姜启源_谢金星编《数学模型》第四版_第四章__数学规划模型
- 格式:ppt
- 大小:1.36 MB
- 文档页数:49
天大万门数模写在开始今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。
可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是~~ 整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:一,“实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;二,模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了;三,用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。
从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。
最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。
也可以作为未读过、准备读这本书的同学的参考~第1章建立数学模型关键词:数学模型意义特点第1章是引入的一章,对数学模型的意义来源,做了很好的解释。
其实数学模型也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。
第四版姜启源数学模型复习总结第1章:了解模型的概念与分类,熟练掌握数学模型的定义,数学模型的重要应用,建模的重要例子-指数模型,Logist模型。
建模的一般方法及其在建模中的应用。
建模的一般步骤(每步的主要内容与问题)。
建模的全过程(框图)4个环节的含义。
模型的特点(技艺性)。
模型分类(表现特征),建模中的能力培养。
数学建模实例的建模思想及其步骤§1 数学模型的概念:模型:模型是为了一定目的,对客观事物的一部分信息进行简缩、抽象、提炼出来的原型的替代物。
模型的分类:具体模型(或物质模型,实的),包括直观模型,物理模型。
抽象模型(或理想模型,虚的),包括思维模型,符号模型,数学模型。
数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。
§2 建模的重要意义(1)数学以空前的广度和深度向一切领域渗透在一般工程技术领域数学建模仍然大有用武之地;在高新技术领域数学建模几乎是必不可少的工具了;数学进入一些新领域,为数学建模开辟了许多处女地.数学建模的具体应用:分析与设计,预测与决策,优化与控制,规划与管理。
§3实例1:椅子问题:实际问题转换为数学问题的方法:位置用角度,放平问题转化为连续函数的零点问题(连续函数的零点定理)矩形椅子问题:(1)用θ表示椅子对角线AC 与x 轴的夹角,因为假设地面是连续曲面,椅子各点到地面的距离是θ的连续函数。
设相邻的,A B 两点到地面的的距离之和为()f θ,,C D 两点到地面的距离之和为()g θ,令()()()h f g θθθ=-,则()h θ是θ的连续函数。
(2)因为假设地面是相对平坦的,在任一位置至少三只脚着地,不妨设0θ=时,(0)0,g(0)0f >=,(0)(0)(0)0h f g =->。
(3)将椅子旋转π,则,A B 旋转到原来,C D 的位置,,C D 旋转到,A B 的位置,即AB 与CD 的位置互换,因此有()(0)0,()f(0)0f g g ππ===>,因此()()()g(0)f(0)0h f g πππ=-=-<,即连续函数()h θ在[0,]π两端点异号,由连续函数的介值定理(零点定理),知存在一点*θ使*()0h θ=,即**()()f g θθ=。
《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。
通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。
通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。
并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。
【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。
第二节数学建模的重要意义基本要求:了解数学建模的重要性。
第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。
第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。
第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。
第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。
第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。
第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。
难点:建立模型的过程。
第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。
第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。
第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。
超市员工安排及运营问题摘要在一些大型服务机构中,不同的时间段内需要的服务量有着显着的不同,从而主管单位在不同的时段雇佣工作人员的人数往往也不同。
因此对于既要满足需要,又要尽量减少劳务开支是管理者必须思考的决策问题。
本文我院某校内超市员工安排问题为例,据已给定的各个时间段所需的服务员人数和两个班次与休息时间安排表、职员工资及其他给定的限制,建立整数规划优化模型,得出最优安排,使得既满足超市对职工的需要,又使超市的劳务开支最少。
另外本文进一步讨论在已有班次的基础上,对增加更多的班次后的人员安排及劳务支出的变化,以便此超市根据最少的劳务开支做出最优选择。
由问题给出的时间和班次安排表,在8:00——17:00和12:00——21:00中每隔一个小时安排吃饭时间,根据班次安排的人数列出线性不等式,根据月支出来列出目标函数,然后设计线性规划模型,用LINGO.8解出人数和最优劳务支出。
由此解决了本问题要讨论的最少人数和最优劳务支出。
关键词:优化设计,劳务开支,临时员工安排。
一问题重述在一些大型服务机构中,不同的时间段内需要的服务量有显著的不同。
例如,交通管理人员、医院医护人员、宾馆服务人员、超市卖场营销人员等。
在不同的时段劳务需求量不同,主管单位在不同时段雇佣的临时职工数量往往也不同。
因此对于既要满足需要,又要尽量节约劳务开支是管理者必须思考的决策问题。
现就我院校内某超市临时员工的班次安排问题建立一个数学模型来进行优化设计,使其既满足超市的营业需要,又能够使超市的劳务开支最少。
超市的营业时间为11:00到22:OO,根据学生的购买情况,以一小时为一时段,各时段内所需的服务人员数如表1。
此超市员工由临时工和正式员工构成,正式职工两名,主要负责管理工作,每天需要工作8小时,临时工若干名,每天工作4小时。
已知一名正式员工11:00开始上班,工作4小时后休息1小时,而后再工作4小时;另一名正式职工13:00开始上班,工作4小时后休息1小时,而后再工作4小时,工作、休息时间安排如表2。
《数学建模》教学大纲课程编码:1511101303课程名称:数学建模学时/学分:54/3先修课程:《数学分析》、《高等代数》、《数学软件与实验》、《概率论与数理统计》、《常微分方程》适用专业:数学与应用数学开课教研室:应用数学教研室一、课程性质与任务1.课程性质:本课程是数学与应用数学专业的专业基础课。
2.课程任务:本课程是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
通过数学建模有关的概念、特征的学习和数学建模实例的介绍,使学生较为系统地掌握利用数学工具建立数学模型的基本步骤、基本技能与常见方法,培养学生双向翻译能力,数学推导计算和简化分析能力和用数学方法和思想分析、解决实际问题的初步能力。
二、课程教学基本要求《数学建模》是一门应用性较强的新兴课程,主要培养学生应用数学理论和数学思想方法,利用计算机技术等辅助手段,分析、解决实际问题的综合能力。
由于该课程的性质、特点、内容不同于其它课程,教学形式应该是讲授与个人作业相结合,教学方法则是以启发式教学为主,学生动手实践为辅的双向教学模式。
本课程开设在第5学期,共54学时,其中课堂讲授36学时,课内实践18学时。
成绩考核形式:末考成绩(开卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。
成绩评定采用百分制,60分为及格。
三、课程教学内容第一章 数学建模概论1.教学基本要求让学生了解数学建模相关基本概念,了解课程特点,为后继学习奠定基础。
2.要求学生掌握的基本概念、理论、技能通过本章教学使学生了解数学模型、数学建模的概念,了解数学模型的特点和分类,初步掌握数学建模的基本方法和步骤,培养学生把实际问题翻译成数学问题的能力。
3.教学重点和难点教学重点是数学建模的基本步骤。
教学难点是如何把实际问题翻译成数学问题。