姜启源编《数学模型》第四版 第5章
- 格式:ppt
- 大小:2.87 MB
- 文档页数:76
姜启源数学模型姜启源数学模型是指以姜启源为主导的一种数学建模方法。
姜启源是中国工程院院士、中国科学院数学与系统科学研究院院长,他在数学模型领域有着丰富的经验和深厚的造诣。
数学模型是一种将现实问题抽象化、形式化的方法,通过建立数学模型来描述和解决实际问题。
姜启源数学模型的特点是综合运用数学、统计学、计算机科学等多学科知识,通过数学建模的方法解决实际问题。
姜启源数学模型的应用领域非常广泛,包括但不限于工程、经济、环境、医学等各个领域。
在工程领域,姜启源数学模型可以用于优化设计、预测分析、风险评估等方面。
在经济领域,姜启源数学模型可以用于市场预测、投资决策、风险控制等方面。
在环境领域,姜启源数学模型可以用于气候变化模拟、环境保护规划等方面。
在医学领域,姜启源数学模型可以用于疾病传播模拟、药物研发等方面。
姜启源数学模型的建立过程一般包括问题分析、数学建模、模型求解和模型验证等步骤。
首先,需要对实际问题进行深入的分析,明确问题的目标和约束条件。
然后,根据问题的特点,选择合适的数学方法和模型类型。
接下来,通过数学方法将实际问题转化为数学问题,并进行数学建模。
然后,利用数学工具和计算机进行模型求解,并对结果进行分析和解释。
最后,需要对模型进行验证,检验模型的准确性和可靠性。
姜启源数学模型的优势在于能够将复杂的实际问题转化为简单的数学问题,并通过数学方法进行求解。
这种模型可以提供决策支持和问题解决的方法,帮助人们更好地理解和解决实际问题。
姜启源数学模型的应用可以提高效率、降低成本、减少风险,对社会和经济发展具有重要意义。
姜启源数学模型的发展离不开数学研究和科学技术的支持。
近年来,随着数学建模方法和计算机技术的不断发展,姜启源数学模型在各个领域得到了广泛应用和推广。
同时,姜启源也致力于培养和引进优秀的科研人才,推动数学建模在中国的发展和应用。
姜启源数学模型是一种综合运用数学、统计学、计算机科学等多学科知识的数学建模方法。
数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。
安全渡河条件下的状态集合为允许状态集合,记作s。
以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。
允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。
模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。
把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。
如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。
二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。
数学模型姜启源1. 简介数学模型是通过数学方法来描述、解释和预测现实世界中的问题的工具。
姜启源是数学模型领域的一位知名学者,他在数学模型的研究和应用方面做出了重要贡献。
本文将介绍姜启源的学术背景、研究成果以及对数学模型领域的影响。
2. 学术背景姜启源于1980年毕业于北京大学数学系,并获得数学学士学位。
随后,他在中国科学院数学研究所攻读硕士和博士学位,并于1996年获得博士学位。
在攻读博士学位期间,姜启源主要致力于研究数学模型在环境科学中的应用。
3. 研究成果姜启源的研究成果主要集中在数学模型的构建、分析和应用方面。
他利用微分方程、偏微分方程、概率论和数值计算等数学工具,研究了各种实际问题,并提出了一系列创新性的模型和方法。
3.1 环境科学中的数学模型在环境科学领域,姜启源的研究主要关注大气质量模型和水资源模型。
他通过建立描述大气运动和污染物传输的方程组,来模拟和预测大气污染的扩散和变化情况。
同时,他还研究了水资源的可持续利用问题,并提出了一种基于数学模型的水资源管理策略。
3.2 金融领域中的数学模型除了环境科学领域外,姜启源还在金融领域中应用数学模型进行研究。
他主要研究金融市场中的资产定价问题、风险管理和投资策略。
姜启源提出了一种基于随机微分方程的金融模型,用于描述股票价格的随机波动和投资者行为。
4. 影响与意义姜启源的研究对数学模型领域具有重要的影响和意义。
他的研究成果在环境科学和金融领域中得到了广泛应用,并为解决实际问题提供了有效的数学工具和方法。
姜启源的研究促进了数学模型的发展和应用,为其他研究者提供了重要的借鉴和启发。
5. 总结姜启源是一位在数学模型领域有重要影响的学者。
他的研究成果在环境科学和金融领域中得到广泛应用,并为解决实际问题提供了有效的数学工具和方法。
姜启源的研究对数学模型的发展和应用做出了重要贡献,对其他研究者具有重要的借鉴意义。
参考文献: 1. 姜启源. 数学模型在环境科学中的应用[J]. 计算数学, 1998, 20(2): 235-248. 2. 姜启源, 张三. 数学模型在金融领域的应用研究[M]. 科学出版社, 2005. 3. 姜启源, 李四. 数学模型与环境管理[M]. 科学出版社, 2010.。
湖南第一师范学院HUNAN FIRST NORMAL UNIVERSITY论文题目: 导弹攻击姓名专业班级及学号分工队员1 李丽11402050122 建立模型,计算队员2 盛名11402050128 建立模型,编程队员3 张旋11402050148 建立模型,画图摘要本文研究导弹攻击敌艇的问题。
首先,本文关于可改变角度的导弹攻击敌艇的问题建立了相关数学模型。
针对第一问,研究速度大小恒定,速度方向随时间改变的导弹,来攻击沿水平方向运动,速度大小不变的敌艇的问题。
由于导弹在任意时刻都指向敌艇,我们通过图形找到了速度和坐标的相似三角形,又根据速度和时间有函数关系,以及对导弹合速度的分解,使用了微分方程模型。
在第二个问题中,由于敌艇的运动方向与导弹每个时刻都成固定90度的角,再利用第一问的方法不再那么简单。
所以采取微元思想把整个攻击过程划分为非常小的时间段来进行研究,然后再用数学归纳法得出一般化的迭代格式,再利用迭代格式得到击中点。
在第三个问题中,本文对第二个问题的特殊角度进行了推广来得出最优逃离角度,即逃离时间周期最长的角度。
第四问根据前三问算出来的数据和画出的图像得出结论。
针对模型的求解,本文第一问使用偏微分方程和参数方程的求解方法计算出,并只用c语言编写程序求解出第二,三问题。
本文模型方法简单易懂,结果采用相关程序用计算机计算,并用matlab画出图像,明了,准确。
在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性。
最后通过修改模型,得出导弹追击敌艇的模型。
关键词:微分方程模型、微元思想、数学归纳法、迭代公式一、问题重述1、问题背景:导弹自第二次世界大战问世以来,受到各国普遍重视,得到很快发展。
导弹的使用,使战争的突然性和破坏性增大,规模和范围扩大,进程加快,从而改变了过去常规战争的时空观念,给现代战争的战略战术带来巨大而深远的影响。
导弹技术是现代科学技术的高度集成,它的发展既依赖于科学与工业技术的进步,同时又推动科学技术的发展,因而导弹技术水平成为衡量一个国家军事实力的重要标志之一。
第五章练习题参考解答 5.1 设消费函数为 iiiiuXXY33221 式中,iY为消费支出;iX2为个人可支配收入;iX3为个人的流动资产;iu为随机误差项,并且222)(,0)(iiiXuVaruE(其中2为常数)。试回答以下问题: (1)选用适当的变换修正异方差,要求写出变换过程; (2)写出修正异方差后的参数估计量的表达式。 【练习题5.1参考解答】
(1)设f(X2𝑖)=𝑋2𝑖2,则异方差Var(𝜇𝑖)=𝜎2𝑋2𝑖2=𝜎2f(X2𝑖
),回归方程两端同时除
以√f(X2𝑖
)得:
𝑌𝑖√f(X2𝑖)=𝛽1√f(X2𝑖)=𝛽2𝑋2𝑖√f(X2𝑖)+𝛽3𝑋3𝑖√f(X2𝑖)+𝜇𝑖
√f(X2𝑖)
令Y𝑖∗=𝑌𝑖√f(X2𝑖) X2𝑖∗=1√f(X2𝑖) X3𝑖∗=𝑋3𝑖√f(X2𝑖) υ𝑖=𝜇𝑖√f(X2𝑖)
则上式变为: Y𝑖∗=𝛽2+𝛽1X2𝑖∗+𝛽3X3𝑖∗+υ𝑖
因此
Var(υ𝑖)=𝜎2𝑋2𝑖2f(X2𝑖)=𝜎2 通过变换原模型的异方差得到修正。 (2)令w𝑖=1f(X2𝑖) 则修正后的残差平方和∑𝑤𝑖𝑒𝑖2=∑𝑤𝑖(𝑌𝑖−𝛽̂1−𝛽̂2𝑋2𝑖−𝛽̂3𝑋3𝑖)2 方程两边求导并令导数为零,可得参数估计量的表达式如下: 𝛽̂1=∑𝑤𝑖(𝑌𝑖−𝛽̂1−𝛽̂2𝑋2𝑖−𝛽̂3𝑋3𝑖)
∑𝑤
𝑖
𝛽̂2=∑𝑤𝑖(𝑌𝑖−𝛽̂1−𝛽̂3𝑋3𝑖)𝑋
2𝑖
∑𝑤𝑖𝑋
2𝑖2
𝛽̂3=∑𝑤𝑖(𝑌𝑖−𝛽̂1−𝛽̂3𝑋3𝑖)𝑋
3𝑖
∑𝑤𝑖𝑋
3𝑖2
5.2 对于第三章练习题3.3家庭书刊消费与家庭收入及户主受教育年数关系的分析,进一步作以下分析: 1)判断模型123iiiiYXTu
数学建模练习与思考题第⼀部分练习与思考题第1章建⽴数学模型1.1 在稳定的椅⼦问题中,如设椅⼦的四脚连线呈长⽅形,结论如何?(稳定的椅⼦问题见姜启源《数学模型》第6页)1.2 在商⼈们安全过河问题中,若商⼈和随从各四⼈,怎样才能安全过河呢?⼀般地,有n 名商⼈带n 名随从过河,船每次能渡k ⼈过河,试讨论商⼈们能安全过河时,n 与k 应满⾜什么关系。
(商⼈们安全过河问题见姜启源《数学模型》第7页)1.3 ⼈、狗、鸡、⽶均要过河,船需要⼈划,另外⾄多还能载⼀物,⽽当⼈不在时,狗要吃鸡,鸡要吃⽶。
问⼈、狗、鸡、⽶怎样过河?1.4 有3对夫妻过河,船⾄多载两⼈,条件是任⼀⼥⼦不能在其丈夫不在的情况下与其他的男⼦在⼀起。
问怎样过河?1.5 如果银⾏存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银⾏存⼊多少元?⽽到2000年的本利积累为多少元?1.6 某城市的Logistic 模型为2610251251N N dt dN ?-=,如果不考虑该市的流动⼈⼝的影响以及⾮正常死亡。
设该市1990年⼈⼝总数为8000000⼈,试求该市在未来的⼈⼝总数。
当∞→t 时发⽣什么情况。
1.7 假设⼈⼝增长服从这样规律:时刻t 的⼈⼝为)(t x ,最⼤允许⼈⼝为m x ,t 到t t ?+时间内⼈⼝数量与)(t x x m -成正⽐。
试建⽴模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进⾏⽐较。
1.8 ⼀昼夜有多少时刻互换长短针后仍表⽰⼀个时间?如何求出这些时间?1.9 你在⼗层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下⼏个楼层?1.10 居民的⽤⽔来⾃⼀个由远处⽔库供⽔的⽔塔,⽔库的⽔来⾃降⾬和流⼊的河流。
⽔库的⽔可以通过河床的渗透和⽔⾯的蒸发流失。
如果要你建⽴⼀个数学模型来预测任何时刻⽔塔的⽔位,你需要哪些信息?第2章初等模型2.1 学校共1000名学⽣,235⼈住在A 宿舍,333⼈住在B 宿舍,432⼈住在C 宿舍。
精选全文完整版可编辑修改《数学建模》教学大纲一、课程的基本信息课程编码:课程性质:专业必修课总学时:64学时学分:4开课单位:信息管理学院适用专业:信息与计算科学先修课程:高等数学、线性代数、概率论与数理统计二、课程目的与任务数学建模(实验)课程是信息与计算科学专业的必修课,是利用数学和计算机基础平台进行实践应用课程之一。
是基础数学科学联系实际的主要途径之一。
通过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法,培养和训练学生的数学建模素质。
要求学生具有熟练的计算推导能力;通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
熟练掌握一至两种数学软件(matlab,lingo等),为学生适应日后在社会中实际应用奠定必要的基础。
三、课程教学基本要求数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
要求掌握的初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型等模型及求解方法。
由于课时的关系,可以适当删减某些比较难的内容,但是务必要使学生在学习过程有所得,要求至少掌握基本建模方法思想,会使用操作数学软件工具解决基本数值分析问题。
五、课程教学基本内容导引建立数学模型教学内容:1、什么是数学建模2、为什么学习数学建模3、怎样学习数学建模MATLAB软件初步(1)MATLAB软件初步(2)重点:1、数学建模基本方法;2、数学建模能力的培养;难点:MATLAB软件应用;第1章数据分析模型教学内容:薪金到底是多少评选举重总冠军估计出租车的总数解读CPIMATLAB 矩阵NBA赛程的分析与评价——全国大学生数学建模竞赛2008年D题MATLAB 多项式重点:1、薪金到底是多少;2、评选举重总冠军;3、NBA赛程的分析与评价;难点: MATLAB 矩阵;第2章简单优化模型教学内容:倾倒的啤酒杯铅球掷远不买贵的只买对的MATLAB符号计算影院里的视角和仰角MATLAB 绘图易拉罐形状和尺寸的最优设计——全国大学生数学建模竞赛2006年C题重点:1、倾倒的啤酒杯;2、不买贵的只买对的;3、易拉罐形状和尺寸的最优设计;难点:MATLAB 绘图;第3章差分方程模型教学内容:贷款购房管住嘴迈开腿MATLAB m文件与m函数物价的波动动物的繁殖与收获期中测试中国人口增长预测——全国大学生数学建模竞赛2007年A 题MATLAB 数据拟合重点:1、贷款购房;2、物价的波动;3、中国人口增长预测难点:MATLAB m文件与m函数第4章微分方程模型教学内容:人口增长MATLAB 插值火箭发射MATLAB 实验报告给药方案海上追踪LINGO基础入门SARS的传播——全国大学生数学建模竞赛2003年A题和C题LINGO 线性规划重点:1、人口增长;2、火箭发射;3、SARS的传播难点:LINGO 线性规划第5章随机数学模型教学内容:博彩中的数学报童售报与飞机预订票LINGO集作弊行为的调查与估计汽车租赁与基因遗传LINGO 实验报告自动化车床管理——全国大学生数学建模竞赛1999年A 题LINGO 线性规划重点:1.博彩中的数学2.作弊行为的调查与估计3.自动化车床管理难点:LINGO 线性规划六、考核方式与成绩评定考核方式:考查考试用时:2学时成绩评定:本课程成绩构成比例为:期末考试成绩占总成绩的60%,期中考试成绩占总成绩的20%,平时成绩占总成绩的20%;平时成绩的构成及比例为:考勤占5%,课堂测验成绩占5%,实验成绩占5%,作业占5%。
(1)由题目可看出以下几点:在决策时采用不同的决策方法会产生不同的结果;对方决策透明了后,就不存在博弈问题了;不同决策会产生不同结果时才会产生博弈问题,即不同决策产生相同结果时就不存在博弈了。
赛马前田忌与齐王都不知道对方马的出场顺序时,而双方都想通过调整马的出场顺序赢得比赛,则这是博弈问题。
反之,如果一方出场顺序已被对方知道,即对方决策已确定且被知道,那么这就是单人决策问题。
(2)该博弈不存在纯战略纳什均衡,具体证明及混合纳什均衡的模型见以下数学模型:一、问题重述“田忌赛马”是一个家喻户晓的故事:战国时期,齐国将军田忌经常与齐王赛马,设重金赌注,孙膑发现田忌与齐王的马脚力都差不多,可分为上、中、下三等。
于是孙膑对田忌说:“您只管下大赌注,我能帮你取胜。
”田忌相信并答应了他,与齐王用千金来赌注。
比赛即将开始,孙膑对田忌说:“现在用您的下等马对付他的上等马,拿您的上等马对付他的中等马,拿您的中等马对付他的下等马。
”三场比赛完后,田忌只有一场不胜而另两场胜,最终赢得齐王的千金赌注。
现在假定齐王与田忌约定比赛开始前双方同时决定马的出场顺序,并且以后不可改变。
二、基本假设1齐王与田忌约定比赛开始前双方同时决定马的出场顺序,并且以后不可改变;2比赛过程不会发生其他的意外情况;3双方马的脚力每等齐王的比田忌的都略强。
三、问题分析该问题可以看成是一个博弈问题,双方有三种马的出场顺序,不同的出场顺序产生不同结果,通过建立数学模型来分析双方以怎样的出场顺序会得到怎样的结果。
由于齐王的各等马均略强于田忌的,因此田忌只有通过合理的安排马的出场顺序才能赢得比赛。
四、模型建立参与博弈的双方用N=(1,2)表示,1为田忌,2为齐王;田忌:a1(1 2 3) a2(1 3 2) a3(2 1 3)a4(2 3 1) a5(3 2 1) a6(3 1 2)表示其六种出场顺序;齐王:b1(1 2 3) b2(1 3 2) b3(2 1 3)b4(2 3 1) b5(3 2 1) b6(3 1 2)表示其六种出场顺序。