
- 文档页数:45
存储器类型归类总结(RAM,SRAM,DRAM.....)单⽚机存储器类型详解分为两⼤类RAM和ROM,每⼀类下⾯⼜有很多⼦类:RAM:SRAMSSRAMDRAMSDRAMROM:MASK ROMOTP ROMPROMEPROMEEPROMFLASH MemoryRAM:Random Access Memory随机访问存储器存储单元的内容可按需随意取出或存⼊,这种存储器在断电时将丢失其存储内容,故主要⽤于存储短时间使⽤的程序。
它的特点就是是易挥发性(v olatile),即掉电失忆。
我们常说的电脑内存就是RAM的。
ROM:Read Only Memory只读存储器ROM 通常指固化存储器(⼀次写⼊,反复读取),它的特点与RAM 相反。
RAM和ROM的分析对⽐:1、我们通常可以这样认为,RAM是单⽚机的数据存储器,这⾥的数据包括内部数据存储器(⽤户RAM区,可位寻址区和⼯作组寄存器)和特殊功能寄存器SFR,或是电脑的内存和缓存,它们掉电后数据就消失了(⾮易失性存储器除外,⽐如某些数字电位器就是⾮易失性的)。
ROM是单⽚机的程序存储器,有些单⽚机可能还包括数据存储器,这⾥的数据指的是要保存下来的数据,即单⽚机掉电后仍然存在的数据,⽐如采集到的最终信号数据等。
⽽RAM这个数据存储器只是在单⽚机运⾏时,起⼀个暂存数据的作⽤,⽐如对采集的数据做⼀些处理运算,这样就产⽣中间量,然后通过 RAM暂时存取中间量,最终的结果要放到ROM的数据存储器中。
如下图所⽰:2、ROM在正常⼯作状态下只能从中读取数据,不能快速的随时修改或重新写⼊数据。
它的优点是电路结构简单,⽽且在断电以后数据不会丢失。
缺点是只适⽤于存储那些固定数据的场合。
RAM与ROM的根本区别是RAM在正常⼯作状态下就可以随时向存储器⾥写⼊数据或从中读取数据。
SRAM: Static RAM 静态随机访问存储器它是⼀种具有静⽌存取功能的内存,不需要刷新电路即能保存它内部存储的数据。
下一代存储技术RRAM专利技术发展综述 作者:曾伟涛 来源:《科技传播》 2018年第16期
摘 要 随着晶体管的尺寸不断缩小,当前存储器发展的瓶颈已凸现,在后摩尔时代,对下一代存储器的研究日益重要。文章研究了下一代存储技术中的重要代表阻变存储器(RRAM)的专利申请、布局分析,并结合美国Crossbar 和我国主要申请人的技术功效分析,为我国相关产业发展提供参考意见。
关键词 阻变存储器;RRAM ;专利;下一代存储器 中图分类号 G3 文献标识码 A 文章编号 1674-6708(2018)217-0155-02 存储器是信息产业的重要支柱,但我国每年芯片进口额超过2 000 亿美元,其中存储芯片大约占600 亿美元,这是我国信息安全的一个隐患。中兴事件之后,更是引发了芯片行业的举国大讨论。2015 年全球前五大存储芯片公司,包括三星、镁光、SK 海力士、东芝和闪迪,总营收已占整个市场的95%,这一比例远超2008 年全球前五强的市场总份额(75%),全球存储市场已进入寡头垄断时代,而我国在存储市场的竞争力还很薄弱。
随着云存储、大数据、工业4.0、物联网及移动互联网时代的到来,如今90% 的数据产生于过去两年,未来的数据存储需求还会进一步加大。可见发展存储器产业,是保障我国信息安全的需要,是顺应未来信息产业发展形势的需要,也是我国抢占国际创新阵地成为创新型国家的历史需要。
RRAM 是具有高读写速度(10-30ns)、高存储密度、高耐受性(109)、持久性、可以3D 集成的低功耗非易失存储器,并且重要的是可使用常规的CMOS 工艺制造,闪存代工厂几乎不需要改变设备即可生产。除此之外,RRAM 最有希望取代DRAM,这将突破现有计算机CPU—内存—非易失存储器的架构,极大提升计算机性能。由于具有突出的存储性能,因此RRAM 是学术界和企业界的重点研究方向。
本次检索分析基于德温特专利数据库,针对主要涉及RRAM/memristor 存储的专利技术,其主要的关键词是RRAM、memristor 及其常见拓展,并排除非G-H 部和其它明显无关分类、MRAM 等主题以及memristor 在非存储方面应用的干扰,共计3 252项(检索时间:2018 年6 月底)。
新型高密度1S1R结构阻变存储器件概述随着现代半导体工艺的技术进步, Flash 存储器开始遇到技术瓶颈,新型存储器应运而生。
与其他几种新型的非易失性存储器相比,阻变存储器( RRAM 或 ReRAM)因其具有结构简单、访问速度快等优势,成为下一代非易失性存储器的有力竞争者之一。
基于阻变存储器的交叉阵列是阻变存储器实现高密度存储最简单、最有效的方法。
而仅由阻变存储单元构成的交叉阵列由于漏电通道而存在误读现象。
为了解决误读现象,通常需要在每个存储单元上串联一个选择器构成1S1R结构。
对由阻变存储单元和选择器构成的1S1R结构的研究进展进行综述分析是一项有意义的工作,因此本论文主要对1S1R结构的阻变存储器件的研究进展进行概述。
关键词:阻变存储器,交叉阵列,选择器,1S1R目录中文摘要.......................................... 错误!未定义书签。
英文摘要.......................................... 错误!未定义书签。
第一章绪论 (1)1.1 阻变存储器 (1)1.1.1 RRAM基本结构 (1)1.1.2 RRAM技术回顾 (1)1.2 交叉阵列汇中的串扰问题 (3)1.3 本论文的研究意义及内容 (3)1.3.1 研究意义 (3)1.3.2 研究内容 (3)第二章 RRAM的集成选择器的集成方式 (5)2.1 有源阵列 (5)2.2 无源阵列 (5)第三章 RRAM的集成选择器的类型 (6)3.1 1T1R (6)3.2 1D1R (6)3.3 1S1R (8)3.4 back to back结构 (10)3.5 具有自整流特性的1R结构 (11)第四章 1S1R结构阻变存储器件研究进展 (13)第五章总结与展望 (14)5.1 论文总结 (14)5.2 未来工作展望 (14)第一章绪论1.1 阻变存储器1.1.1 RRAM基本结构阻变存储器(Resistive Random Access Memory,RRAM)和相变存储器的原理有点相似,在电激励条件下,利用薄膜材料,薄膜电阻在高阻态和低阻态间相互转换,这样子就能实现数据存储[1-2]。
三大新兴存储技术:MRAM、RRAM和PCRAM在如此庞大的资料储存、传输需求下,在DRAM、SRAM以及NAND Flash等传统记忆体已逐渐无法负荷,且再加上传统记忆体的制程微缩愈加困难的情况之下,驱使半导体产业转向发展更高储存效能、更低成本同时又可以朝制程微缩迈进的新兴记忆体。
其中有3种存储器表现突出——MRAM、RRAM和PCRAM。
存储器,作为半导体元器件中重要的组成部分,在半导体产品中比重所占高达20%,是一个重要的半导体产品类型。
目前存储器行业的主要矛盾是日益增长的终端产品性能需求和尚未出现重大突破的技术之间的矛盾,具体一点来说,是内存和外存之间巨大的性能差异造成了电子产品性能提升的主要瓶颈。
同时,我们不希望让摩尔定律增速放缓限制人工智能时代的计算增长,我们是否为半导体设计和制造提供了一个新的剧本。
这一战略思想支撑着今天针对物联网和云计算推出的新一代高容量记忆体制造系统。
MRAM(Magnetic RAM)MRAM(磁性随机存储器)它靠磁场极化而非电荷来存储数据,存储单元由自由磁层、隧道栅层、固定磁层组成。
自由磁层的磁场极化方向可以改变,固定层的磁场方向不变,当自由层与固定层的磁场方向平行时,存储单元呈现低电阻;反之呈高电阻,通过检测存储单元电阻的高低,即可判断所存数据是0还是1。
MRAM当中包括很多方向的研究,如微波驱动、热驱动等等,传统的MRAM和STT-MRAM是其中重要的两大类,它们都是基于磁性隧道结结构,只是驱动自由层翻转的方式不同,前者采用磁场驱动,后者采用自旋极化电流驱动。
对于传统的MRAM,由于在半导体器件中本身无法引入磁场,需要引入大电流来产生磁场,因而需要在结构中增加旁路。
因此,这种结构功耗较大,而且也很难进行高密度集成(通常只有20-30F2)。
若采用极化电流驱动,即STT-MRAM,则不需要增加旁路,因此功耗可以降低,集成度也可以大幅提高。
MRAM的研发难度很大,其中涉及非常多的物理。
随机存取存储器(RAM)班级:10级电子信息工程二班组长:陶宇摘要: RAM(random access memory)随机存储器。
存储单元的内容可按需随意取出或存入,且存取的速度与存储单元的位置无关的存储器。
这种存储器在断电时将丢失其存储内容,故主要用于存储短时间使用的程序。
按照存储信息的不同,随机存储器又分为静态随机存储器(Static RAM,SRAM)和动态随机存储器(Dynamic RAM,DRAM)。
关键字: 随机存取存储器(RAM)一、静态随机存取存储器(SRAM)1、电路组成2. SRAM 的工作模式二、同步静态随机存取存储器(SSRAM)1.电路图2.SSRAM的使用特点在由SSRAM构成的计算机系统中,由于在时钟有效沿到来时,地址、数据、控制等信号被锁存到SSRAM内部的寄存器中,因此读写过程的延时等待均在时钟作用下,由SSRAM内部控制完成。
此时,系统中的微处理器在读写SSRAM的同时,可以处理其他任务,从而提高了整个系统的工作速度。
三.动态随机存取存储器四、学习总结1、提问总结⑴、一般情况下,dram的集成度比sram的集成度高,为什么?⑵、静态随机存储器和动态随机存储器的区别?解答:⑴、sram存储单元有个mos管构成,所用的管子数目多功耗大,集成度受到限制,dram的存储单元有一个mos管,和容量较小的电容构成。
⑵、SRAM静态的随机存储器:特点是工作速度快,只要电源不撤除,写入SRAM的信息就不会消失,不需要刷新电路,同时在读出时不破坏原来存放的信息,一经写入可多次读出,但集成度较低,功耗较大。
SRAM一般用来作为计算机中的高速缓冲存储器(Cache)。
DRAM是动态随机存储器(Dynamic Random Access Memory):它是利用场效应管的栅极对其衬底间的分布电容来保存信息,以存储电荷的多少,即电容端电压的高低来表示“1”和“0”。
DRAM每个存储单元所需的场效应管较少,常见的有4管,3管和单管型DRAM。
目 录 引言……………………………………………………………………………………1 1 RRAM技术回顾………………………………………………………………………1 2 RRAM工作机制及原理探究…………………………………………………………4 2.1 RRAM基本结构………………………………………………………………4 2.2 RRAM器件参数………………………………………………………………6 2.3 RRAM的阻变行为分类………………………………………………………7 2.4 阻变机制分类………………………………………………………………9 2.4.1电化学金属化记忆效应…………………………………………11 2.4.2价态变化记忆效应………………………………………………15 2.4.3热化学记忆效应…………………………………………………19 2.4.4静电/电子记忆效应………………………………………………23 2.4.5相变存储记忆效应………………………………………………24 2.4.6磁阻记忆效应……………………………………………………26 2.4.7铁电隧穿效应……………………………………………………28 2.5 RRAM与忆阻器……………………………………………………………30 3 RRAM研究现状与前景展望………………………………………………………33 参考文献……………………………………………………………………………36 1
阻变随机存储器(RRAM) 引言: 阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来, NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM) [4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM在尺寸进一步缩小方面都存在着困难。在这样的情况下, RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。
1 RRAM技术回顾 虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通 2
过将阻变现象与空间电荷限制电流理论、介质层击穿理论、氧空洞迁移理论等进行结合,尝试解释了金属氧化物介质层阻变现象的机理。虽然在这篇文献报道中,最大的开关电流比只有30:1,但本次报道开创了对阻变机理研究的先河,为之后的RRAM技术研发奠定了基础。
图1. T. W. Hickmott报道的基于Al/Al2O3/Au结构的电流-电压曲线,其中氧化层的厚度为300Å,阻变发生在5V左右,开关电流比约10:1[6]
Hickmott对阻变现象的首次报道立刻引发了广泛的兴趣,之后在十九世纪60年代到80年代涌现了大量的研究工作,对阻变的机理展开了广泛的研究。除了最广泛报道的金属氧化物,基于金属硫化物[7]、无定形硅[8]、导电聚合物[9]、异质结构[10]等新材料作为介质层的结构也表现出了阻变性质。这些研究工作也很快被总结归纳[11、12]。早期的研究工作主要是对于阻变的本质和机理进行探究, 3
以及对阻变机理应用于RRAM技术的展望。但此时半导体产业对新型NVM器件的研究尚未引起广泛重视,并且在对阻变现象的解释过程中遇到了很多困难,没有办法达成广泛的共识,故而在80年代末期,对阻变的研究一度趋于平淡。90年代末期,摩尔定律的发展规律开始受到物理瓶颈的限制,传统硅器件的微缩化日益趋近于极限,新结构与新材料成为研究者日益关注的热点。与此同时,研究者开始发现阻变器件极为优异的微缩化潜力及其作为NVM器件具有可观的应用前景[13],因而引发了对基于阻变原理的RRAM器件的广泛研究。 如图2所示,近十年来,由于RRAM技术的巨大潜力,业界对非易失性RRAM的研究工作呈逐年递增趋势[14]。日益趋于深入而繁多的研究报告,一方面体现着RRAM日益引起人们的重视,而另一方面,则体现着其机理至今仍存在的不确定性,仍需要大量的研究讨论。尽管自从对阻变现象的初次报道以来,阻变器件结构一直沿用着简单的金属-介质层-金属(MIM)结构,且对于所有材料的介质层,其电流-电压特性所表现的阻变现象几乎一致,但是对于不同的介质层材料,其阻变现象的解释却各有分歧。总体而言,基于导电细丝和基于界面态的两种阻
图2. 由Web of Science统计的每年关于阻变(resistive switching)词条发表的文章数[14]。 4
变解释理论已被大多数研究者接受,尤以导电细丝理论最被广泛接纳。由于基于细丝导电的器件将不依赖于器件的面积,于是材料的多样性配以细丝导电理论,愈加拓宽了RRAM技术的应用前景。截至今日,研究较为成熟的RRAM介质层材料主要包括:二元过渡金属氧化物(TMO),如NiO[15,16]、TiO2[17]、ZnO[18];固态电解质,如Ag2S[19]、GeSe[20];钙钛矿结构化合物[21,22];氮化物[23];非晶硅[24];以及有机介质材料[25]。RRAM的研究应用还有广阔的空间值得人们去研究探寻,还有许多困难与挑战亟待人们去积极面对。近几年,国内外研究者陆续开始对RRAM研究的现状进行综述总结[26-29],为进一步的探究工作打下了基础。由于RRAM研究仍处于共识与争论并存、理论尚未统一的研究阶段,本文旨在总结目前部分较为成熟的工作以及较为公认的理论,并且对RRAM的应用前景作出合理的评价。
2 RRAM工作机制及原理探究 2.1 RRAM基本结构 存储器的排布一般是以矩形阵列形式的,矩阵的行和列分别称为字线和位线,而由外围连线控制着字线和位线,从而可以对每个单元进行读和写操作。对于RRAM而言,其存储器矩阵可以设计为无源矩阵和有源矩阵两种。无源矩阵单元相对而言设计比较简单,如图3(a)所示,字线与位线在矩阵的每一个节点通过一个阻变元件以及一个非线性元件相连。非线性元件的作用是使阻变元件得到合适的分压,从而避免阻变元件处于低阻态时,存储单元读写信息的丢失。非线性元件一般选择二极管或者其他有确定非线性度的元件。然而,采用无源矩阵会使相邻单元间不可避免地存在干扰。为了避免不同单元之间信号串扰的影响, 5
RRAM 图3. RRAM存储器矩阵的单元电路图。图(a)为无源电路,图(b)为有源电路。 矩阵也可以采用有源单元设计,如图3(b)所示。由晶体管来控制阻变元件的读写与擦除信号可以良好隔离相邻单元的干扰,也与CMOS工艺更加兼容。但这样的单元设计无疑会使存储器电路更加复杂,而晶体管也需要占据额外的器件面积。 RRAM中的阻变元件一般采用简单的类似电容的金属-介质层-金属(MIM)结构,由两层金属电极包夹着一层介质材料构成。金属电极材料的选择可以是传统的金属单质,如Au、Pt、Cu、Al等,而介质层材料主要包括二元过渡金属氧化物、钙钛矿型化合物等,这在后文将会更加详细地讨论。由于对RRAM器件的研究主要集中在对电极材料以及介质层材料的研究方面,故而往往采用如图4所示的简单结构,采用传统的硅、氧化硅或者玻璃等衬底,通过依次叠合的底电极、介质层、顶电极完成器件的制备,然后于顶电极与底电极之间加入可编程电压信号来测试阻变器件的性能,这样的简单结构被大多数研究者所采纳。而简单的制备过 6
程和器件结构也是RRAM被认为具有良好的应用前景的原因之一。 图4. 应用于RRAM器件研究的MIM结构。通过在顶电极和底电极之间施加电压信号来研究RRAM器件的工作情况。
2.2 RRAM器件参数 基于以往对DRAM、SRAM、Flash等存储器器件较为成熟的研究经验,RRAM器件的参数可以如下归纳总结并加以展望[28]:
1. 写(Write)操作参数Vwr,twr Vwr为写入数据所需电压。与现代CMOS电路相兼容,RRAM的Vwr的大小一般在几百mV至几V之间,这相对于传统需要很高写入电压的Flash器件来说有较大优势。twr为写入数据时间所需时间。传统器件中,DRAM、SRAM和Flash的twr分别为100ns、10ns和10us数量级。为了与传统器件相比显示出优势,RRAM的twr期望可以达到100ns数量级甚至更小。
2. 读(Read)操作参数Vrd,Ird,trd 7
Vrd为读取数据所需电压。为了避免读操作对阻变元件产生影响,RRAM的Vrd值需要明显小于Vwr。而由于器件原理限制,Vrd亦不能低于Vwr的1/10。Ird为读操作所需电流。为了使读取信号能够准确快速地被外围电路的小信号放大器所识别,RRAM的Ird不能低于1uA。trd为读操作所需时间。RRAM的trd需要与twr
同等数量级甚至更小。
3. 开关电阻比值 ROFF/RON ROFF和RON分别为器件处于关态与开态时的元件阻值。尽管在MRAM中,大小仅为1.2~1.3的ROFF/RON亦可以被应用,对RRAM的ROFF/RON一般要求至少达到10以上,以减小外围放大器的负担,简化放大电路。
4. 器件寿命 器件寿命指器件能够正常维持工作状态的周期数目。一般而言,NVM器件的工作寿命希望达到1012周期。因此,RRAM的器件寿命期望可以达到同等甚至更长久。
5. 保持时间tret tret指存储器件长久保存数据信息的时间。对RRAM而言,数据一般需要保持10年甚至更久,而这过程中也需要考虑温度以及持续的读操作电压信号的影响。
以上介绍了RRAM的几个主要性能参数。各个参数之间看似相互独立,但事实上各项之间却有着相互制约的关系,比如Vrd与Vwr的比值事实上被tret和trd所限制[28]。故而寻求高密度、低功耗的理想RRAM器件,需要从各个性能参数的角度共同考虑,寻求最佳的平衡点。