当前位置:文档之家› 【精品】年处理量为26万吨花生油换热器的设计_毕业论文说明书

【精品】年处理量为26万吨花生油换热器的设计_毕业论文说明书

【精品】年处理量为26万吨花生油换热器的设计_毕业论文说明书
【精品】年处理量为26万吨花生油换热器的设计_毕业论文说明书

(此文档为word格式,下载后您可任意编辑修改!)

吉林化工学院

食品工程原理课程设计题目年处理量为26万吨花生油换热器的设计

教学院环境与生物工程学院

专业班级食品科学与工程 1102

目录

食品工程原理课程设计任务书 (1)

中文摘要 (3)

1.概述与设计方案的选择 (4)

1.1 概述 (4)

1.1.1.换热器 (4)

1.1.2换热器类型 (4)

1.1.2.1固定管板式换热器 (5)

1.1.2.2浮头式换热器 (5)

1.1.2.3 U型管换热器 (6)

1.1.2.4填料函式换热器 (6)

1.1.3流动空间的选择 (7)

1.1.4流速的确定 (7)

1.1.5材质的选择 (7)

1.1.6管程结构 (8)

1.1.7 壳程结构 (9)

1.2 设计方案的选择 (10)

1.2.1选择换热器的类型 (10)

1.2.2流动空间及流速的确定 (10)

2.工艺设计计算 (11)

2.1 确定物性数据 (11)

2.2 热负荷及传热面积的确定 (11)

2.2.1热流量 (11)

2.2.2平均传热温差 (11)

2.2.3传热面积 (11)

2.3 换热器主要结构尺寸的确定 (12)

2.3.1管径和管内流速 (12)

2.3.2管程数和传热管数 (12)

2.3.3平均传热温差校正及壳程数 (13)

2.3.4传热管排列和分程方法 (13)

2.3.5壳体直径 (13)

2.3.6折流板 (14)

2.3.7接管 (14)

2.4 换热器核算 (14)

2.4.1传热面积校核 (14)

2.4.2换热器内压降的核算 (16)

3.设计结果汇总表 (18)

讨论 (19)

结束语 (21)

参考文献 (22)

附录 (23)

食品工程原理课程设计任务书

1设计题目年处理量为26万吨花生油换热器的设计

2操作条件

(1)花生油:入口温度100℃,出口温度45℃。

(2)冷却介质:采用循环水,入口温度15℃,出口温度35℃;井水,入口压强0.3MPa。

(3)每年按330天计,每天24小时连续生产。

(4)花生油定性温度下的物性数据

(5)允许压强降:不大于30kPa。

(6)换热器热损失:以总传热量的5%计。

(7)油侧污垢热阻0.000176 m2·K W,水侧污垢热阻0.00026 m2·K W。

3设计任务

(1)选择适宜的列管式换热器并进行核算。

(2)工艺设计计算

包括选择适宜的换热器并进行核算,主要包括物料衡算和热量衡算、热负荷及传热面积的确定、换热器主要尺寸的确定、总传热系数的校核等。(注明公式及数据来源)(3)结构设计计算

选择适宜的结构方案,进行必要的结构设计计算。主要包括管程和壳程分程、换热管尺寸确定、换热管的布置、折流板的设置等。(注明公式及数据来源)

(4)绘制工艺流程图

绘制设备工艺条件图一张或设备装配示意图(2号图纸);CAD绘制。

(5)编写设计说明书

设计说明书的撰写应符合规范与要求。

4参考书

(1)贾绍义,柴诚敬.《化工原理课程设计》,天津大学出版社;

(2)陈敏恒,丛德滋等.《化工原理》上册,化学工业出版社出版;

(3)匡国柱.史启才.《化工单元过程及设备课程设计》;

(4)《化工设计全书》编辑委员会.金国淼等编.《吸收设备》化学工业出版社;

(5)李云飞,葛克山.《食品工程原理》,中国农业大学出版社;

(6)其它参考书。

食品工程教研室 2011年5月

中文摘要

本次课设题目是为年处理量为26万吨花生油换热器的设计。

衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、节省材料、成本低、制造、安装、检修方便、节省材料和空间、节省动力。

由于本次设计需要用冷却介质--循环水与花生油进行换热,进出口温差又较大,因此初步决定选带膨胀节固定管板式换热器。由于花生油较水有腐蚀性,而管子及管箱用耐腐蚀材料造价低,故应使冷却水走管程,花生油走壳程。根据公式计算总传热系数和传热面积。其中包括热流量,平均传热温差,加热水用量及总传热系数的计算。接着,确定工艺结构尺寸。包括管径和管内流速,管程数和传热管数,平均传热温差校正及壳程数,传热管排列和分程方法,壳体直径,折流板和接管的确定。在这之后,就要进行换热器的核算。包括传热面积校核,换热器内压降的核算。

关键词:换热器花生油固定板管式

1 概述与设计方案的选择

1.1概述

1.1.1换热器

在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。在工程实践中有时也会存在两种以上流体参加换热的换热器,但它的基

本原理与上述情形并无本质上的差别。

在食品、化工、石油、动力、制冷等行业中广泛使用各种换热器,它不仅可以单独作为加热器、冷却器等使用,而且是一些化工单元操作的重要附属设备,因此在化工生产中占有重要地位。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。在换热器设计中,首先应根据工艺要求选择适用的类型然后计算换热所需传热面积,并确定换热器的结构尺寸。

1.1.2 换热器的类型

换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式:坚壁式、直接接触式和蓄热式。

列管式换热器的应用已有很悠久的历史,现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在石油、化工、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。虽然列管式换热器在传热效率、紧凑性和金属耗量等方面不及某些新型换热器,但它具有结构简单、坚固耐用、适应性强、制造材料广泛等独特的优点,因而在换热设备中仍处于主导地位。

同时板式换热器也已成为高效、紧凑的换热设备,大量应用于工业中。

列管换热器主要特点:

(1) 耐腐蚀性:聚丙烯具有优良的耐化学品性,对于无机化合物,不论酸,碱、盐溶液,除强氧化性物料外,几乎直到100℃都对其无破坏作用,对几乎所有溶剂在室温下均不溶解,一般烷、径、醇、酚、醛、酮类等介质上均可使用。

(3) 无毒性:不结垢,不污染介质,也可用于食品工业。

(4) 重量轻:对设备安装维修极为方便。

列管式换热器主要分为以下四种:固定管板式换热器、浮头式换热器、U形管式换热器、填料函式换热器。

1.1.

2.1固定管板式换热器

结构特点:两端和壳体连为一体,管子则固定于管板上,它的结构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构的壳侧清洗困难,所以壳程宜用于不易结垢和清洁的流体。当管束和壳体之间的温差太大而产生不同的热膨胀时,会使管子于管板的接口脱开,从而发生介质的泄漏。

适用于温差不大或温差较大但壳程压力不高的场合。

结构特点:两端管板只有一端与壳体完全固定,另一端则可在壳体内沿轴向自由伸缩,该端称为浮头。浮头式换热器的优点是当换热管与壳体间有温差存在,壳体或换热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

缺点:结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

1.1.

2.2浮头式换热器

结构特点:两端管板只有一端与壳体完全固定,另一端则可在壳体内沿轴向自由伸缩,该端称为浮头。浮头式换热器的优点是当换热管与壳体间有温差存在,壳体或换热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

缺点:结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

适用于管壁间温差较大或易于腐蚀和易于结垢的场合。

1.1.

2.3 U型管换热器

U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

缺点:管内清洗困难;由于管子需要一定的弯曲半径,故管板的利用率较低;管束内程管间距大,壳程易短路;内程管子损坏不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。

1.1.

2.4填料函式换热器

填料函式换热器的结构如图1-4所示。其特点是管板只有一端与壳体固定连接,另一端采用填料函密封。管束可以自由伸缩,不会产生因壳壁与管壁温差而引起的温差应力。填料函式换热器的优点是结构较浮头式换热器简单,制造方便,耗材少,造价也比浮头式的低;管束可以从壳体内抽出,管内管间均能进行清洗,维修方便。

缺点:填料函乃严不高,壳程介质可能通过填料函外楼,对于易燃、易爆、有度和贵重的介质不适用。

1.1.3流动空间的选择

在管壳式换热器的计算中,首先需决定何种流体走管程,何种流体走壳程,这需遵循一些一般原则:

①应尽量提高两侧传热系数较小的一个,使传热面两侧的传热系数接近。

②在运行温度较高的换热器中,应尽量减少热量损失,而对于一些制冷装置,应尽量减少其冷量损失。

③管、壳程的决定应做到便于清洗除垢和修理,以保证运行的可靠性。

所以在具体设计时应综合考虑,决定哪一种流体走管程,哪一种流体走壳程。

1.1.4流速的确定

表1-1 换热器常用流速的范围

流速

管程流速,ms 1.0-2.0 0.8-1.5 0.5-3 >1.0 0.8-1.8 0.5-1.5 5-30 壳程流速,ms 0.5-1.5 0.5-1.5 0.2-1.5 >0.5 0.4-1.0 0.3-0.8 2-15 1.1.5 材质的选择

一般换热器常用的材料,有碳钢和不锈钢。

a 碳钢

价格低,强度较高,对碱性介质的化学腐蚀比较稳定,很容易被酸腐蚀,在无耐腐蚀性要求的环境中应用是合理的。如一般换热器用的普通无缝钢管,其常用的材料为10号和20号碳钢。

b 不锈钢

奥氏体系不锈钢以1Crl8Ni9Ti为代表,它是标准的18-8奥氏体不锈钢,有稳定的奥氏体组织,具有良好的耐腐蚀性和冷加工性能。

1.1.6管程结构

介质流经传热管内的通道部分称为管程。

a 换热管布置和排列问距

常用换热管规格有ф19×2 mm、ф25×2 mm、ф25×2.5 mm。

标准管子的长度常用的有1500mm,2000mm,3000mm,6000mm等。当选用其他尺寸的管长时,应根据管长的规格,合理裁用,避免材料的浪费。

换热管管板上的排列方式有正方形直列、正方形错列、三角形直列、三角形错列和同心圆排列,如下图所示。

图1-5(a) 正方形直列图1-5(b)正方形错列图1-5(c)三角形直列

图1-5(d)三角形错列图1-5(e)同心圆排列

正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。我国换热器系列中,固定管板式多采用正三角形排列;浮头式则以正方形错列排列居多,也有正三角形排列。

对于多管程换热器,常采用组合排列方式。每程内都采用正三角形排列,而在各程之间为了便于安装隔板,采用正方形排列方式。

b 管板

管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来。

管板与管子的连接可胀接或焊接。

1.1.7 壳程结构

介质流经传热管外面的通道部分称为壳程。

壳程内的结构,主要由折流板、支承板、纵向隔板、旁路挡板及缓冲板等元件组成。由于各种换热器的工艺性能、使用的场合不同,壳程内对各种元件的设置形式亦不同,以此来满足设计的要求。各元件在壳程的设置,按其不同的作用可分为两类:一类是为了壳侧介质对传热管最有效的流动,来提高换热设备的传热效果而设置的各种挡板,如折流板、纵向挡板。旁路挡板等;另一类是为了管束的安装及保护列管而设置的支承板、管束的导轨以及缓冲板等。

a 壳体

壳体是一个圆筒形的容器,壳壁上焊有接管,供壳程流体进人和排出之用。直径小于400mm的壳体通常用钢管制成,大于400mm的可用钢板卷焊而成。壳体材料根据工作温度选择,有防腐要求时,大多考虑使用复合金属板。

介质在壳程的流动方式有多种型式,单壳程型式应用最为普遍。如壳侧传热膜系数远小于管侧,则可用纵向挡板分隔成双壳程型式。用两个换热器串联也可得到同样的效果。为降低壳程压降,可采用分流或错流等型式。

壳体内径D取决于传热管数N、排列方式和管心距t。计算式如下:单管程

式中t——管心距,mm;

d0——换热管外径,mm;

n c——横过管束中心线的管数,该值与管子排列方式有关。

正三角形排列:

正方形排列:

多管程

式中N——排列管子数目;

η——管板利用率。

正角形排列:2管程η=0.7~0.85

>4管程η=0.6~0.8

正方形排列:2管程η=0.55~0.7

>4管程η=0.45~0.65

壳体内径D的计算值最终应圆整到标准值。

b 折流板

在壳程管束中,一般都装有横向折流板,用以引导流体横向流过管束,增加流体速度,以增强传热;同时起支撑管束、防止管束振动和管子弯曲的作用。

折流板的型式有圆缺型、环盘型和孔流型等。

圆缺形折流板又称弓形折流板,是常用的折流板,有水平圆缺和垂直圆缺两种。切缺率(切掉圆弧的高度与壳内径之比)通常为20%~50%。垂直圆缺用于水平冷凝器、水平再沸器和含有悬浮固体粒子流体用的水平热交换器等。垂直圆缺时,不凝气不能在折流板顶部积存,而在冷凝器中,排水也不能在折流板底部积存。弓形折流板有单弓形和双弓形,双弓形折流板多用于大直径的换热器中。

折流板的间隔,在允许的压力损失范围内希望尽可能小。一般推荐折流板间隔最小值为壳内径的15或者不小于50 mm,最大值决定于支持管所必要的最大间隔。

c 壳程接管

壳程流体进出口的设计直接影响换热器的传热效率和换热管的寿命。当加热蒸汽或高速流体流入壳程时,对换热管会造成很大的冲刷,所以常将壳程接管在入口处加以扩大,即将接管做成喇叭形,以起缓冲的作用;或者在换热器进口处设置挡板。

1.2 设计方案简介

1.2.1选择换热器的类型

因为我们要加热的材料是花生油,流体压力不大,管程与壳层温度差较大,并考虑易清洗性,所以初步确定选用固定管板式换热器。

1.2.2 流体流动空间及流速的确定

因为本次所要处理的花生油与冷却水的进出口温差都大于50°C ,所以需要焊接膨胀节。 由于花生油较水有腐蚀性,而管子及管箱用耐腐蚀材料造价低,故应使冷却水走管程,花生油走壳程。

考虑到要进行加热的是花生油,所以选用不锈钢材质的管。

综上所述,选用带膨胀节的固定管板式换热器,选用φ25mm ×2.5mm 的不锈钢管,管内流速取u=1.0ms.

2 工艺及设备设计计算

2.1 确定物性数据

定性温度:可取流体进口温度的平均值 壳程花生油的定性温度为: ℃ 管程循环水的定性温度为: t =℃

根据定性温度,分别查取壳程和管程流体的有关物性数据

花生油在72.5℃下的有关物性数据 冷却水在25℃下的有关物性数据 密度 密度 =996.95kg

定压比热容= 2.22 kJ(kg ·℃) 定压比热容 = 4.18 kJ(kg ·℃) 导热系数 = 0.41W(m ·℃) 导热系数 =0.6078 W(m ·℃) 黏度 = 0.000715Pa ·s 黏度 = 0.000903Pa ·s

2.2热负荷及传热面积的确定

2.2.1热流量

7

026103282833024

m kg h ?==?

由《化工原理课程设计指导》查得 且换热器热损失以总热量的5%记 可得

'00000105% 1.05 1.0532828 2.22(10045)4208713.741169.09p Q Q m c t kJ h kw

==?=???-==2.2.2平均传热温差

先按照纯逆流计算,由《食品工程原理》六十一页查得

1212

(10035)(4515)

45.365

ln ln

30m t t t t t ?-?---?=

==??℃ 2.2.3传热面积

(1)管程传热系数

由《食品工程原理》四十一页查得

4

0.02 1.0996.95

Re 220889.02710

i i i

i

d u ρμ-??==

=? 41800.0009027

Pr 6.2080.6078P C μ

λ?=

=

=

(2)壳程传热系数

由《食品工程原理》四十页得 假设壳程的传热系数是 污垢热阻 (℃) (℃) 管壁的导热系数 (℃) 由《食品工程原理》查得

000

001

ln 1

αλα++++=

s i i si i i R d d d d d R d d K

W(·℃)

考虑15%的面积裕度 S=1.15×S′=1.15×60.44=69.506()

2.3换热器主要结构尺寸的确定

2.3.1管径和管内流速

选用φ25mm ×2.5mm 的不锈钢管,管内流速取=1.0ms 。

2.3.2管程数和传热管数

冷却水用量04208713.74

50343.474.18(3515)

i pi i Q W kg h C t =

==??- 由任晓光《化工原理课程设计指导》二十页得: 依据传热管内径和流速确定单程传热管数

==

2

50343.47/(3600996.95)

44.67450.7850.02 1.0

?=≈??根 按单管程计算,所需的传热管长度为:

L==

按单程管设计,传热管过长,宜采用多管程结构。现取非标准传热管长=9m ,则该换热器的管程数为:

N= (管程) 传热管总根数为:N=

2.3.3平均传热温差校正及壳程数

平均传热温差校正系数

由《食品工程原理》六十一页查得

R =

10045

2.753515

-==-热流体的温降冷流体的温升

P =

3515

=0.23510015

-=-冷流体的温升两流体的最初温升

按单壳程,二管程结构,《食品工程原理》六十二页温度校正系数查表得: =0.91 由《食品工程原理》公式2-59得: 平均传热温差 = ℃

2.3.4传热管排列和分程方法

采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。 由任晓光《化工原理课程设计指导》二十二页查得: 取管心距 t=1.25(焊接法),则t=1.2525=31.25 mm ≈32 (mm )

横过管束中心线的管数

1.9011.2912

c n ==≈根 2.3.5壳体内径

采用多管程结构,取管板利用率=0.7,则壳体内径为:

D=1.05t=1.0532

圆整可取D=500mm

2.3.6折流板数

采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为:), 故可取h=150mm 。

取折流板间距B=0.3D,则 B=0.3500=150(mm ),可取B 为200mm 。 折流板数 N=-1=-1=44(块) 折流板圆缺面水平装配。

2.3.7接管

壳程流体进出口接管:取接管内流速为u=1.0 ms,则接管内径为:

取标准管径为140 mm 。

管程流体进出口接管:取接管内流速为u=1.0 ms,则接管内径为:

0.117d =

=(m )

取标准管径为 120 mm

2.4换热器核算

2.4.1传热面积校核

(1)壳程对流传热系数 对圆缺形折流板,可采用克恩公式:

由王国胜《化工原理课程设计》查得: =0.36

当量直径,由正三角形排列得,由王国胜《化工原理课程设计》查得:

d==

025

.014.3)025.0785.0032.023

(

422??-?=0.020(m )

壳程流通截面积,由王国胜《化工原理课程设计》四十六页查得:

=BD(1-)=0.20.5 (1-)=0.02188m )

壳程流体流速、雷诺数及其普兰特准数分别为 ==0.493(ms )

0.020.493845

R e 47609.

70.000175

i o o o

d u ρ

μ??=

=

= 2000

P r 11.34

0.14

p o o

o

C μ

λ?=

=

= 黏度校正()1 =0.360.551/30.14

47609.711.34 1.02116.760.02

?

???=W(·℃) (2)管程对流传热系数 ===0.01413m )

=

50343.47/(3600996.95)

0.9930.01413

?=(ms )

0.020.993996.95Re 21933.60.0009027

??==

34.18100.0009027

Pr 6.20.6078

P C μ

λ??===

0.80.40.80.420.6078

0.023

()(Pr)0.02321933.6 6.24308.3)0.02

i

i e i

R w m d λα==?

??=?℃ (3)传热系数K

000

001

ln 1

αλα++++=

s i i si i i R d d d d d R d d K

21

0.0250.0250.0250.0251

0.00026ln 0.0001764308.30.020.02450.022116.76720.5()W m =

+?+++?=?℃

(4)传热面积S

S=3

1169.091039.36720.541.223m Q K t ?==??(m )

该换热器的实际传热面积

0() 3.140.025(90.09)(9012)54.56p c S d L N n π=-=??-?-=(m ) 该换热器的面积裕度为

H=

54.5639.36

100%100%38.62%39.36

p S S S

--?=

?=

该换热器的面积裕度合适,该换热器能够完成生产任务。

2.4.2换热器内压降的核算

(1)管程流动阻力

由任晓光《化工原理课程设计指导》第七页查得:

t s p p i r p F N N φ?-?--?--每程直管压降每程回弯压降

管程压力降结垢校正系数,25 2.5mm 取1.4壳程数管程数

由Re=21933.6,由《食品工程原理》表1-3得,传热管相对粗糙度,查莫迪图得,流速=0.993ms , kg ,所以

=2

9996.950.9930.03427564.50.022???=Pa =2

996.950.99331474.562

??

= Pa 故(7564.51474.56) 1.41225309.4t p ?=+???=Pa <30kPa 管程流动阻力在允许范围之内。 (2)壳程阻力

由任晓光《化工原理课程设计指导》第七页查得 壳程总压降 管束压降 折流板缺口压降

1.15s F -壳程压力降结垢校正系数,对液体可取

00-0.228

000e00.5u f 500f =5.0B TC e N N B D F S R R ------->折流板数目

横过管束中心线的管子数折流挡板间距壳体内径

管子排列形式对压降的校正因数,对三角形排列为按壳程流通截面积为计算所得的壳程流速壳程流体摩擦因数,当时,

流体流经管束的压降

20.493845

=0.50.4291245=11894.42

?????Pa

流体流过折流板缺口的压降

220.20.493845

=44(3.5)=12199.40.52

???-?Pa

总阻力

=11894.4+12199.4=?()1.1515397.12Pa < 30 KPa

壳程流动阻力也比较适宜。

3设计结果汇总表

换热器型式:带膨胀节的固定管板式

换热面积(m 2):54.56

工艺参数:

名称 壳程

管程 物料名称 花生油 循环水 操作温度,℃ 10045 1535 流量,kgh 32828 50343.47 流体密度,kgm 845 996.95 流速,ms 0.493

0.993

传热量,kW

1169.09 总传热系数,Wm 2·℃ 720.5

对流传热系数,Wm 2·℃ 2116.76 4308.3 污垢系数,m 2·℃W

0.000176

0.00026

程数 1 2

推荐使用材料不锈钢不锈钢

管子规格,mm ∮25×2.5 管数90 管长,mm 9000 管间距,mm 32 排列方式正三角形

折流板型式弓形上下间距,mm 200 切口高度25%

壳体内径,mm 500 保温层厚度,mm

讨论

该换热器是专为冷却花生油设计的,严格按照国家及行业标准设计。

这是我第一次做该类设计,虽然努力依照标准设计但许多地方仍不太明确,且没有任何实际经验,漏洞在所难免。

此次课设,我选用的25×2.5mm的碳钢管,管内流速取u=1.0ms。

通过年产26万吨的花生油计算出了以下数据:花生油质量流量32828Kg×2.5mm的不锈钢钢管及管内流速为1.0 ms,依据传热管内径和流速确定单程传热管数约为45根,按单程管计算,所需的传热管长度为19.68m,选取9米的传热管,则换热器管程数为2,传热管总根数为90根。后进行温差校正,求得R值为2.75,P值为0.235,查图可得温差校正系数值为0.91,则校正后的平均传热温差为41.223℃。由于传热管数较多,所以采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列,管心距为32 mm。由总传热管数可求得横过管束中心线的管数值为12根。壳体内D值圆整可取500mm。本传热器采用弓形折流板,取折流板圆缺高度为壳体内径的25%,则切去的圆缺高度h约为150 mm,取折流板间距B=0.3D得200 mm,从而可求得折流板数值为44块。然后由公式求得壳程和管程流体进出口接管内径d分别为0.134m、0.117 m,取标准管径为140 mm、120 mm。

换热器核算结果:壳程流通截面积,壳程对流传热系数,管程流通截面积,管程对流传热系数,换热器总传热系数为。

理论传热面积S为39.36㎡,实际传热面积值为54.56㎡,由此求得实际面积裕度为38.62%,在允许范围之内。

核算换热器内压降:由公式求得管程压降为25309.4Pa,小于30kPa,所以管程压力降在允

许范围之内;壳程压力降值为15397.12 Pa ,小于30 kPa,,所以壳程压力降在允许范围之内。

结束语

第一次做课程设计给自己留下了深刻的印象,经过一周的努力,我学到了许多课本上没有的知识,对换热器有了更多的认识,过程中遇到了很多困难,整个计算过程进行了多次修改,虽然可能会有很多不足的地方,但毕竟是自己耐心一步步走下来的,收获颇多。

通过本次课程设计,我感觉自己的专业知识还是比较匮乏,认识问题,分析问题的能力较差,不能全面思考,综合运用所学的知识。从最初接到课程设计任务书的一头雾水到现如今已基本掌握思路,我觉得这是一个自我成长的过程。

这次做设计的经历也使我终身受益,我感受到做设计是要真正用心去做每一件事情,是真正的自我学习和研究过程。无论做什么事情都要有严谨的思维,清晰的思路。只有自己经历了,才会明白其中的艰辛。

参考文献

(1)王国胜《化工原理课程设计》,大连理工大学出版社; (2)任晓光《化工原理课程设计指导》,化学工业出版社; (3)李云飞,葛克山.《食品工程原理》,中国农业大学出版社; (4)杨祖荣,刘丽英,刘伟《化工原理》,化学工业出版社; (5)谭天恩,周明华等《化工原理》,化学工业出版社。

附录(主要符号说明)

符号 含义

单位 Q 热负荷

K 总传热系数

S 与K 值对应的传热面积 平均温度差

流体的质量流量

按逆流计算的平均温度差

温差校正系数

无量纲 2112t t T t -==

-冷流体的温升

两流体的最初温度差

总传热系数

传热管内、外侧流体的对流传热系数

传热管内、外侧表面上的污垢热阻

传热管内径、外径及平均直径

传热管壁导热系数

传热管壁厚

直管中因摩擦阻力引起的压力降

回弯管中因摩擦阻力引起的压力降

(管程)结垢校正系数,无因次,25×2.5

的换热管取1.4

串联的壳程数

管程数

流体横过管束的压力降

流体流过折流挡板缺口的压力降

(壳程)结垢校正系数,无因次,对液体=1.15,=1.0

管子排列方式对压力降的校正系数:三角形排列=0.5

壳程流体摩擦系数

横过管束中心线的管数

折流板间距

壳体直径

折流板数目

按壳程流通截面积()计算的流速

管心距

排列管子数目

管板利用率,正三角形排列:2管程=0.7-0.85

换热器设计开题报告

毕业设计开题报告 论文题目: 抽余液塔底换热器设计 学院化工装备学院 专业:过程装备与控制工程 学生姓名:邓华 指导教师:翟英明(高级工程师) 开题时间:2015年3月16日 一、选题目的 1、通过毕业设计,练习综合运用课程和实践的基本知识,进行融会贯通的独立思考。 2、在规定的时间内完成指定的设计任务,从而得到化工换热器设计的主要程序和方法。 3、培养分析和解决工程实际问题的能力。 4、树立正确的设计思想,培养实事求是,严肃认真,高度负责的工作作风。 5、通过此次设计任务,学会换热器的结构及强度设计计算及制造、检修和维护方法。 二、选题意义 在不同温度的流体间传递热能的装置称为热交换器,简称换热器。在换热器中至少要有两种温度不同的流体,一种流体温度高,放热;另一种流体温度低,吸热。换热器是实现传热过程的基本设备。而此设备是比较典型的传热设备。 二十世纪20年代出现板式换热器,并应用于食品工业。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。 化工、石油等行业中广泛使用各种换热器,它们是化工,石油,动力,食品及其它许多工业部门的通用设备,在工业设备价值及作用方面占有十分重要的地位。随着工业的迅速发展,能源消耗量不断增加,能源紧张已成为一个世界性问题。为缓和能源紧张的状况,世界各国竞相采取节能措施,大力发展节能技术,已成为当前工业生产和人民生活中一个重要课题。换热器在节能技术改造中具有很重要的作用,表现在两方面:一方面是在生产工艺流程中使用着大量的换热器,提高这些换热器效率,显然可以减少能源的消耗;另一方面,用换热器来回收工业余热,可以显著地提高设备的热效率。 三、国内现状 目前,我国换热器产业的市场规模大概为700亿人民币,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场。基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。2010年至2020年期间,我国换热器产业将保持年均10~15%左右的速度增长。到2015年,我国换热器产

列管式换热器说明书

目录 一、设计任务 (2) 二、概述与设计方案简介 (3) 2.1 概述 (3) 2.2设计方案简介 (4) 2.2.1 换热器类型的选择 (4) 2.2.2流径的选择 (6) 2.2.3流速的选择 (6) 2.2.4材质的选择 (6) 2.2.5管程结构 (6) 2.2.6 换热器流体相对流动形式 (7) 三、工艺及设备设计计算 (7) 3.1确定设计方案 (7) 3.2确定物性数据 (8) 3.3计算总传热系数 (8) 3.4计算换热面积 (9) 3.5工艺尺寸计算 (9) 3.6换热器核算 (11) 3.6.1传热面积校核 (11) 3.6.2.换热器压降的核算 (12) 四、辅助设备的计算及选型 (13) 4.1拉杆规格 (13)

4.2接管 (13) 五、换热器结果总汇表 (14) 六、设计评述 (15) 七、参考资料 (15) 八、主要符号说明 (15) 九、致 (16) 一、设计任务

二、概述与设计方案简介 2.1 概述 在工业生产中用于实现物料间热量传递的设备称为换热设备,即换热器。换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。 换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。 直接接触式换热器又称混合式换热器。在此类换热器中,冷、热流体相互接触,相互

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

列管换热器设计一般步骤

列管换热器设计一般步骤 1、作出流程简图。 2、按生产任务计算换热器的换热量Q。 3、选定载热体,求出载热体的流量。 4、确定冷、热流体的流动途径。 5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。 6、初算平均传热温度差。 7、按经验或现场数据选取或估算K值,初算出所需传热面积。 8、根据初算的换热面积进行换热器的尺寸初步设计。包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。 9、核算K。 10、校核平均温度差D。 11、校核传热量,要求有15-25%的裕度。 12、管程和壳程压力降的计算。 二、机械设计 1、壳体直径的决定和壳体壁厚的计算。 2、换热器封头选择。 3、换热器法兰选择。 4、管板尺寸确定。 5、管子拉脱力计算。 6、折流板的选择与计算。 7、温差应力的计算。

8、接管、接管法兰选择及开孔补强等。 9、绘制主要零部件图。 三、编制计算结果汇总表 四、绘制换热器装配图 五、提出技术要求 六、编写设计说明书 3 1 2列管换热器设计步骤 常规的列管换热器的设计步骤如下。 (1) 输入已知条件:如热流体的生产任务qm2、T1、T2为已知,确定冷流体,则冷流体进口温度t1也为已知,再优化确定t2;确定管材的内径d1、外径d2、管长L,管间距l和挡板间距B;根据冷热流体的性质确定 污垢热阻Rd1和Rd2。 (2) 选择流体流通的通道和方向、管程数和壳程数。 (3) 计算冷流体流量qm1和热负荷。 (4) 计算逆流的Δtm和平均温度差修正系数ψ,再计算实际Δtm。 (5) 计算定性温度tm和Tm,选定流体物性方程,计算定性温度下的物性参数:ρ1, μ1, λ1, cp1, Pr1, ρ2, μ2, λ2, cp2, Pr2。 (6) 设定K的初值。 (7) 由传热速率式计算A。 (8) 由已知管材参数计算n, D。 (9) 计算S1, S2和Re1, Re2。 (10) 设定壁温tW,计算μ1μ1W0 14, μ2μ2W0 14。 (11) 计算α1, α2。 (12) 计算tWc,比较tW与tWc,如不符要求,重复步骤(10)~(12); (13) 计算Kc和Ac,比较A与Ac,考虑一定的安全系数,A>115% Ac,最终设计以A为换热器的传热面积。如 不符要求,重复步骤(6)~(13)。 在编制程序时,应把有关通用部分编制成独立子程序模块。 ①物性数据库,必须包括传热计算所需的冷热流体物性,如密度、黏度、比热容、导热系数、汽化潜热等, 饱和蒸汽、过热蒸汽的温度和压强的相关参数。 ②由于对流给热系数α的关联式很多,可以建立计算α的专用模块。 ③设备的尺寸模块,如系列化尺寸,对计算得到的设备尺寸应按标准系列进行圆整;又如已知列管数和管间 距计算各种排列的管壳的内径,并圆整列管数。 ④计算过程中的试差部分需要有相应的迭代计算子程序。

列管式换热器课程设计..

课程设计说明书 学院:机电工程学院 专业:自动化 班级:(1)班 题目:列管式换热器的设计 指导教师:职称:

目录 一、设计的目的、要求及任务________________________________________2 1.1 设计目的_______________________________________________2 1.2 设计要求_______________________________________________2 1.3 设计任务_______________________________________________2 1.3.1 列管式换热器的简介______________________________2 1.3.2 设计的工艺流程__________________________________3 1.3.3 有关数据和已知条件_______________________________4 二、控制方案的选择________________________________________________5 2.1 主回路设计______________________________________________5 2.2 副回路选择______________________________________________6 2.3 主、副调节器规律选择____________________________________6 2.4 主、副调节器正反作用方式确定____________________________6 2.5工艺流程图______________________________________________7 三、调节阀的选择_________________________________________________7 3.1 阀的类型选择___________________________________________7 3.2 确定起开与气关_________________________________________8 四、仪表类型的选择_______________________________________________8 4.1流量变送器的选择________________________________________8 4.2温度变送器______________________________________________9 4.3安全栅的选择____________________________________________10 五、总结_________________________________________________________11 参考文献_______________________________________________________12

换热器设计开题报告

毕业设计(论文)开题报告设计(论文)题目: 学院:化工装备学院 专业班级:过程装备与控制工程0802 学生: 指导教师: 开题时间:2011年10 月18 日

指导教师评阅意见

一、选题的目的及意义: 换热器的基建投资在一般化工、石化企业中约占设备总投资的20%,其中固定管板式换热器约占换热器的70%。 固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。 特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。 固定管板换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束根据换热器的长度设置了若干块折流板。这种换热器管程可以用隔板分成任何程数。 固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格围广,故在工程上广泛应用。壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。 本课题所设计的冷却器属于固定管板换热器,是针对给定的设计参数,按照相关规定的要求,通过壁厚计算和强度校核等,设计固定管板式换热器产品。熟悉压力容器设计的基本要求,掌握固定管板式换热器的常规设计方法,把所学的知识应用到实际的工程设计中区,为以后的工作和学习打下扎实的基础。 二、国外现状发展及趋势 2.1 国外情况 对国外换热器市场的调查表明,管壳式换热器占64%。虽然各种板式换热器的竞争力在上升,但管壳式换热器仍将占主导地位。随着动力、石油化工工业的发展,其设备也继续向着高温、高压、大型化方向发展。而换热器在结构方面也有不少新的发展。螺旋折流板换热器是最新发展起来的一种管壳式换热器是由美国ABB公司提出的。其基本原理为:将圆截面的特制板安装在“拟螺旋折流系统”中每块折流板占换热器壳程中横剖面的四分之一其倾角朝向换热器的轴线即与换热器轴线保持一定倾斜度。相邻折流板的周边相接与外圆处成连续螺旋状。每个折流板与壳程流体的流动方向成一定的角度使壳程流体做螺旋运动能减少管板与壳体之间易结垢的死角从而提高了换热效率。在气一水换热的情况下传递相同热量时该换热器可减少30%-40%的传热面积节省材料20%-30%。相对于弓形折

浮头式换热器毕业设计说明书

摘要 本次设计为浮头式换热器,浮头式换热器主要由管箱、管板、壳体、换热管、折流板、拉杆、定距管、钩圈、浮头盖等组成。浮头换热器的一端管板与壳体固定,另一端为浮动管板。因此其优点为热应力较小,便于检查和清洗,缺点为结构较为复杂。在传热计算工艺中,包括传热量、传热系数的确定和换热器径及换热管型号的选择,以及传热系数、阻力降等问题。在强度计算中主要讨论的是筒体、管箱、管板厚度计算以及折流板、法兰和接管、支座、分隔板等零部件的设计,还要进行一些强度校核。本设计是按照GB151《管壳式换热器》和GB150《钢制压力容器》设计的。换热器在工、农业的各个领域应用十分广泛,在日常生活中传热设备也随处见,是不可缺少的工艺设备之一。随着研究的深入,工业应用取得了令人瞩目的成果。 关键字:换热器,工艺计算,强度校核

Abstract This design is floating head heat exchanger, it is made up of tube box 、tube sheet、shell、heat exchange tube、baffle plate、draw bar、spacer pipe、hook circle、floating head cover and so on. One tube sheet of the exchanger is connected with shell, and the other tube sheet is floating tube sheet. So it’s easy to check and clean. On the other hand the structure of it complex. In the process of heat transfer calculation, include area computation 、capacity of heat transmission 、the determine of heat transfer coefficient and the choice of the heat exchange tube. About strength calculation, it involve the calculating of shell、tube box、sealing head and so on. This design is according to GB151 << shell-and-tube heat exchanger >> and GB150 << Steel pressure vessel >> to design. Heat exchanger is one of the indispensable process equipment. With the deepening of the research, industrial application made remarkable achievements. Keywords:heat exchanger; Process calculation;strength check

列管式换热器设计说明书

摘要: 列管式换热器属于间壁式换热器,冷热流体通过换热管壁进行热量的交换。参照任务书的任务量,需设计年冷却15000吨乙醇的列管式换热器,设计时先确定流体流程,壳程走乙醇,其进、出口温度都为80℃,相变放出潜热,井水走管程冷却乙醇,进口温度为32℃,出口温度为40℃。再进行热量衡算、传热系数校核,初选冷凝器的型号,然后通过进行设备强度校核等一系列的计算和选型,最终确定的设计方案为固定管板式换热器,所选用型号为BEM400-2.5-30-9/25-2 Ⅰ,换热器壳径为400mm,总换热面积为27.79m2,管程为2,管子总根数为60,管长6000 mm,管束为正三角排列,两端封头选取标准椭圆封头。 关键词:列管式换热器,乙醇,水,温度,固定管板式。 Abstract: The tube type heat exchanger is a dividing wall type heat exchanger, fluids with different temperatures exchange heat by means of tube wall’s heat transfer.According to the assignment, A tube type heat exchanger which has a process capacity of .?4 1510t/a is needed. The ethanol flow in the shell,the temperature in the entrance and exits is 80℃.The water which cool the ethanol flow in tubes, the inlet and outlet temperatures are 32℃and 40℃.Then by taking series calculating to confirm the module of the heat exchanger . After the design of intensity designing and a series calculating and choosing , the last result of our design is the fasten-board heat exchanger. The style of the heat exchange is 9 BEM400 2.530 2 25 Ⅰ ----, and the diameter of the receiver is 400mm ,The area of the heat exchange is 27.79 m2, The heat-exchanger in cludes two tube passes,one shell passes and 60 tubes.And the length of tubes is 6000mm . Tubes are ranked of the shape of triangle ,the envelops are oval-shaped.

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

换热器设计论文

上海理工大学成人高等学历教育毕业设计(论文) 第1章绪论 换热器是一种实现物料之间传递热量的节能设备,在石油,化工,动力,食品,轻工等行业应用普遍。在炼油,化工装置中换热器占总设备数量的40%左右,占总投资的30%—45%。近年来随着节能技术的发展,换热器的应用领域不断扩大带来了显著的经济效益。换热器的种类很多,但根据冷,热流体热量交换的原理和方式基本上可分为三大类即:间壁式、混合式和蓄热式。在三大类换热器中,间壁式换热器应用最多。 间壁式换热器又可分为夹套式换热器、沉浸式蛇管换热器、喷淋式换热器、套管式换热器和壳管式换热器。其中壳管式换热器(又称列管式)是最典型的间壁式换热器,它在工业应用有着悠久的历史,而且至今仍在所有换热器中占有主导的地位。 1.1 课题的提出和研究内容 1.1.1 课题背景 管壳式冷凝器所涉及到的原理和它应用的领域都十分广泛,特别在制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的冷凝器,大型中央空调的冷水机组中都有其身影。可以说在民用和工业领域中的重要性不言而喻,所以对其的合理优化设计是非常重要的。 这次的毕业设计是与上海第一冷冻机厂的校企合作项目,上海第一冷冻机厂有限公司始创于1934年,我国第一台活塞式制冷压缩机、第一台离心式压缩机、第一台溴化锂制冷机和第一台螺杆制冷压缩机都诞生在这里!公司现已成为一个集冷冻空调设备研制开发、制造和压力容器制造、压力管道设计及相关工程安装和系统服务于一体的集约化企业。此次的毕业设计正是为企业设计HSG70-2型冷凝器,也是将大学四年所学知识学以致用。 1.1.2课题任务 本课题是按照上海第一冷冻机厂的要求设计HSG70-2型双机头(双回路)管壳式冷凝器。由于这个型号是工厂第一次设计,所以需

换热器的壳体设计毕业设计

换热器的壳体设计毕业设计 目录 第一章换热器概述1 1.1换热器的应用 (1) 1.2换热器的主要分类 (1) 1.2.1换热器的分类及特点 (1) 1.2.2 管壳式换热器的分类及特点 (2) 1.3管壳式换热器特殊结构 (5) 1.4换热管简介 (5) 第二章工艺计算7 2.1设计条件 (7) 2.2换热器传热面积与换热器规格: (8) 2.2.1 流动空间的确定 (8) 2.2.2 初算换热器传热面积'A (8) 2.2.3 传热管数及管程的确定 (9) 2.2.4管心距的计算 (9) 2.2.5换热器型号、参数的确定 (9) 2.2.6壳体径计算 (9) 2.2.7折流板的计算 (10) 2.3换热器核算 (10) 2.3.1传热系数核算 (11)

2.3.2换热器的流体阻力 (13) 2.3.3换热器的选型 (14) 第三章 换热器的结构计算和强度计算 15 3.1换热器的壳体设计 (15) 3.2筒体材料及壁厚 (15) 3.3封头的材料及壁厚 (16) 3.4管箱材料的选择及壁厚的计算 (16) 3.5开孔补强计算 (17) 3.6水压试验及壳体强度的校核 (19) 3.7 换热管 (20) 3.7.1 换热管的排列方式 (20) 3.7.2 布管限定圆L D (20) 3.7.3 排管 (21) 3.7.4 换热管束的分程 (21) 3.8 管板设计 (22) 3.8.1 管板与壳体的连接 (22) 3.8.2 管板计算 (22) 3.8.3 管板重量计算 (26) 3.9 折流板 (26) 3.9.1 折流板的型式和尺寸 (27) 3.9.2 折流板排列 (27) 3.9.3 折流板的布置 (27)

板式换热器设计毕业论文

板式换热器设计毕业论文 目录 前言 (1) 1章标题 (2) 1.1节标题 (3) 1.1.1小节标题 (4) 1.1.1.1小节子标题 (5) 1.2节标题 (6) 1.2.1小节标题 (7) 1.2.1.1小节子标题 (8) 2章标题 (9) 2.1节标题 (10) 2.1.1小节标题 (11) 2.1.1.1小节子标题 (12) 1绪论 1.1 板式换热器的学术背景及意义 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中,它的发展已有一百多年的历史。 1878年德国人发明了半片式换热器,现在通常都称作板式换热器,它经过了50余年的发展,至20世纪30年代,由薄金属板压制的板片组装而成的板式换热器间世,并将该换热器应用于工业中,显示出了优异的性能,从此就迅速地得到了广泛的推广应用,成为紧凑、高效的换热设备之一。 板式换热器是以波纹板的新型高效换热器。国外早在20世纪20年代就作为工艺设备引入食品工业,40—50年代初开始用于化工领域。近十年来,板式换热器发展很迅速,现已广泛用于食品、制药、合成纤维、石油化工、动力机械、船舶、动力、供热等各行业。目前我国的板式换热器工厂,可制造单板传热面积从0.042m2至1.32m2,波纹形式为水平平直波纹、人字形波纹、球形波纹、锯齿形波纹、竖直形波纹的板式换热器。

由于板式换热器在制造上和使用上都有一些独特之处,所以在工业上一经使用成功之后就发展很快。到本世纪四十年代,已经有几个国家好几个厂生产出许多种不同形状和不同尺寸的板片。至于现在,世界上能生产板式换热器的工厂已经很多了,主要的生产厂不下三、四十个。几个主要生产厂一般都有该厂独特的板片波形。一般一个厂只生产有限几种尺寸的板片。然后组装成换热面积大小不同的换热器。因为从设计到制造成功一定波形的板片需要有较大的投资和较长的时间,所以一般生产工厂不轻易改变板片的波形。 早期的板式换热器大都用于食品工业,如牛奶、蛋液、啤酒等的加工过程中。这是由于早期扳片的单板面积较小,不能组成单台面积较大的换热器,所以只能用于处理物料流量较小的场合,随着单板面积的增大,能组成的单台板式换热器的面积也相应增大。现在各制造厂竞相增大单板面积和组成大型的板式换热器。 板式换热器今后的发展趋势是:提高操作温度和操作压力,加大处理量,扩大使用范围,研制采用新的结构材料的制造工业,而研制新的垫片材料易提高其使用温度和使用压力,将是其中的重点。 虽然板式换热器有很多优点,而其现在发展很快,但它们在结构与制造上尚存在问题。随着科学技术的飞速发展,板式换热器正不断完善,应用也日趋广泛。 21世纪我国的能源形势是紧张的,我国和世界的能源消耗随着人口的增长和工业化的进展将会快速增长;现在我们利用的主要一次能源(煤炭、石油、天然气和核能)之中,除煤炭之外,其余三项已逐渐枯竭,其价格不可避免将持续增长;目前尚没有发现能替代石油、天然气、核能的一次能源,作为有效替补的能源有太阳能和热核反应,但前者成本费高,后者尚有许多实质的问题没有解决,尚不能达到实用阶段;为了控制地球温室效应,化石燃料的使用受到了各国舆论的强烈反对。综上所述,在21世纪的上半个世纪之间,作为解决我国能源和环境问题的重要措施之一是如何有效地利用好一次能源,其中主要研究的内容是从一次能源转移至二次能源、三次能源的高效率化;各阶段利用技术的先进性和效率的提高;需求的平衡和能源的供给、消耗系统的改善等。上述所说内容的实质是热技术,当分析各项技术时,我们将发现,换热技术是关键工艺之一。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片; 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层; 3:研究提高使用压力和使用温度; 4:发展大型板式换热器; 5:研究板式换热器的传热和流体阻力; 6:研究板式换热器提高换热综合效率的可能途径。 1.2 我国设计制造应用情况 我国板式换热器的研究、设计、制造,开始于六十年代。1965年,兰州石油化工机器

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

换热器设计开题报告

换热器设计开题报告 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

理工学院毕业设计(论文)开题报告题目:气-液介质专用换热器设计 学生姓名:石静学号:09L0503216 专业:过程装备与控制工程 指导教师:郭彦书(教授) 2013 年 4月 8 日

1文献综述 绪论 换热设备是化工、炼油、动力、能源、冶金、食品、机械、建筑工业中普遍应用的典型设备。一般换热设备在化工、炼油装置中的建设费用比例达20%~50%因此无论从能源利用,还是从工业的投资来看,合理地选择和设计换热器,都具有重要意义。在各种换热器中,由于管壳式换热器具有单位体积内能够提供较大的传热面积、传热效果好、适应性强、操作弹性大、易制造、成本低、易于检修和清洗等特点,因此应用最广泛。管壳式换热器按结构特点分为固定管板式、U型管式、浮头式、双重管式、填涵式和双管板等几种形式。不同的结构各有优缺点,适用于不同的场合。本文介绍的是板式换热器[1]。 管壳式换热器的特点 管壳式换热器是由一系列具有一定波纹形状的的金属片叠装而成的一种高效换热器。换热器的各板片之间形成许多小流通断面的流道,通过板片进行热量交换,它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多。板式换热器的广泛应用,加速了我国板式换热器行业的迅速发展,但我国板式换热器设计与发达国家之间仍存在着不小的差距。板式换热器是以波纹为传热面,在流道中布满网状触电,流体沿着板间狭窄弯曲、犹如迷宫式的通道流动,其速度大小和方向不断改变,形成强烈的湍流,从而破坏边界层,减少界面膜热阻,并使固体颗粒悬浮,不易沉积,有效地强化了传热,因此,它比管壳式等其他类型换热器具有很多独特的优点。第一,传热系数高,由于换热器的特殊结构及组装方式,使介质在流经相邻两板片间的流道时,流动方向和流速不断变化,在低流速下,形成急剧湍流,强化换热;第二,温差小,由于板式换热器具有较高的传热系数及强烈的湍流,可使热交换器的一、二次流体温度十分接近,温差趋近1~3℃;第三,热损失小,由于板片边缘及密封垫暴露在大气中,所以热损失极小,一般为1%左右,不需采取保护措施。在相同换热面积情况下,板式换热器的热损失仅为管壳式换热器的五分之一,而重量则不到管壳式的一半;第四,结构紧凑,换热板片由薄的不透钢板压制而成,板片间距一般为4mm,板片表面的波纹大大增加了有效换热面积,这样单位容积中可容纳很大的传热面积(每立方米体积可布置250㎡的传热面积),占地面积仅为管壳式的五分之一到十分之一。因此,体积小,节省安装空间。第五,适应性强,可根据产量及工艺要求,方便地增加或减少传热板片,亦可将板片重新排列,改变流程组合;第六,用途广泛,目前已广泛应用于化工、石油、机械、冶金、电力、食品、热水供应、集中供暖等工程领域,完成加热、冷却、蒸发、冷凝、余热回收等工艺过程中截

中文版列管式冷却器说明书

中文版列管式冷却器说明 书 Prepared on 24 November 2020

冷却器 产品使用说明书 中国广东 郁南县中兴换热器有限公司 一﹑概述 郁南县中兴换热器有限公司是广东中兴液力传动有限公司下属生产热交换器的专业厂家,主要产品有GLC﹑GLL﹑LQ型系列列管式冷却器,BR型系列板式冷却器, FL型﹑KL型、YOFL型(液力偶合器专用)系列空气(风)冷却器及各种热交换器,换热面积从~800m2。产品广泛使用在电力﹑冶金﹑矿山﹑机械﹑船舶﹑化工﹑空调、食品以及液压润滑行业,将工作介质换热(冷却)到规定的温度。 列管式冷却器由进出端盖﹑壳体﹑管束﹑后端盖、密封件及紧固件等组成,冷却介质(水)一般从换热管内通过,被冷却介质(油)从换热管外壳体内通过,冷热介质通过换热管传热,使被冷却介质温度下降。 列管式冷却器一般采用优质铜管﹑不锈钢管﹑钛管等作为换热管,管程可采用单回程、二回程或多回程,管程数增加使冷却介质流通时间加长,提高换热效果,换热管束上一般采用弓形折流板,使被冷却介质(油)在壳程内的流道为S形,达到被冷却介质(油)与换热管充分接触目的。 空气冷却器由进出端盖、本体、后端盖、风机、密封件、紧固件等组成,换热管采用单金属或双金属高效复合管。空气冷却器采用空气(风)作为冷却介质,具有工作稳定、无介质混合、运行费用低、节能环保、维护方便的优点。 二﹑型号及参数

三﹑使用说明 1﹑首先检查冷却器型号与规定要求是否相符,资料附件是否齐全(见装箱单),检查冷却器外观是否破损,紧固螺栓是否松动,冷却器出厂时已进行压力试验和清洗,一般不允许拆动紧固螺栓,确需拆卸清洗的,清洗完后必须进行压力试验,无泄漏、无异常方可使用。 2﹑冷却器安装前须确认进入冷却器的介质压力不大于冷却器铭牌标示设计压力。冷却器一般安装在系统回路或系统中压力相对较低处,必要时设置压力保护装置。列管式冷却器介质为油水时,油侧压力一般应大于水侧压力。试车前应在系统中设计傍路防止过高压力冲坏冷却器。连接冷却器的管道和系统须清洗干净,进入冷却器的介质须进行过滤,严防杂质堵塞和污染冷却器,以免影响冷却器效果。 空气冷却器安装应考虑进出风顺畅,在1米内无阻挡物。安装在室外时,应设置遮盖,防曝晒、防雨淋,以提高换热效率和使用寿命。 3﹑安装时须检查冷却器介质进出口无堵塞,将冷却器与介质管道连接紧密无泄漏。 4﹑冷却器工作时,先打开冷却器出口阀门,缓慢打开冷介质(水)进入阀,再缓慢打开热介质(油)进入阀,调整介质进入流量,以达到最佳效果。注意在打开冷却水进口阀门时不要过快,否则使换热管表面产生导热性很差的“过冷层”影响换热效果。 5﹑冷却器接通介质后,应检查各部位有无泄漏,并注意排尽冷却器中的气体,以提高换热效率和减少腐蚀。 6﹑在冬季冷却器停用时应放尽介质,防止介质冻结澎胀损坏冷却器。长期停用,应将冷却器拆下进行清洗、防锈等维护保养。

相关主题
文本预览
相关文档 最新文档