硬质合金的烧结工艺
- 格式:doc
- 大小:16.00 KB
- 文档页数:2
硬质合金的烧结气氛及其控制The Sintering Atmosphere of Hard Alloy and Its Control目前,硬质合金的烧结已在金属切削、航空航天、机械制造、医疗器械等诸多行业中得到广泛应用,它能替代传统钢制件,具有较高的热韧性和耐磨性。
为了保证硬质合金烧结工艺在精度、性能、耐久性等方面都满足要求,烧结气氛控制显得尤为重要。
At present, the sintering of hard alloy has been widely used in many industries such as metal cutting, aerospace, mechanical manufacturing and medical instrument industry. It can replace traditional steel parts and has high thermal toughness and wear resistance. In order to ensure that the sintering process of hard alloy meets the requirements in precision, performance and durability, the control of sintering atmosphere is particularly important.硬质合金的烧结气氛控制一般分为4类:真空烧结、气氛烧结、助烧剂烧结和半气体烧结。
真空烧结指的是在真空状态下进行烧结,气氛烧结指的是空气、氮气或氩气等常压气体为主要气氛烧结,助烧剂烧结指的是添加助烧剂,以改善烧结气氛烧结,而半气体烧结则指的是混合真空和气体烧结。
The control of sintering atmosphere of hard alloy is generally divided into four categories: vacuum sintering, atmosphere sintering, sintering aid sintering and semi-gas sintering. Vacuum sintering refers to sintering in vacuum state,atmosphere sintering refers to sintering under atmosphere of air, nitrogen or argon and other atmospheric pressure gases as the main atmosphere, sintering aid sintering refers to the additionof sintering aids to improve the sintering atmosphere, and semi-gas sintering refers to the mixed vacuum and gas sintering.根据成型原理的不同,硬质合金的烧结气氛可以分为固溶处理型、凝固型和渗透型。
硬质合金成分硬质合金是一种由金属和非金属元素组成的复合材料,具有高硬度、高强度和耐磨性等优良性能。
它广泛应用于机械加工、矿山工程、石油钻探和航空航天等领域。
本文将从硬质合金的成分、制备工艺和应用领域三个方面进行介绍。
一、硬质合金的成分硬质合金的主要成分是金属钨(W)和钴(Co),以及少量的其他金属和非金属元素。
钨是硬质合金的主要组成部分,具有高熔点、高硬度和高密度的特点,是使硬质合金具有优异性能的关键因素之一。
钴是硬质合金的结合相,具有良好的结合性和塑性,能够将钨颗粒牢固地固定在一起。
此外,硬质合金中还可以加入一些其他金属元素,如钛(Ti)、铌(Nb)等,以及非金属元素,如碳(C)和氮(N)。
这些元素的加入可以进一步改善硬质合金的性能,提高其硬度和耐磨性。
二、硬质合金的制备工艺硬质合金的制备主要包括粉末冶金和烧结两个过程。
首先,将金属粉末和非金属粉末按一定比例混合,并加入一定量的粘结剂。
然后,通过球磨机等设备对混合粉末进行混合和粉碎,使粉末颗粒更加均匀细小。
接下来,将混合粉末压制成坯体,通常使用等静压或注射成型等方法。
最后,将坯体进行高温烧结处理,使金属粉末颗粒相互结合,并与粘结相形成致密的合金体。
烧结温度和时间的控制对硬质合金的性能有重要影响,过高的温度和过长的时间会导致晶粒长大,从而降低硬质合金的硬度和强度。
三、硬质合金的应用领域硬质合金具有高硬度、高耐磨性和高强度的特点,因此在机械加工领域得到广泛应用。
它可以用于制造刀具、切割工具、钻头、铣刀和刨刀等,能够在高速切削和重负荷加工条件下保持较长的使用寿命。
此外,硬质合金还可以用于制造矿山工具,如岩钻头、钻孔钻头和矿用刀具等,能够在恶劣的矿石破碎环境中保持较好的工作性能。
在石油钻探领域,硬质合金可以用于制造钻头和钻具,能够在高温高压和强磨蚀的地层中稳定地进行钻井作业。
此外,硬质合金还被应用于航空航天领域,用于制造发动机零部件、导弹零部件和航天器零部件等,能够在高温和高应力条件下保持稳定的工作性能。
热压烧结的操作步骤及应用热压烧结是一种常见的粉末冶金工艺,用于制造高强度、高硬度、高精度的金属部件和陶瓷制品。
下面将详细介绍热压烧结的操作步骤和应用。
一、热压烧结的操作步骤:1. 原料制备:首先根据所需产品的要求,选择合适的原料,通常为粉末形式。
然后将原料进行混合、研磨,以获得均匀细小的粉末颗粒。
2. 填充模具:将混合好的粉末填充到特制的模具中。
模具的形状和尺寸应与最终产品一致。
3. 预压:将填充好的模具放置在预压装置中,在适当的压力下进行预压。
预压可以使粉末颗粒更加紧密地接触,并形成初步的形状。
4. 烧结:将经过预压的模具转移到烧结炉中,进行高温烧结。
烧结过程主要包括两个阶段:除气和烧结。
- 除气:在烧结开始前,需要将模具中的气体排除,以避免气体对烧结过程的干扰。
通常会在低温下进行除气处理,如较高压力下的真空处理或气氛控制下的气体排放。
- 烧结:将除气后的模具加热到适当的温度,使粉末颗粒发生相互结合和扩散,形成致密的固体。
烧结温度、时间和气氛的选择取决于所用材料和所需产品的特性。
5. 冷却:在烧结结束后,将模具从炉中取出,进行自然冷却或采用其他冷却方式。
冷却过程中,要注意避免产品出现热应力导致的开裂。
6. 除模:将烧结后的成品从模具中取出。
通常需要经过机械加工或其他后续处理步骤,以满足最终产品的要求。
二、热压烧结的应用:1. 金属制品:热压烧结可以用于制造各种金属制品,如钢制品、铝合金制品等。
由于热压烧结可以使金属颗粒充分结合,因此制造的金属制品具有高强度、高硬度和良好的耐磨性。
常见的应用包括汽车零部件、工具和模具、航空航天部件等。
2. 陶瓷制品:热压烧结是制造陶瓷制品的常用工艺之一。
热压烧结可以使陶瓷颗粒结合更紧密,从而获得高强度、高硬度和高密度的陶瓷制品。
常见的应用包括陶瓷刀具、陶瓷瓷砖、陶瓷合成材料等。
3. 硬质合金:热压烧结是制造硬质合金的主要工艺之一。
硬质合金通常由金属粉末和碳化物等非金属粉末混合而成。
硬质合金铣刀生产流程硬质合金铣刀是一种常见的切削工具,广泛应用于机械加工领域。
它具有高硬度、耐磨性好、切削效率高等优点,在加工过程中起到了至关重要的作用。
下面将介绍硬质合金铣刀的生产流程。
硬质合金铣刀的生产流程主要包括原料准备、粉末制备、成型、烧结、精加工和检验等环节。
原料准备是硬质合金铣刀生产的基础。
硬质合金铣刀的主要成分是钨钴合金,其它元素如钛、钼、铌等也会被添加进去,以提高硬质合金的性能。
这些原料需要经过严格的筛选和配比,确保成分的准确性和稳定性。
接下来是粉末制备过程。
原料经过粉碎和混合后,通过球磨机等设备进行粉碎。
在这个过程中,需要控制粉末的粒度和成分的均匀性,以确保后续工序的顺利进行。
成型是硬质合金铣刀生产的关键环节。
粉末通过注射成型、压制成型等方式,将其变成具有一定形状和尺寸的坯体。
在成型过程中,需要考虑到刀具的结构和功能,合理设计模具和成型工艺,确保成型的精度和质量。
烧结是将成型后的坯体进行高温处理,使其形成致密的硬质合金。
这个过程中,需要控制烧结温度、时间和气氛,以及合理选择烧结装置,确保硬质合金的显微组织和性能。
精加工是对烧结后的硬质合金进行细化加工,使其达到所需的尺寸和表面质量。
这个过程中,常用的加工方式包括砂轮修整、磨削、抛光等。
通过这些工艺,可以提高硬质合金铣刀的精度和表面光洁度。
最后是检验环节。
对生产出的硬质合金铣刀进行各项性能指标的检验,如硬度、耐磨性、切削性能等。
通过严格的检验,确保硬质合金铣刀的质量达到标准要求。
硬质合金铣刀的生产流程包括原料准备、粉末制备、成型、烧结、精加工和检验等环节。
每个环节都需要严格控制工艺参数和质量要求,以确保生产出高质量的硬质合金铣刀。
同时,不断优化生产工艺和技术手段,提高硬质合金铣刀的性能和效率,满足市场对切削工具的需求。
硬质合金圆棒一、硬质合金圆棒简介硬质合金圆棒又名硬质合金棒材,是一种以硬质合金(WC)为主要原料,再加上其它贵重金属和粘贴相经采用粉末冶金方法压制烧结而成的高硬度、高强度的合金材料,广泛用于国民生产加工领域,如钨钢钻头。
二、生产工艺流程硬质合金圆棒毛坯工艺流程制粉→按用途要求配方→经湿磨→混合→粉碎→干燥→过筛→后加入成型剂→再干燥→过筛后制得混合料→制粒→ 压制→成型→低压烧结→成型(毛坯)→外圆磨精磨(毛坯没有这道工序)→检测尺寸→包装→入库。
五、硬质合金圆棒材质性能特征1、以优质超细碳化钨和进口钴粉为原料。
2、采用世界先进的低压烧结制备技术进行标准化生产。
3、具有高强度和高硬度。
4、具有极好的红硬性、耐磨性好、高弹性模量、高抗弯曲强度、化学稳定性好(耐酸、碱、高温氧化)、耐冲击韧性好、膨胀系数低,导热、导电与铁及其合金相近的特点。
5、高新精密先进设备:德国进口10MPa低压烧结炉烧结。
6、独特的新工艺:真空高温高压烧结。
产品在最后阶段采用压力烧结,极大的减少孔隙度,提高致密性,大大地提高产品的机械性能。
7、产品特点:材质牌号多,能适用不同使用用途的需求;规格齐全,毛坯尺寸精准(减少加工量,提高生产效率)。
8、服务周到反应快:下单生产快,交货快捷准时(3~5天)。
五、#p#副标题#e#应用推荐硬质合金圆棒应用范围广泛,适用于制作钨钢钻头、PCB行业的微钻头,光电通讯行业的电极棒,机械加工行业硬质合金钻头,钻柄,顶尖、推杆、耐磨精密零件、是整体数控铣刀和带孔加工刀具首选优质材料等。
六、硬质合金的焊接特点硬质合金主要用于制造刀具、量具、模具、采掘工具以及整体刀具等双金属结构。
切削部分为硬质合金,基体为碳素钢或低合金钢,通常为中碳钢。
这类工件在工作时受到相当大的应力作用,特别是压缩弯曲、冲击或交变载荷,要求接头强度高、质量可靠。
硬质合金具有高硬度和耐磨性好的特点,但也存在脆性高、韧性差等缺点。
大部分硬质合金工具是用焊接的办法镶嵌在中碳钢或低合金钢基体上使用,焊接工艺与硬质合金的使用性能密切相关,焊接性能的好坏直接影响到硬质合金的使用效果。
硬质合金的制备方法硬质合金是一种高性能、高强度材料,广泛应用于机床、航空、航天、石油、化工等领域。
本文将介绍硬质合金的制备方法。
硬质合金的制备方法主要分为粉末冶金法和熔融冶金法两种。
1. 粉末冶金法粉末冶金法是制备硬质合金的主要方法之一。
其主要原理是将金属粉末和非金属粉末按一定比例混合,再经过压制、烧结等工艺制成。
具体步骤如下:(1)原料制备。
将金属粉末和非金属粉末按一定比例混合,经过筛选、干燥等处理。
(2)压制成型。
将经过处理的原料粉末放入模具中,经过压制成型。
(3)烧结处理。
将成型后的粉末坯体放入高温炉中,进行烧结处理。
烧结温度一般在1300℃~1500℃之间,时间约为1~4小时。
烧结后的坯体具有一定的强度和韧性。
(4)后续加工。
经过烧结后的坯体,需要进行后续的加工,如切割、磨削、抛光等工艺处理,制成成品。
2. 熔融冶金法熔融冶金法是另一种制备硬质合金的主要方法。
其主要原理是将金属和非金属原料按一定比例熔融后,冷却成坯,再进行后续加工制成硬质合金。
具体步骤如下:(1)原料制备。
将金属和非金属原料按一定比例混合,经过筛选、干燥等处理。
(2)熔融处理。
将经过处理的原料放入电炉中,进行熔融处理。
熔融温度一般在1600℃~2000℃之间。
熔融后的合金液体需要进行除渣、保温等处理。
(3)坯体铸造。
将熔融后的合金液体倒入铸造模具中,冷却成坯体。
(4)热处理。
将坯体进行热处理,使其具有一定的强度和韧性。
(5)后续加工。
经过热处理后的坯体,需要进行后续的加工,如切割、磨削、抛光等工艺处理,制成成品。
粉末冶金法和熔融冶金法是制备硬质合金的主要方法。
两种方法各有优缺点,具体应根据实际情况选择。
无论采用哪种方法,都需要严格控制各项工艺参数,以保证制得的硬质合金具有优良的性能和质量。
硬质合金的概念硬质合金是一种由金属和非金属粉末经过高温烧结而形成的新型材料,它具有高硬度、高抗磨、高抗腐蚀、高耐热和高抗压等特点。
硬质合金的硬度通常比工具钢高出10倍以上,可以用来制造切削工具、冲头、模具等高强度、高耐磨的零件,广泛应用于机械制造、石油、冶金、采矿、建筑等行业。
硬质合金的主要成分是金属粉末和非金属粉末。
金属粉末通常选择钨(W)、钴(Co)、镍(Ni)、铁(Fe)等,用于提高硬质合金的硬度、韧性和耐磨性;非金属粉末通常包括碳化物、氮化物、硼化物等,用于提高硬质合金的硬度和抗磨性能。
硬质合金的制备过程主要包括原料制备、混合、压制和烧结四个步骤。
首先,金属粉末和非金属粉末按一定比例混合,以获得所需的成分和性能。
然后,将混合好的粉末放入压力机中进行压制,通常采用冷压、等静压或热压等方式,以使粉末形成块状。
最后,将压制好的块状物料放入高温烧结炉中,进行高温处理,使粉末颗粒间相互扩散、熔融和结合,最终形成密度高、结构致密的硬质合金材料。
硬质合金的硬度主要来自于非金属成分中的碳化物、氮化物和硼化物的硬质颗粒。
这些硬质颗粒分散在金属基体中,能够阻止位错移动,增加材料的硬度和抗磨性。
而金属基体则能够提供材料的韧性和抗冲击性能。
硬质合金既具有金属的韧性和抗冲击性,又具有非金属硬质颗粒的硬度和抗磨性,因此具备了优异的综合性能。
硬质合金的应用十分广泛。
在机械制造领域,硬质合金常被用于制造切削工具,如铣刀、钻头、刨刀、滚刀等,能够在高速切削和大负荷下保持较长的使用寿命和较高的切削效率。
在石油行业,硬质合金常被用于制造石油钻头,能够在坚硬的地层中进行高效率的钻探。
在冶金和采矿行业,硬质合金常被用于制造破碎机的刀片、研磨机的磨料、抽水泵的叶轮等耐磨件,能够在恶劣的工作环境下耐受高压、高温和高磨损。
在建筑行业,硬质合金常被用于制造混凝土钻头和切割刀片,能够在处理混凝土和石材时具备较高的耐磨性和切削效率。
总之,硬质合金是一种具有高硬度、高抗磨、高抗腐蚀、高耐热和高抗压等特点的新型材料。
硬质合金刀片生产工艺流程英文回答:The production process of hard alloy blades involves several steps. Let's take a look at the detailed process:1. Material selection: The first step in the production process is to select the appropriate materials for the hard alloy blades. Typically, hard alloy blades are made from a mixture of tungsten carbide and cobalt. The proportion of these materials can vary depending on the desired properties of the blades.2. Mixing: Once the materials are selected, they are mixed together in a ball mill. This process ensures that the tungsten carbide particles are evenly distributed throughout the mixture. The mixing time and speed are carefully controlled to achieve a homogeneous mixture.3. Pressing: After the mixing process, the mixture ispressed into the desired shape using a hydraulic press. This step is crucial as it helps in compacting the powder and forming a solid shape. The pressure applied during pressing is carefully controlled to ensure uniformity and density.4. Pre-sintering: The pressed blades are then subjected to pre-sintering. This involves heating the blades in a furnace at a specific temperature. Pre-sintering helps in removing any binders or lubricants that were used during the pressing process. It also helps in further strengthening the blades.5. Shaping and grinding: After pre-sintering, the blades are shaped and ground to the desired dimensions. This is done using precision grinding machines. The blades are carefully measured and ground to achieve the required shape, size, and sharpness.6. Sintering: The shaped blades are then subjected to a high-temperature sintering process. This involves heating the blades in a furnace at a temperature close to themelting point of tungsten carbide. During sintering, the tungsten carbide particles bond together, forming a dense and hard structure.7. Cooling and finishing: Once the sintering process is complete, the blades are cooled down gradually to room temperature. This helps in relieving any residual stresses and ensures dimensional stability. After cooling, the blades undergo finishing processes such as polishing and coating to enhance their performance and durability.中文回答:硬质合金刀片的生产工艺流程包括以下几个步骤:1. 材料选择,生产硬质合金刀片的第一步是选择合适的材料。
烧结态硬质合金的hip处理
烧结态硬质合金HIP处理是一种穿境质量改善的技术,此技术通过高温热处理来改善
金属材料的性能和耐磨性,使其更加耐用、耐久、经久耐用,可以有效降低磨损、延长金
属零部件的使用寿命,提高产品质量,更安全、可靠、经济对环境友好。
烧结态硬质合金 HIP 处理主要通过将金属材料进行热处理,即金属热渗蒸发和硬化
处理,将热渗蒸发的金属材料和金属材料粉末,在一定的温度和压力条件下,通过原子元
素热完全渗透,将材料渗透表面和金刚石粉之间形成全新的组合物。
之后拉快及压密,以
使之在热处理过程中形成结晶体,以增强金属材料的坯体强度和硬度。
HIP处理一般以碳含量9-14%的烧结态硬质合金为金属材料,并配以氮化或氰化合金,以达到大的塑性和强度,预设温度一般有1750-1800℃,压力亦有特殊要求。
HIP处理的
阶段主要有3步:坯体准备,冷却回火热处理及加速热处理及冷却。
(1)坯体准备。
即将材料去除表面油污和氧化皮及将材料研磨到精密度要求,然后
进行高温HIP处理准备,可以保证加工工艺和后续热处理效果。
(2)冷却回火热处理。
在热处理过程中,特殊的温度条件释放一定热量进行定型,
可以形成新的结晶体,进而改变原有的金属的组织,改变成块状的体结构,以增加其硬度
和硬性特殊材料的硬度和耐磨性。
(3)加速热处理及冷却。
根据材料的性能和使用环境的要求,选择合适的冷却速度
以增强其韧性和抗拉强度。
通过以上HIP处理,可以有效降低材料的成型应力、改善细观
组织,增强表面耐蚀和耐磨性,从而实现其强度和质量的改善。
真空烧结真空度真空烧结是一种在真空环境下进行的烧结工艺,主要用于制备硬质合金、陶瓷、金属和其他材料的高性能制品。
在真空烧结过程中,材料在高温下受热,同时受到外部压力的作用,使其颗粒间发生结合,从而形成致密的块状材料。
真空烧结的关键在于保持一定的真空度,以确保烧结过程中材料不受氧化或其他气体污染的影响。
真空烧结的真空度是指在烧结室内的气体压力,通常以帕斯卡(Pa)为单位进行表示。
通过减少烧结室内的气体分子数量,可以有效地降低材料与气体之间的相互作用,防止材料表面氧化或污染,从而提高烧结制品的质量和性能。
一般来说,真空烧结的真空度要求在10^-3帕到10^-5帕之间,不同材料和工艺可能会有所不同。
在真空烧结过程中,通过真空泵等设备将烧结室内的气体抽出,使其达到所需的真空度。
在设备设计和操作过程中,需要考虑到材料的挥发性、烧结温度、烧结时间等因素,以保证烧结过程的稳定性和可控性。
同时,还需要对真空度进行实时监测和调节,以确保烧结过程中气体压力的稳定性和一致性。
在真空烧结工艺中,真空度的控制是至关重要的,它直接影响着烧结制品的质量和性能。
通过优化真空度的控制,可以有效地提高烧结制品的致密性、硬度、耐磨性等性能指标,满足不同应用领域对材料性能的要求。
因此,在实际生产中,需要根据不同材料和产品的要求,合理选择真空度和烧结工艺参数,以实现最佳的烧结效果。
总的来说,真空烧结的真空度是保证烧结制品质量的重要因素之一,其控制需要综合考虑材料特性、工艺参数和设备性能等因素。
通过精密的真空度控制,可以有效地提高烧结制品的性能和品质,推动材料制备技术的发展和应用。
希望未来在真空烧结领域的研究和实践中,能够进一步完善真空度控制技术,推动烧结工艺的创新和发展。
石蜡工艺硬质合金生产工艺1 生产工艺原理1.1 原理概述硬质合金是一种由难熔金属硬质化合物与粘结金属组成,采用粉末冶金方法生产,具有很高耐磨性和一定韧性的硬质材料。
由于所具有的优异性能,硬质合金被广泛应用于切削加工、耐磨零件、矿山采掘、地质钻探、石油开采、机械附件等各个领域。
矿用合金分厂石蜡工艺硬质合金的生产过程一般为:a) 将难熔金属硬质化合物(碳化钨、碳化钽等)、粘结金属(钴粉或镍粉)及少量添加剂(硬脂酸或依索敏)经过配料,在己烷研磨介质中进行混合和研磨,添加石蜡的料浆,再经真空干燥(或喷雾干燥)、过筛、制粒,制成掺蜡混合料;b) 掺蜡混合料经鉴定合格,经过精密压制,制成高精度压坯;c) 压坯经真空脱蜡烧结或低压烧结,制成硬质合金。
1.2 各工艺过程原理1.2.1 混合料制备原理称取所需的各组份原料及少量添加剂,装入滚动球磨机或搅拌球磨机,在球磨机中合金球研磨体的冲击、研磨作用下,各组份原料在己烷研磨介质中得到细化和均匀分布,在喷雾干燥前(或湿磨后期)加入一定量液态石蜡,卸料后经喷雾干燥、振动过筛(或真空干燥、均匀化破碎过筛),制成有一定成分和粒度要求的掺蜡混合料,以满足压制成型和真空烧结的需要。
1.2.2 压制原理将混合料装入定型模腔内,在压力机冲头或其它传压介质施予的压力的作用下,压力传向模腔内的粉末,粉末发生位移和变形,随压力的增加,粉末颗粒之间的距离变小,粉末颗粒之间发生机械啮合,孔隙度大大降低,同时在成型剂的作用下,混合料被密实成具有一定形状、尺寸、密度、强度的压坯。
在保证压力机、模具及混合料满足压制要求的基础上,利用有效手段控制过程中的各种影响因素,最终得到高精度尺寸的压坯。
由于粉末颗粒与模具壁之间的摩擦作用,使压力在压坯高度方向产生衰减,引起压坯单位高度上的重量变化,即反映了压坯密度的变化。
道斯特机械自动(或C35-160、C35-500、TPA45.2、TPA50/2、TPA20/3等)双向压力机,是靠机械凸轮在动力带动下完成压制动作,一旦动作的上下死点限定,压制动作就不会改变,故能保证压坯的高度不变,这时,装料量的变化会引起压制力的变化,从而引起压坯尺寸的变化,故应控制单重的波动范围,即通过控制压制工艺参数来实现等密度压制。
粉末冶金的烧结技术规程一、前言粉末冶金是一种现代工艺技术,其主要应用于各种含金属、非金属和合金的粉末烧结制备。
粉末冶金技术具有独特的优势,例如可以生产出细粒度、高密度、高强度、耐磨、耐腐蚀的零件等。
在本文中,将介绍粉末冶金的烧结技术规程。
二、烧结原理烧结是将粉末冶金材料在高温下加热压实,使其形成致密的固体块材料的过程。
烧结时,原粉末经过初步加工处理,如混合、压制等工艺。
而后再放入保护气氛的烧结炉中加热,使粉末颗粒在融合时形成块状材料。
烧结的原理是粉末团聚过程的加快,通过在高温下加压使粉末颗粒间形成连接,形成致密的物理结构,从而提高材料的密度和强度。
三、不同材料的烧结温度烧结温度取决于使用材料的种类、成分和形状。
以下列出一些典型的烧结温度范围:1. 硬质合金烧结烧结温度为1300-1520°C,可以使硬质合金材料的密度达到99%以上,从而提高硬度和耐磨性能。
2. 钨合金烧结烧结温度为1400-1600°C,可以使钨合金材料的密度达到90%以上,从而提高硬度和抗腐蚀性能。
3. 不锈钢烧结烧结温度为1250-1350°C,可以使不锈钢材料的密度达到95%以上,从而提高耐腐蚀性能。
4. 铜烧结烧结温度为700-900°C,可以使铜材料的密度达到90%以上,从而提高材料的导电性能和强度。
五、烧结工艺流程1. 原料制备粉末冶金材料的粉末需要在专业的设备中进行初步处理,如混合、筛分等,以满足烧结的要求。
2. 压制将初步处理过的粉末加入模具中,进行压制。
压缩时需要控制压实的压力和时间,以确保形成高密度的材料坯。
3. 烘干将压制后的材料坯进行烘干,以去除多余的水分和其他杂质。
4. 烧结将烘干的材料坯放入烧结炉中,在高温下进行保护气氛烧结。
烧结温度需要根据材料的种类、形状和成分来确定,以确保形成高密度、高强度的材料。
5. 冷却待烧结完成后,将材料坯从烧结炉取出放凉,并在不同温度下进行降温,以防止材料的变形或裂纹。
硬质合金烧结工艺
硬质合金是由各种碳化物和铁族元素组成,例如WC-Co、WC-TiC-TaC-NbC-Co或是
TiC-Mo₂C-Ni。这些材料的典型特点就是,通过液相烧结可以达到几乎100%理论密度,烧
结后,低的残余孔隙度是成功应用硬质合金于金属切削、石油开采钻头或者金属成形模具等
高应力使用工况的关键。此外,必须仔细控制烧结工艺,以获得希望的显微组织和化学成分。
在很多应用场合,硬质合金都是以烧结态应用的。烧结态合金表面经常承受条件苛刻的
摩擦和应力,在大多数的切削金属应用中,刀头表面的磨耗深度只要超过0.2~0.4mm,工具
就被判定报废,所以,提高硬质合金的表面性能是相当重要的。
烧结硬质合金的两种基本方法:一种是氢气烧结——在氢气中与常压下通过相反应动学
来控制零件成分,另一种是真空烧结——采用真空环境或降低环境气体压强,通过减缓反应
动力学来控制硬质合金成分。真空烧结有着更为广泛的工业应用。有时,还采用烧结热等静
压和热等静压,这些技术都对硬质合金的生产有着重要的影响。
氢气烧结:氢气是还原性的气氛,但当氢气与烧结炉壁或承载装置发生反应时会改变其
他成分,提供合适的碳化势以维持与硬质合金的热力学平衡。在传统的硬质合金烧结中,要
将混合料中的碳化物的含碳量调节到理论值,并在整个氢气烧结过程中维持这个值不变。例
如,烧结94WC-6CO硬质合金时,入炉时,碳含量为5.70~5.80%(质量分数),出炉时,则
要维持在5.76+0.4%
氢气烧结工艺的气氛控制能力对于钨钴类硬质合金来说是足够的,但是对于切钢工具用
含碳化钛碳化钽或碳化铌的合金来说,气氛的氧化势太高,导致合金的成分变化,通常用真
空烧结来减低这些,合金氧化物的含量,氢气烧结一般用机械推舟的方式,通过连续烧结来
完成,可用一个单独的预烧炉除去润滑剂防止挥发物污染后的高烧结过程。预烧结还可以调
高生胚强度,使能对其进行粗切削加工,例如,进行车削和钻孔,预烧结温度在500~800
摄氏度间,这主要取决于润滑剂除去的是否彻底及所需生胚强度。
真空烧结:与氢气烧结相比,真空烧结主要要几个优点,首先真空烧结能极好的控制产
品成分,在1.3~133pa压强下,碳和氧气在气氛与合金之间的交换速率非常低。影响成分变
化的主要因素是碳化物颗粒中的氧含量,而不是碳与真空中稀薄气体的反应速率,因而在烧
结硬质合金的工业生产中,真空烧结占有优势。
氢气烧结时,由于氢气的渗入以及氢与陶瓷炉部件的反应,使得炉内的气氛气体的氧化
势增高。真空烧结不存在这些问题,炉内氧化势比氢气烧结时低,因此,含有对氧化很敏感
的碳化钛,碳化钽和碳化铌的合金,真空烧结工艺,更为合适。
其次,真空烧结可灵活的控制烧结制度,特别是加热升温阶段的升温速率,以满足生产
的需要,例如,当烧结含有碳化钛、碳化钽、碳化铌的合金时,必须缓慢的升温,还要有一
个在中间的温度保温的阶段才能得到高质量的产品。真空烧结是间歇式操作,可灵活调节所
需要的烧结制度,而氢气烧结大多是连续烧结工艺,很能实现对各烧结阶段的温度进行准确
的控制。
如果能实现,较慢的升温速率就有足够的时间使碳——氧充分反应:形成的CO气体也
来的及从连通孔隙逸出,如果升温速率太快,气体就会滞留下来,形成孔隙。在真空炉中,
很容易调节加热过程的升温速率,而对于机械推舟式氢气烧结炉来说,各烧结区的温度和达
到最高烧结时的时间,都受限制很难调整。
现在工业真空烧结的操作成本较低,以前的真空烧结设备,是小的感应加热炉,这种炉
子能量消耗大、冷却时间长,而且在烧结前需要单独清除润滑剂,现在应用的真空烧结炉至
少在以下几方面比氢气烧结成本低:装炉量大、电阻加热、用强制气体冷却以及可在炉内清
除润滑剂。
烧结热等静压:烧结热等静压有时也称之为过压烧结和加压烧结。烧结炉实际上是一个
可以充压的真空烧结炉,为了减少或消除残留空隙在烧结温度下当零件内形成封闭孔隙后,
往炉内充以惰性气体对其施加等静压力,氩气压力在1.5~10Mpa,远低于通常意义的热等静
压压力。一个具体的烧结过程,包括润滑剂清除、氧化物还原和碳化物合金烧结。当碳化物
烧结出现闭孔时,才将炉内的低压热的静压力升到较高的水平。有报道指出对于含Co3%~6%
的WC-Co牌号的硬质合金,烧结热等静压压力大约为0.2Mpa温度在1420~1460摄氏度范
围内出现闭孔;而对于含有立方碳化钨的硬质合金,在1430~1480摄氏度时出现闭孔。就作
业成本而言同等生产能力的烧结热等静压设备操作成本比真空烧结炉的操作成本要高的多。
热等静压是在一个专门设计的高压容器中进行的,利用氩气加压到100Mpa,温度和传
统的烧结温度大体一样。通常是先烧结,在作等静压后续处理,以消除少量用正常烧结工艺
消除不了的残留空隙。当然也可以用热等静压来固结只预烧过的压胚。热等静压机是主要的
关键投资,作为烧结的后处理工序,它增加了作业成本、能量和气体的消耗和生产周期。热
等静压生产的硬质合金具有晶粒细小,含量低的特点,因而强度更高但无论采用烧结热等静
压还是后热等静压,只有建立了时间、温度和压力之间的合适关系,才能得到比氢气的烧结
和真空烧结产品高的强度。