当前位置:文档之家› 抽油机井系统效率计算方法

抽油机井系统效率计算方法

抽油机井系统效率计算方法
抽油机井系统效率计算方法

抽油机井系统效率和混合液比重的计算方法

1、输入功率Wi

1000/243?=φIVCOS W i

其中:

Wi —i 井的电动机实际耗电量 kWh/d ;

I —平均电流 (A );I=0.6×(I 上+I 下)/2;

cos φ—功率因数。取0.8

V —电压 (v )

2、混合液的比重

ρ=(1-f w )×ρo +f w ×ρ

w

其中:

fw —含水率

ρo — 油的密度 t/m 3

ρw —水的密度 t/m 3

3、抽油机井有效扬程Hi

Hi=H 动i +100×(P 油i -P 套i )/ρ

其中:

H 动i — i 井的动液面 m ;

P 油i — i 井的回压 Mpa ;

P 套i — i 井的套压 Mpa ;

4、单井机械采油系统运行效率 ηi %1002.367???=

Wi Hi Qi i ρη Qi — i 井的产液量 m 3/d

5、机械采油系统平均运行效率 η

∑∑?=i i Q Qi ηη

混合液比重的计算方法

γ液=γ水*γ油/〔γ水-(γ水-γ油)fw

式中:fw为含水重量百分比;%

γ油原油比重,尽量采用近期原油全分析的比重;

γ水油井采出水的比重,对于有游离水的井,用比重计实测比重;对于无游离水的井,根据化验的CL-用下面的公式计算出γ

γ水=1+0.0106 CL-

式中:CL-单位为mg/l。

生产率和生产效率的计算方法

生产率和生产效率的计算方法 在工厂经常有人讲提高工作效率,其实这只是一个含混的概念。这里将提出生产率和生产效率两个概念,以帮助工厂科学地制定效率目标,找到达成的方法。 生产率(Productivity)和生产效率(Efficiency)在生产管理的实际运用中是两个不同的概念。 生产效率主要用来考核纯生产能力,不包括由技术、材料等其它问题所引起的能力损耗。 生产效率的计算公式: 生产效率=(产出数量 X 标准工时)/(日工作小时 X 直接人工数 - 损失工时)X100% 生产率用来考核整个生产过程中的能力,是制造成本的标示之一。 生产率=(产出数量 X 标准工时)/(日工作小时 X 直接人工数)X100% 案例分析: 如果整个车间的月度生产力和生产效率大大超过100%意味着什么?Productivity: 123% Production Efficiency: 142% Productivity = (Output Qty x Standard Time) / (Total H/C x (Working Time + Over Time)) Production Efficiency = (Output Qty x Standard Time) / (Total H/C x (Working Time - Downtime + Overtime)) 所有的乘积都是相乘相加的结果,即Excel 中的sunprodut()函数。 我想一定在什么上面出了问题? 可能的原因是: * 每个机型的标准工时定的太高了 * PCBA 和 FA中的标准工时有重复 * Oracle 中标准工时的定义是瓶颈时间*所有人数,还是每个工位时间*每个工位人数的累加 * 工作时间定低了 * Working Time 的定义,是按照劳动法的每日8小时,还是需要去除吃饭,休息时间

设备综合效率OEE的计算方法

OEE的计算方法 OEE(Overall Equipment Effectiveness), 即设备综合效率,其本质就是设备负荷时间内实际产量与理论产量的比值。企业在进行OEE计算时常常遇到很多迷惑的问题,如工厂停水、停电、停气、停汽使设备不能工作,等待定单、等待排产计划、等待检查、等待上一道工序造成的停机,不知如何计算。本文引入非设备因素停机的概念,修改了OEE的算法,使计算得到的OEE更能够真实反映设备维护的实际状况,让设备完全利用的情况由完全有效生产率这个指标来反映。本文同时介绍了在不同情况下如何分析设备损失的PM分析流程。 1、 OEE表述和计算实例 OEE= 时间开动率×性能开动率×合格品率 其中,时间开动率 = 开动时间/负荷时间 而,负荷时间 = 日历工作时间-计划停机时间 开动时间 = 负荷时间–故障停机时间–设备调整初始化时间 性能开动率 = 净开动率×速度开动率 而,净开动率 = 加工数量×实际加工周期/开动时间 速度开动率 = 理论加工周期/实际加工周期 合格品率 = 合格品数量/ 加工数量 在OEE公式里,时间开动率反映了设备的时间利用情况;性能开动率反映了设备的性能发挥情况;而合格品率则反映了设备的有效工作情况。反过来,时间开动率度量了设备的故障、调整等项停机损失,性能开动率度量了设备短暂停机、空转、速度降低等项性能损失;合格品率度量了设备加工废品损失。 OEE还有另一种表述方法,更适用于流动生产线的评估, 即 OEE= 时间开动率×性能开动率×合格品率 而,时间开动率 = 开动时间/计划利用时间 而,计划利用时间 = 日历工作时间-计划停机时间 开动时间 = 计划利用时间–非计划停机时间 性能开动率 = 完成的节拍数/计划节拍数 其中,计划节拍数 = 开动时间/标准节拍时间

应用新技术 提高油井系统效率

应用新技术提高油井系统效率 发表时间:2014-09-03T16:15:26.280Z 来源:《科学与技术》2014年第6期下供稿作者:侯晓民[导读] 新技术的使用2.1 永磁电机永磁电机与普通三相异步电动机相比,不需要无功励磁电流。可以显著提高功率因素。 孤东采油厂采油三矿采油9 队侯晓民 摘要:降低抽油井的能耗,唯一的途径就是提高油井的系统效率。通过改进电机的性能,提高效率;利用变频技术,降低耗电量;使用新型抽油机,提高传动效率等。通过地面技术水平的提高和制定合理工作制度,充分利用现有资源,提高油井的系统效率。 关键词:系统效率;永磁电机;变频技术1 系统效率偏低的原因分析游量式抽油机因其结构简单、制造容易、维修方便等优点,得到普遍使用。但四连杆机构的旋转运动造成电机负荷的不均匀性,从而降低了三相异步电动机的效率。同时因其高启动扭矩,又造成大马拉小车的现象。稠油井多,大量使用电磁调速电机。虽然实现了平稳无级调速,但低速时电机损耗大效率低。 这是系统效率偏低的主要原因。 2 新技术的使用2.1 永磁电机永磁电机与普通三相异步电动机相比,不需要无功励磁电流。可以显著提高功率因素。通过减少定子电流和定子电阻损耗,电机效率提高2-8%。永磁电机在25-120%额定负荷范围内,均可保持较高的效率和功率因素。高效高起动转矩同步电机比普通感应电机的起动扭矩大50-100%。可以代替大一号电机座号,节电率在20%左右。在5 口井上进行试验,功率因素提高0.44,系统效率提高4%。在实际使用中,电机的功率降低一个等级,功率因素普遍较高。 2.2 变频调速技术变频调速技术是通过改变电流的频率,实现电机转速的改变。现在采用的变频装置是由整流器和逆变器组成。整流器先将50 赫兹的交流电变成直流电,再由逆变器变换成频率可调的三相交流电。由于变频器可实现低速、轻载启动,因此降低电机的匹配功率,提高功率因素。变频柜地使用,可由普通电机代替调速电机,较好地解决了电磁调速电机效率低地原因。2008 年3 月份试验20 口井,节电率21%。功率因素提高0.3,系统效率提高9.2%。变频柜代替普通自控箱,如果使用普通电机替代电磁调速电机,冲数低的井效果明显。冲数高于6 次,效果较差。如果用电磁调速电机替代普通电机,则无效果。因此,变频技术主要在低冲数井上使用普通电机替代电磁调速电机效果明显。 2.3 永磁电机和变频技术结合使用稠油热采区块原油粘度高,采用电热杆、空心杆、和双泵等采油工艺,冲数都在4 次以下。在一个蒸汽吞吐周期的生产过程中,抽油机负荷和冲数变化较大。使用37KW 调速电机,虽然实现了无级调速,但由于匹配功率较大,造成系统效率低。 电机的功率因素低、效率低,造成整条线路的电压降大,影响油井正常生产。采用变频柜实现电机无级调速,降低电机的匹配功率;采用永磁电机,提高功率因素和启动扭矩,单井系统效率大幅度提高。目前已使用13 台,平均节电36.5%,功率因素提高0.435,系统效率提高10.2%。其缺点是负荷较大井,30KW 永磁电机无法正常生产,对于抽油机卸载也有一定的困难。 2.4 机械调速通过变速箱降低电机输出转速,电机启动扭矩降低,电机匹配功率减少,提高电机的负载率。由此提高电机的效率。现场使用中,可以用17KW 的电机代替55KW 电机,节电42%,功率因素提高0.4,系统效率提高8.02%。在该技术使用前,对于供液差的砂河街井,由于泵挂深,负荷重,都使用12 型抽油机,匹配55KW 普通三相异步电动机或37KW 电磁调速电机,耗电量大,功率因素低。不仅单井系统效率低,也造成整个电网的线损增加。对于低液量、低粘度的油井,因为使用电磁调速电机的低效率和大功率三相异步电动机,造成电机效率低,整条线路的功率因素低。使用DCJ 系列电机后,节电效果极为明显。但由于无法实现无级调速,在稠油井的使用中受到一定的限制。 2.5 无游量式抽油机的使用游量式抽油机井系统效率低的主要原因,是四连杆旋转运动造成电机负荷的不均匀性。而无游量式抽油机解决了该问题。 无游量式抽油机在上下冲程中,抽油机负荷是光杆负荷和平衡配重的差,基本是稳定。这样电机输出的扭矩是衡定的。因此电机效率较高。目前使用的胜利高原公司生产的皮带抽油机和山东创新技术有限公司生产的智能滚筒式抽油机,节电效果较好,平均单井日节电115度,节电率60%。无游量式抽油机的缺点是冲数低、理论排量低。适合于稠油、低液量井。 3 结论1)永磁电机取代普通电机,可以提高单井的系统效率。同时功率因素的提高,降低电网的线损。油井的冲数超过5 次后,应用永磁电机,投入少,效益高。2)通过变频技术实现冲数的无级调节,配备普通电机,低冲数时效果更好。配备永磁电机,效果好于普通电机。适用于稠油井,特别是低冲数井,大幅度提高油井的系统效率。3)机械变速,适用于低冲数、光杆不缓下的油井。投入较小,节电效果好。4)无游量式抽油机节电效果明显,适用于稠油、低液量井。新投产的稠油井优先选用无游量式抽油机。低液量、泵挂深的油井亦可采用无游量式抽油机。但不适用于供液较好的油井。

设备综合效率计算

设备综合效率计算 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性能开动率和合格品率反映出来,故得到下面设备综合效率公式:设备综合效率=时间开动率×性能开动率×合格品率 时间开动率=(工作时间/负荷时间)×100% 这里,负荷时间为规定的作业时间除去每天的停机时间,即 负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 速度开动率=(理论加工周期/实际加工周期)×100% 净开动率=(加工数量×实际加工周期/开动时间)×100% 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 实际上 性能开动率=速度开动率×净开动率= 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为0.5min,实际加工周期为0.8min。则 净开动率=0.8×400/400=80% 速度开动率=0.5/0.8=62.5% 性能开动率=80%×62.5%=50% 合格品率=((加工数量-不合格品数量)/加工数量)×100% 【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6% 我们把上面的公式和例子总结成以下的序列,得到 (A)每天工作时间=60×8=480min。 (B)每天计划停机时间(生产、维修计划、早晨会议等)=20min。 (C)每天负荷时间=A-B=460min。 (D)每天停机损失=60min(其中故障停机=20min,安装准备=20min,调整=20min)。 (E)每天开动时间=C-D=400min。 (F)每天生产数量=400件。

机械采油井系统效率计算方法

机械采油井系统效率计算方法 一定义 1 机械采油井的输入功率——拖动机械采油设备的输入功率 2 机械采油井的有效功率——将井内液体输送到地面所需要的功率 3 机械采油井的系统效率——机械采油井的有效功率与输入功率的比值 4 抽油机井的光杆功率——光杆提升液体并克服井下各种阻力所消耗的功率 5 抽油机井的地面效率——光杆功率与电机输入功率的比值(电动机效率·皮带轮效率·抽油机四连机构效率) 6 抽油机井的井下效率——抽油机井的有效功率与光杆功率的比值(盘根盒效率·抽油杆柱效率·抽油泵效率·油管效率) 二测试方法和计算公式 1电气测试参量:输入功率或电流、电压和功率因数。 2井口测试参量:回压、套压、产液量、含水率和原油相对密度。3井下测试参量:油井动液面深度。 4光杆测试参量:光杆载荷和光杆位移。 计算公式 1机械采油井的输入功率P1=3600n p·K·K1/N p·t p 式中:P1——输入功率,KW n p——有功电表所转的圈数,r

K——电流互感器变比,常数 K1——电压互感器变比,常数 N p——有功电能表耗电为1KW·h时所转的圈数,r/(KW·h) t p——有功电能表转N p所用的时间,s (现在输入由仪器直接测出) 2机械采油井的有效功率P2=Q·H·ρ·g/86400 式中:P2——有效功率,KW Q——油井产液量,m3/d H——有效扬程,m ρ——油井液体密度,t/ m3 g——重力加速度,g=9.8m/s2 3有效扬程H=H d+(p o-p t)·1000/p·g 式中:H——有效扬程,m H d——油井动液面深度,m p o——回压,MPa p t——套压,MPa 4油井液体密度ρ=(1-f w)·ρo+f w·ρw 式中:f w——含水率 ρo——油的密度,t/m3 ρw——水的密度,t/m3 5光杆功率(抽油机井)P3=A·S d·n c·n s/60000 式中:P3——抽油机光杆功率,kW

影响抽油机系统效率的因素分析

影响抽油机系统效率的因素分析 首先电动机和抽油机对地面效率影响较大。在抽油机选型时,由于过分考虑设备的“储备”能力,部分油井选择的抽油机型过大(包括装机功率),发生“大马拉小车”的现象,这种“大马拉小车”的结果是抽油机额定载荷与实际载荷相差较大,电机负载率较低,地面效率明显下降,对提高抽油机井系统效率极为不利。这种工况下电动机自身工作效率低,一般运行效率在额定效率50%以下。 行,地面效率较低。调节抽油机平衡,可以降低单井耗电量,降低电机功率,减少空耗损失,提高地面效率。抽油机要达到100%的平衡度是较困难的,但依据机型和井况的不同,应尽力把平衡度控制在80%~120%之间。调平衡是提高系统效率中投资小,见效快的一个办法。 测试表明,岔河集油田抽油机井平衡度小于80%和大于120%共有69口井,约占总井数的16%。 径、冲次等抽汲参数不合理。部分抽油机井的液面在井口,却仍用小泵径、慢冲次的工作制度,导致系统效率过低。此外,抽油机“五率”达标率低,电机皮带过松,盘根过紧等对油井整体效率也有一定影响。 泵况对井下效率的影响主要表现在:一是泵、管漏失严重影响井下效率。实际上,泵的正常漏失量(柱塞与衬套间的设计漏失量)很小,因而它对井下效率影响很小,这里的“漏失”是指除正常漏失外的所有漏失即非正常漏失。通过现场憋压等测试手段分析,岔河集油田30%以上的油井存在不同程度的管漏失及泵筒间隙磨大、游动凡尔、固定凡尔漏失。泵的非正常漏失,不仅会减少有效功率,而

且将增加井下损耗。二是气体影响井下效率。高气油比使得泵充满度降低,甚至气锁,影响了泵的排量系数,对井下效率影响很大。虽然测试井中高气油比井的井数不多,但因为其系统效率很低,平均系统效率仅为12%,远低于整体平均系统效率24.5%。三是供液不足影响井下效率。部分油井供液能力差,沉没度不够,导致泵充满度降低,泵效低下,影响了井下效率。 油井产液量与井下效率的关系 油井结蜡、出砂及抽油杆的磨擦导致杆柱载荷增大,造成杆柱有效功率降低,井下无功损耗增加,影响了井下效率。深泵挂及尼、扶杆的大规模应用也导致杆柱载荷增大。此外,井斜也加剧杆管偏磨,井下阻力损耗增加,导致井下功率损失。偏磨类油井比较多,占全部油井的32%。 抽汲参数(泵径、泵深、冲程、冲数等)的匹配有若干个,总有一个是投资省、系统效率高的最佳方案。因此必须对抽汲参数进行优选。即使同一区块的油井在油藏地质条件、供液能力、气油比等个体特征也往往存在明显的差异,落实到具体的单井上,必须根据每口井的具体条件进行单井优化设计。根据井况选择合理的泵,以适应含气、出砂、结蜡等井况的要求,同时应用配套技术,来解决抽油井受气、砂、蜡等影响泵效的矛盾。

生产效率计算方法

效率(efficiency)是指有用功率对驱动功率的比值,同时也引申出了多种含义。效率也分为很多种,比如机械效率(mechanical efficiency)、热效率(thermal efficiency )等。效率与做功的快慢没有直接关系。工厂效率的含义太广泛了,不好用统一的公式表示。而 设备的利用率可以用以下公计算: 公式一:设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二:设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三:设备利用率=某抽样时刻的开机台数/ 设备总台数 ×100% 数控机床技术人员“综合素质低”。用户缺少高级编程人员、操作人员、维修人员等复合型应用型专业人才。用户若选购一台较复杂、功能齐全、较为先进的数控机床,如果没有适当人去操作使用和编程,没有熟练的维修工去维护修理,再好的机床也不可能用好。 编程“效率低”。据国外统计,手工编程时,一个零件的编程时间与机床实际加工时间之比约为30:1,而数控机床不能开动的原因中有20%~30%是由于加工程序一时编制不出而耽搁的。 维修“时间长”,维修工作跟不上。目前国内除少数大厂配有专业维修队伍以外,大部分使用单位很难配备技术水平高的维修人员。 标准工时:指在正常情况下,从零件到成品直接影响成品完成的有效动作时间,其包含直接工时与间接工时。即加工每件(套)产品的所有工位有效作业时间的总和。制定方法:对现有各个工位(熟练工人)所有的有效工作时间进行测定,把所有组成产品的加工工位的工时,考虑车间生产的均衡程度、环境对工人的影响、以及工人的疲劳生产信息等因素后,计算得到标准工时。 备注: 直接工时:指直接作业的人员作业工时; 间接工时:指对现场直接作业工人进行必需的管理和辅助作业的人员,根据现车间管理组织的特点,车间除主任和直接作业人员外产生的工时; 标准人力:指在设定的产量目标前提下,根据标准工时和实际生产状况,生产单位所配置的合理的人力数量。 生产效率: 实际产量×标准工时

OEE设备综合效率计算方法案例讲解

OEE设备综合效率计算方法案例 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性能开动率和合格品率反映出来,故得到下面设备综合效率公式: 设备综合效率=时间开动率×性能开动率×合格品率 这里,负荷时间为规定的作业时间除去每天的停机时间,即负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是 负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 实际上 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为0.5min,实际加工周期为0.8min。则净开动率=0.8×400/400=80%速度开动率=0.5/0.8=62.5% 性能开动率=80%×62.5%=50%

【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6%我们把上面的公式和例子总结成以下的序列,得到(A)每天工作时间=60×8=480min。(B)每天计划停机时间(生产、维修计划、早晨会议等)=20min。(C)每天负荷时间=A-B=460min。(D)每天停机损失=60min(其中故障停机=20min,安装准备=20min,调整=20min)。(E)每天开动时间=C-D=400min。(F)每天生产数量=400件。(G)合格品率=98%。(H)理论加工周期=0. 5min/件。(I)实际加工周期= 0. 8min/件。(J)实际加工时间=I×F=0. 8×400=320min。(K)时间开动率=(E/C ×100%=(400/460)×100%=87%。(L)速度开动率=(H/I)×100%= (0. 5/0.8×100%=62.5%。(M)净开动率=(J/E× 100%=(320/400×100%=80%。(N)性能开动率=L×M×100%=0. 625×0. 80 ×100%=50%。最后得设备综合效率(全效率)=K×N×G×100%=0.87×0.50×0.98×100%=42.6% 日本全员生产维修体制中,要求企业的设备时间开动率不低于90%,性能开动率不低于95%,合格品率不低于99%,这样设备综合效率才不低于85%。这也是TPM所要求达到的目标。 如前所述,提高设备综合效率主要靠减少六大损失。图1-1就把全效率的计算和减少六大损失联系起来。

有杆泵抽油井系统效率因素分析与提效降耗对策

有杆泵抽油井系统效率因素分析与提效降耗对策 本文从有杆泵抽油机井的井下工具、地面设备、配套设施等各个环节,对影响有杆泵机采系统效率的因素进行了细致地分析,并针对各影响因素提出了有效的对策,对于提高有杆泵抽油机井的系统效率,降低油井运行成本,实现油井节能降耗,具有一定的指导意义。全面提高抽油机井系统效率是不断降低油井运行费用,改善油井生产工况,提高抽油机井开发效益的有效技术手段,是提高油田工作水平的一个重要方面,也是实现油田可持续发展的重要保证。 1 抽油机井系统效率定义 抽油机井系统效率是指将液体举升至地面的有效做功能量与系统输入的能量之比,即系统的有效功率与输入功率的比值。 其中,输入功率由现场测试取得,有效功率由下式计算: (1) 式中:Pe有效功率,Kw;Q一一油井日产液量,m3/d; 2 抽油机井系统效率影响因素分析 影响有杆泵抽油机井系统效率的因素较多,它不仅受抽油设备和抽油参数的影响,而且还受油井管理水平和井况的影响。由于能量在转换和传递过程中,总会发生能量损失,用Pi表示输入功率,用Pe 表示有效功率,用△P表示损失功率,则有:Pi=Pe+△P 根据抽油机井系统的组成情况,可以把损失功率△P分解为8个部分,即:(1)电动机损失部分功率△P1:当电动机输出功率为额定输出功率的60-100%时,电动机的工作效率与额定效率接近或相等,否则将低于额定效率;而在抽油机工作时,负荷变化极大,所以其电动机的工作效率低于其额定效率。据资料显示,电动机的额定效率约为90%,而应用于抽油机上的工作效率只有70%左右,这部分功率损失对系统效率的影响很大。 (2)带传动部分的损失△P2:油田应用较为普遍的普通V帶、

设备综合效率OEE计算公式和方法1

设备综合效率O E E计算公式和方法1 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

设备综合效率OEE计算公式和方法实例 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性开动率和合格品率反映出来,故得到下面设备综合效率公式: 设备综合效率=时间开动率×性能开动率×合格品率 这里,负荷时间为规定的作业时间除去每天的停机时间,即 负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是 负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为,实际加工周期为。则 净开动率=×400/400=80% 速度开动率==% 性能开动率=80%×%=50% 【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6%

抽油机井系统效率计算公式

机采系统节能指标 一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 P e P i 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q, H- p - g P e= ----------------------------- 86400 式中:P e——有效功率,KVV Q-一油井日产液量,m3/d ; H—有效扬程,m P——油井液体密度,t/m3; g --- 重力加速度,g=9.8m/s2; 其中有效扬程: (P L Pt)x 1000 H=Hd + - ------------------------ P - g 式中:H ------------ 油井动液面深度,m; P ------------ 井口油压,MPa; Pt ---------- 井口套压,MPa; 二、抽油机井平■衡合格率 1、抽油机井平■衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时 最大电流比值。(80-100%合理,小于80%欠平衡,大于100%? 平衡)

平衡度=(I下行峰值/I上行峰值)X 100% 采液用电单耗:油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,Kw, CH油井日产液量,t3/d 2、抽油机井平■衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)X 100% 式中:S合格一抽油机井平衡度达标的井数; S总一抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。 = (Q实/Q 理)X 100% T] 式中:门一泵效(%) Q实一指核实日产液量(m3/d); Q理一泵理论排液量(m3/d); 其中:Q理=1.1304 x 10一3 x Sx NX D 式中:S一冲程(m) N 一冲数(n/m) D —泵径(mm); 四、米液用电单耗 油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,K^『油井日产液量,t3/d

OEE 设备综合效率 计算方式

设备管理好帮手 -----OEE(设备综合效率)计算方式 纸箱厂进行整体生产时规划时,目标之一就是提高设备的使用效率,让每台设备对 的每个零件都能最大限度地发挥其潜力即生产能力,并且能够始终保持稳定状态。 为了使生产速度最大化,必须首先了解导致生产速度下降的原因,并采取相应的措施。在这些解决措施中,设备综合效率分析(OEE)是一种非常实用的、有效的设备管理方式,可以帮我们了解设备的潜在的生产能力。 (OEE)是世界级稳定性组织(WCR)中一个非常重要的测量手段.借助OEE,可以与六大损失相关联(故障/停机损失、换装和调试损失、空闲和暂停损失、减速损失、质量缺陷和返工损失、启动损失)。有三大测量指标:设备利用率、生产速度和合格产品率。 六大损失包括 故障/停机损失(Equipment Failure/Breakdown) 设备故障/停机损失是指故障停机造成时间损失,这将减少合格产品数量。如果出现设备故障或停机,就需要对设备进行维修处理。在平时,应该采取正确预防性保养措施、改进操作程序、改进生产设计以防止故障发生。要减少设备故障,生产部门与维修商之间良好的合作与沟通也非常重要。 预防性保养技术包括震动检测、定期上油和温度记录分析,用以防止设备故障的发生。如果出现机器故障,可以采取根本原因分析(RCFA)法来确定导致故障的根源。RCFA可以使企业解决故障问题从事后处理转变为事前处理。RCFA切实有效的“寻根溯源”解决方案能够消除或转移故障发生以及造成的影响。 换装和调试损失(Setup and Adjustment) 换装和调试损失是指在生产不同产品时定单切换时间损失。定单切换时间损失不归入计划停机时间范畴。 空闲和暂停损失(Ldling and Minorsyoppage Losses) 空闲和暂停损失是指由于错误操作而停顿或设备本身发生的短暂停机时间损失。通常在5-10分钟之间,还包括一些小调整或类似清洗之类的活动造成的时间损失。不包括运送原料造成的时间损失。 减速损失(Reduced Speed Losses)

抽油机井系统效率计算公式

一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 i e p p =η 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q·H·ρ·g P e =———————— 86400 式中:Pe ——有效功率,KW ; Q ——油井日产液量,m 3/d ; H ——有效扬程,m ; ρ——油井液体密度,t/m 3; g ——重力加速度,g=9.8m/s 2; 其中有效扬程: (Po —Pt )×1000 H=Hd + --———————— ρ·g 式中:Hd ————油井动液面深度,m; Po ————井口油压,MPa; Pt ————井口套压,MPa; 二、抽油机井平衡合格率 1、抽油机井平衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时最大电流比值。(80-100%合理,小于80%欠平衡,大于100%超平衡)。 平衡度=(I 下行峰值/I 上行峰值) ×100% 采液用电单耗:油井采出每吨液的用电量,单位t

采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d 2、抽油机井平衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)×100% 式中:S合格—抽油机井平衡度达标的井数; S总—抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。η=(Q实/Q理)×100%; 式中:η—泵效(%) Q实—指核实日产液量(m3/d); Q理—泵理论排液量(m3/d); 其中:Q理=×10-3×S×N×D2 式中:S—冲程(m) N—冲数(n/m) D—泵径(mm); 四、采液用电单耗 油井采出每吨液的用电量,单位t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d

设备综合效率OEE计算公式和方法1

设备综合效率OEE计算公式和方法实例 影响设备综合效率的主要原因是停机损失、 速度损失和废品损失。它们分别由时间开动率、性开动率和合格品率反映出来,故得到下面设备综合效率公式: 设备综合效率=时间开动率X性能开动率X合格品率 这里,负荷时间为规定的作业时间除去每天的停机时间,即 负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机 时间是20min ,而故障停机为20min ,安装工夹具时间为20min,调整设备时间为20min。于是 负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率X净开动率

这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400 件零件加工,理论加工周期为,实际加工周期为。则 净开动率=X 400/400=80% 速度开动率==% 性能开动率=80%X %=50% 【例3】如果仍延用上面的例子,假如设备合 格品率为98%,则 设备综合效率(全效率) =87%X 50%X 98% =42. 6% 我们把上面的公式和例子总结成以下的序列,得到 (A)每天工作时间=60X 8=480min。 (B)每天计划停机时间(生产、维修计划、早晨

提高抽油井机采系统效率的做法及效果

提高抽油井机采系统效率的做法及效果 X 薛世君 (中石化胜利油田分公司纯梁采油厂,山东博兴 256504) 摘 要:通滨管理区主要管理着纯62、纯107、纯111区块及外围的纯64-3和F158等9口偏远井。目前,管理区油井开井54口,日油能力80t/d,综合含水64%。通过提高机采系统效率方案的实施,系统效率从2008年12月的19.1%,提升到2010年12月的29.8% 关键词:机采系统效率 中图分类号:T E355.5 文献标识码:A 文章编号:1006—7981(2012)04—0151—041 机采井系统效率现状分析 通滨管理区主要管理着纯62、纯107、纯111区块及外围的纯64-3和F158等9口偏远井。全区含油面积12.3km 2,地质储量844万吨。所有区块属于典型的高压低渗透油藏,储层物性差,油井普遍低产低液。目前。管理区油井总数66口,油井开井54口,日油能力80t/d,综合含水64%。对管理区2008年所管辖的抽油井进行了地面、井筒分因素的调查摸底工作,共统计了52口井,平均机采系统效率为19.1%。 2 机采井系统效率影响因素分析 将地面的电能传递给井下液体,从而举升井下液体。整个系统工作时,就是一个能量不断传递和转化的过程。在能量的每一次传递时都将损失一定的能量。从地面供入系统的能量扣除系统的各种损失以后,就是系统所给液体的有效能量。将液体举升至地面的有效做功能量与系统输入能量之比为抽油机系统效率。 显然不论是节约能量还是提高经济效益,都要求有杆抽油系统具有较高的系统效率。 有杆抽油系统的效率与油井本身的条件有密切的关系。在油井条件一定的情况下,则主要有以下三种因素的影响。2.1 技术装备 技术装备对系统效率有一定的影响。要想提高系统效率,就应采用较先进的、节能型的技术装备,如特殊形状的抽油机(前置式抽油机、异型抽油机等)、适应抽油机变工况的拖动装置、降低抽油杆摩 擦的导向器和高效的抽油泵等。2.2 机、泵、杆设计 一般来讲,在保证泵的吸入情况下,应尽量减少 下泵深度,同时,在保证产量的前提下,为了降低能耗,应注意选择较大泵径,增加冲程并降低冲次。抽吸参数(s 、n 、D),特别是冲次(n)对有杆抽油系统效率有明显影响,要想提高其运行效率,必须对抽吸参数进行优选。2.3 管理工作 管理工作水平,例如抽油机的平衡率、驴头与井口的对中情况、井口密封盘根的上紧程度、传动皮带的张紧程度等都会影响有杆抽油系统效率。 从以上可以看出系统效率反映了机采井的节能与经济效益,而且也综合地反映了油田的技术装置、技术管理水平。3 系统效率计算3.1 定义 3.1.1 有杆抽油系统 包括原动机、抽油机、抽油杆、抽油泵、井下管柱和井口装置以及油层供液系统。 3.1.2 抽油机的输入功率(P 入) 拖动抽油机的电动机的输入功率为抽油机的输入功率。 3.1.3 抽油机的光杆功率(P 光) 光杆提升液体和克服井下各种阻力所消耗的功率为抽油机的光杆功率。 3.1.4 抽油机系统的有效功率(P 水) 在一定的扬程下,将一定排量的井下液体提升 151  2012年第4期 内蒙古石油化工 X 收稿日期3 作者简介薛世君(6),男,陕西礼泉人,就职于中石化胜利油田分公司纯梁采油厂,工程师。 :2012-01-1:194-

抽油机国内外研究现状与发展趋势

抽油机国内外研究现状与发展趋势 一.国内抽油机研发现状 油机是有杆抽油系统中最主要举升设备。根据是否有游梁,可分为游梁式抽油机和无游梁式抽油机。经过一百多年的实践和不断的改进创新,抽油机不管是结构形式还是在使用功能上,都产生了很大的变化。特别是近几十年来,世界对原油的需求量不断加大,对油田深度开采的能力有了更进一步的要求,在很大程度上加快了抽油机技术发展的速度,催生出多种类型。目前, 国内抽油机制造厂有数十家, 产品类型已多样化, 但游梁式抽油机仍处于主导地位。根据公开发表的资料统计, 我国现有6 大类共45 种新型抽油机[ 1] , 并且每年约有30 种新型抽油机专利, 十多种新试制抽油机[2] , 已形成了系列, 基本满足了陆地油田开采的需要。各种新型节能游梁式抽油机如双驴头式抽油机、前置式抽油机、异相曲柄平衡抽油机、前置式气平衡抽油机、下偏杠铃系列节能抽油机[ 3]和用窄V 形带传动的常规抽油机等均已在全国各个油田推广应用, 并取得了显著的经济效益。长冲程、低冲次的无游梁式抽油机的研制也取得了一些进展, 如由胜利油田研制的无游梁链条抽油机, 经过国内十几个油田稠油及丛式井的推广使用[4], 在低冲次抽油和抽稠油方面已初见成效。此外, 桁架结构的滑轮组增距式抽油机、滚筒式长冲程抽油机已在某些油田进行了工业试验[5]; 齿轮增距式长冲程抽油机的研制工作也取得了新的进展; 质量轻、成本低、便于调速和调整冲程的液压抽油机经过几年的研制和工业性试采油, 也积累了一定的经验[6]。其他型式新颖的抽油机如数控抽油机、连续抽油杆抽油机、车载抽油机、磨擦式抽油机、六连杆游梁式抽油机和斜直井抽油机等也正处于不断改造和试生产过程中[7]。然而,游梁式抽油机的缺点是不容易实现长冲程低冲次的要求,因而不能满足稠油井、深抽井和吉气井采油作业的需要。同时,长冲程低冲次的无游梁式抽油机的性能尚有待完善 (如油田正在使用的链条式抽油机还存在链条寿命短、换向冲击载荷大和钢丝绳易断、导轨刚.度不足容易变形等问题),而且品种规格还很少,不能适应当前石油工业的发展[8]。液压抽油机至今仍处在研制阶段[9] 二·国外抽油机的研发现状 目前,世界上生产抽油机的国家主要有美国、俄罗斯、法国、加拿大和罗马尼亚等[10]。为了减少能耗, 提高采油经济效益, 近年来国外研制与应用了许多节能型抽油机。例如异相型抽油机节电15%~ 35%; 前置式抽油机节电368% 前置式气平衡抽油机节电35% 轮式抽油机节电50%~ 80% 大圈式抽油机节电30%; 自动平衡抽油机节电30% ~ 50%; 低矮型抽油机节电5% ~20%; ROTAFLEX 抽油机节电25% 智能抽油机节电174%; 螺杆泵采油系统节电40%~ 50% [11]。近年来国外很重视改进和提高抽油机的平衡效果, 使抽油机得到更精确平衡。近年来, 为了节约能耗、提高采油经济效益, 国外研制与应用了许多节能型抽油机, 在采油实践中, 取得较好的使用效果。如变平衡力矩抽油机, 可使上冲程平衡力矩大于下冲程力矩。前置式气平衡抽油机, 由于可在动态下调节气平衡, 平衡效果较好。气囊平衡抽油机有90% 以上载荷得到平衡[12]。双井抽油机可利用两口油井抽油杆柱合理设计得到更精确的平衡。自动平衡抽油机可保证在上下冲程每一瞬间得到较精确的平衡效果[13]。近年来国外研制与应用了多种类型长冲程抽油机, 其中包括增大冲程游梁抽油机、增大冲程无游梁抽油机和长冲程无游梁抽油机[14]。 1 前置式气平衡抽油机美国工J uf kin 公司生产的A 系列前置式气平衡抽油机具有较好的技术经济指标, 抽油机重量减轻40 %, 尺寸缩小3 5 % , 动载荷

设备综合效率值的计算

一流设备综合效率值(OEE)如何达成 设备综合效率(OEE) 开始实施OEE之前,我们先要对现有的设备效率进行估算。这是第一步,完成估算后,把所得的数值和应该而且能够达到的数值相比照,结果往往让很多人大吃一惊。由于设备构造日益复杂,运行速度越来越快,生产的自动化程度也不断升高。随着客户开始提出更高的产量和质量要求,他们对供应商的期望也越来越高。因此,我们生产并提供给客户的产品质量,也越来越多地取决于我们企业和设备的质量和效率。 为保证工厂设备尽可能高效地运转,我们需要建立一种能被行业人士普遍接受的效率衡量标准。 OEE包括以下几方面: 1.设备利用率 设备实际生产时间与设备设计运转时间的比率 2.生产速率 设备以设计速度生产的时间占总生产时间的比率 3.产品合格率 设备运转时,合格产品数与产品总数的比率 公式可简单表示为:OEE=设备利用率×生产速率×合格产品率×100 业内OEE标准 那么业内世界一流的OEE标准是多少呢?一流的瓦线OEE值通常为55%~60%,并可望达到65%以上。很多纸箱厂刚开始进行OEE评估时,OEE值通常在30%~35%之间。对加工机器来说,OEE值如果高达80%就便被认为达到了世界一流水平。因此,全厂的OEE目标值应设定在50%~55%。 为什么OEE值通常只能达到这么低的水平而不能更接近100%呢?同大多数行业一样,纸箱业内各厂会遭受以下几大OEE损失,必须对其仔细分析、充分认识才能设定正确的目标,使OEE值最大化。

六大损失 1.故障/停机损失:因设备失灵,或出现故障,或突然停止运转而产生。 2.换单和调试损失:当一个订单加工完毕,生产程序需要转换,机器也需进行重设来满足下一个订单的生产,这样会引起换单和调试损失。通常因为不能进行有效的订单切换,这段时间会过长。这些都属于停机损失,会降低设备的利用率。 3.空闲和暂停损失:当生产因临时故障而暂停,或机器闲置时会产生这种损失。这类问题容易解决,但常被忽略;不过,对生产率的影响不容小视。 4.减速损失:如果设备安装不精准,运转速度达不到规定的标准速度,就会产生减速损失。这种损失会降低设备总体的生产速度。 5.开机损失:开机损失是指在生产运转初始阶段因出现失误或短暂停机造成的产品质量损失。 6.质量损失(废品/返工):生产出来的产品质量不符合客户要求而导致返工所造成的损失。这类损失会降低合格产品率。 如果你的工厂也想引进TPM系统,首先要进行深入细致的研究,根据自身需求做好规划,并按照自己的节奏推行TPM系统。要想获得成功,还需彻底改变组织内部的一些陈旧的文化与习惯。经验表明,开始推行时选择一台机器或一个工段进行示范是很有必要的,但也许更重要的是系统得到普遍推广并且人人都懂得运用。 有必要重申一下,TPM只是一个过程,要想获得成功需付出艰苦的努力。但是由此带来的成本节省和产量增长总是促使我们进行改善的巨大动力。不过这也需要付出一定的代价,关键是要花费更多的时间在生产维护上。 要使器尽量维持在最初的状态,势必在短期内增加工程预算成本。 重点的改善和必要的改变必须尽快付诸实施以便能使强大地动力和高昴的士气得以维持。 维护策略——使设备正常运转 维护和修理策略已经有一大堆了,尽管俗话说“预防胜于治疗”,但仍有充分的理由把预防策略和故障检修策略结合起来。不过,保持二者间的平衡也很重要,这在很大程度上取决于工厂的规模和厂内的设备情况。 故障检修或紧急检修就是在设备不能运转时,采用各种方法使其恢复到正常运转的状态(一直运转设备,待其出现故障后才进行检修)。故障检修不必让设备保持到初始的运转状态。有时对设备进行的临时修理,只能使其维持一定程度的生产状态,还要等到方便时,再按计

相关主题
文本预览
相关文档 最新文档