07-污水处理厂重金属污染特点及潜在风险
- 格式:docx
- 大小:524.15 KB
- 文档页数:11
污水处理厂污泥危险特性鉴别实例分析污水处理厂污泥危险特性鉴别实例分析一、引言污水处理厂是城市环保系统中非常重要的环节,它的主要功能是从污水中去除污染物,将处理后的清洁水排放到自然水体中。
然而,在这个过程中,大量的污泥会产生。
污泥的危险特性鉴别是非常重要的,即便它的处理过程比较复杂。
本文以某市某污水处理厂的污泥为研究对象,通过实例分析,探讨了污泥危险特性的鉴别方法和相关问题。
二、实验方法本实验主要通过以下几个步骤来鉴别污泥的危险特性:1. 污泥样品采集:从该污水处理厂的污泥储存罐中取得一定量的污泥样品,以确保试验结果的代表性。
2. 污泥样品预处理:将采集的污泥样品均匀搅拌,并按照一定比例加入脱水剂,使其达到一定的固体含量。
3. 试验室检测:对处理后的污泥样品进行相关测试,例如溶解氧(DO)浓度、pH值、重金属含量等。
三、实验结果分析1. 溶解氧浓度:溶解氧浓度对于污泥的危险程度具有重要的参考价值。
实验结果表明,该污泥的溶解氧浓度较低,说明其中存在较多的有机物质,在储存和运输过程中易发生厌氧发酵反应。
2. pH值:酸碱度是污泥危险特性的重要因素之一。
实验结果显示,该污泥呈中性到酸性,pH值较低。
这意味着其中存在一定量的酸性物质,对环境的影响较大。
3. 重金属含量:重金属是污泥中的主要污染物之一,其长期积累可能对环境和生态系统造成严重的影响。
实验结果表明,该污泥中重金属含量较高,超过环保标准的限制值。
这说明,在处理该污泥时需要采取相应的措施,以防止重金属的进一步释放和污染。
四、讨论与总结通过对该污水处理厂的污泥进行危险特性鉴别实验分析,可以得出以下结论:1. 该污泥存在较多的有机物质,易发生厌氧发酵反应,有潜在的爆炸、自燃等危险。
2. 该污泥呈酸性,含有一定量的酸性物质,对环境的影响较大。
3. 该污泥中重金属含量较高,超过了限制值,对环境和生态系统造成严重危害。
基于以上发现,需要采取一系列的措施来处理该污泥,以减少危险和环境污染。
重金属污染对生活和环境的威胁随着工业化和城市化快速发展,重金属污染已成为当今社会面临的一个严重问题。
重金属污染指的是通过工业生产、采矿活动、废弃物处理等方式排放到大气、水体和土壤中的重金属元素,对生态系统和人体健康产生严重的威胁。
下面将详细介绍重金属污染对生活和环境的威胁以及应对措施。
一、重金属污染对生活的威胁:1.食物安全:重金属通过土壤、水源等途径进入植物体内,并通过食物链逐渐积累到人类食物中,使人们在日常生活中摄入过多的重金属元素,对人体健康产生威胁。
2.健康问题:摄入过多的重金属元素,如铅、汞等,会引发一系列健康问题,如神经系统疾病、肝肾损害、免疫力下降等。
3.水源污染:工业废水中含有大量的重金属元素,过量排放到水体中会引起水质污染,影响人们的饮用水安全。
二、重金属污染对环境的威胁:1.生态系统破坏:重金属污染会导致土壤酸化、水体酸化,破坏生态系统的平衡和稳定,影响植物生长、动物繁殖等生态过程。
2.生物多样性减少:重金属污染对土壤和水体中的生物种群造成严重影响,导致部分物种灭绝或数量减少,进而降低生物多样性。
3.地质环境受损:重金属污染会引起土壤和地下水污染,导致土地质量下降,严重影响生态环境和农业生产。
应对措施:1.加强监管:建立完善的环境监管制度,加大对重金属排放的监测力度,对违规企业进行严厉处罚,确保环境执法的效力。
2.控制排放源:通过优化工艺、加强治理设施建设等方式,减少重金属污染物的排放,降低对环境的影响。
3.生态修复:对受到重金属污染的土壤和水体进行生态修复,采用植物修复、微生物修复等技术手段,恢复生态系统的功能。
4.公众教育:加强重金属污染知识的普及,提高公众对重金属污染的认识和防护意识,引导居民选择健康环保的生活方式。
5.鼓励可持续发展:推动经济结构优化,鼓励环保产业的发展,减少对重金属资源的需求,降低对环境的压力。
综上所述,重金属污染对生活和环境都带来了严重的威胁。
只有通过加强监管、采取有效的应对措施,才能有效减少重金属污染的发生,保护我们的生活和环境免受其威胁。
重金属废水污染及治理技术摘要:在目前的生产生活中,人们逐渐加深了对环境保护的关注,节能减排是现在各行各业得以可持续性发展的关键。
目前重金属污染问题十分严重,重金属废水污染治理是人们首要需要研究治理的课题之一。
本文主要是对重金属废水污染的程度、现状以及重金属废水污染的治理技术进行了简要的探讨。
关键词:重金属;废水处理;污染引言:重金属是指汞、铬、铅等具有生物毒性的元素物质,他们多以物理或化学形态存在于水体、土壤和大气当中,在环境中慢慢的累积会导致重金属污染的产生。
由于采矿事业的发展,重金属废水污染问题逐渐的加剧,重金属废水污染问题的治理,也逐步成为人们目前关注的焦点。
人们在不断的采取有效措施,对废水进行治理,恢复被污染的水体。
一、重金属污染的危害随着工业化程度的加深,工业废物的排放和治理不及时导致了重金属物质的污染超标。
重金属物质极难消解,当其在水体中过度堆积的时候会造成水体的污染,进而影响到水生植物和水生动物,对整个水体的生态系统都造成严重的破坏。
还会通过食物链的传递,直接影响到人类的健康安全。
在矿产、机械制造、化工、电子等等多个行业都会产生大量的重金属废水和污染,这些对人类的生活环境和人类自身的健康都产生了极大的威胁。
重金属废水的排放会污染整个生态环境。
除此之外,水体中的重金属污染还有自然源,如岩石风化的碎屑产物可能含有重金属物质,通过自然途径进入水体中,可能会加剧水体的重金属污染。
当人类通过各种渠道过度摄入重金属后,会导致畸形、肾脏受损、动脉硬化等等健康问题。
目前,婴幼儿的畸形、儿童砷中毒、铅汞中毒等等现象时有发生,这都表明重金属废水污染会威胁到人类生命安全的发展以及生态环境的平衡。
因此,必须要对重金属污染物进行有效的治理,通过合理的方案,采取高科技的技术水平,采用有效的方法来解决重金属废水污染问题,恢复水体的安全和清澈,保证人类的生命安全。
二、重金属污水处理的技术发展治理重金属污染的方法主要有三种:一是化学法,二是物理法,三是生物法。
污水处理厂安全性分析及应对措施1. 引言污水处理厂是处理城市污水的重要设施,确保其安全性对于环境保护和公共健康至关重要。
本文将对污水处理厂的安全性进行分析,并提出应对措施。
2. 安全性分析2.1 潜在风险- 污水处理过程中可能产生有毒有害气体,例如硫化氢,氨气等。
- 污水处理厂设备运转不畅或故障可能导致溢流或爆炸等事故。
- 污水处理厂可能成为目标,遭受意图破坏或恶意攻击。
2.2 安全隐患- 缺乏全面的安全培训和操作指南,员工对于应对各种突发情况的准备不足。
- 相关设备和工具的维护和保养不到位,存在潜在的设备故障风险。
- 污水处理厂周边缺乏安全措施,例如防护栏、消防设备等。
3. 应对措施为确保污水处理厂的安全性,以下措施可采取:3.1 安全培训和操作指南- 设立完善的培训计划,确保所有员工了解常见风险和应对措施。
- 提供详细的操作指南,确保员工能正确使用设备和工具。
3.2 设备维护和保养- 制定设备维护计划,包括定期检查和维修设备,确保设备运转正常。
- 建立设备故障快速报修机制,及时处理设备故障。
3.3 安全设施和周边防护- 安装适当的安全设施,如防护栏、警示标志等,明示安全区域。
- 配备必要的消防设备,并进行定期检查和维护。
3.4 安全巡查和监控- 设立定期的安全巡查制度,确保设备正常运行,发现问题及时解决。
- 安装监控设备,提高对污水处理厂内外安全状况的监控。
3.5 应急预案和演练- 制定完善的应急预案,包括各种事故和突发情况的处理流程。
- 定期进行演练和培训,提高员工应对突发情况的能力。
4. 结论污水处理厂的安全性是保障环境和公共健康的重要因素。
通过加强安全培训和操作指南、设备维护和保养、安全设施和周边防护、安全巡查和监控以及应急预案和演练,可有效提高污水处理厂的安全性,减少事故发生的概率,维护公众的福祉和环境的可持续发展。
以上是对污水处理厂安全性分析及应对措施的文档,希望对您有帮助。
《长期污灌农田土壤重金属污染及潜在环境风险评价》篇一一、引言随着工业化和城市化的快速发展,农田污灌已成为农业生产中常见的灌溉方式。
然而,长期污灌农田的土壤环境问题日益突出,尤其是重金属污染问题。
重金属在土壤中不易降解,且具有生物累积性,长期积累将对农田生态系统及人类健康构成潜在威胁。
因此,对长期污灌农田土壤重金属污染及潜在环境风险进行评价,对于保障农产品质量和生态环境安全具有重要意义。
二、研究区域与方法本研究选取了长期污灌农田为研究对象,通过对不同污灌年限的农田进行采样分析,对土壤中的重金属含量进行测定。
采用的方法包括文献综述、实地采样、实验室分析以及数据分析等。
三、土壤重金属污染现状(一)重金属含量及分布特征通过对长期污灌农田的土壤样品进行分析,发现土壤中多种重金属含量普遍较高,且呈现出不同的分布特征。
其中,镉、铅、汞等重金属的含量明显高于背景值,且随着污灌年限的增加,重金属含量呈上升趋势。
(二)污染来源分析土壤中重金属的来源主要来自于污水灌溉、大气沉降、农药施用等。
在长期污灌过程中,污水中的重金属通过灌溉进入土壤,并在土壤中积累,导致土壤污染。
四、潜在环境风险评价(一)评价方法本研究采用潜在生态风险指数法对土壤重金属污染的潜在环境风险进行评价。
该方法综合考虑了重金属的含量、毒性以及生态环境敏感性等因素,能够较为全面地反映土壤重金属污染的潜在环境风险。
(二)评价结果根据潜在生态风险指数法的评价结果,长期污灌农田土壤重金属污染的潜在环境风险较高。
其中,镉、汞等重金属的潜在环境风险指数较高,表明这些重金属对生态环境和人类健康的潜在威胁较大。
五、结论与建议(一)结论长期污灌农田土壤重金属污染问题严重,镉、铅、汞等重金属含量较高,且呈现出上升趋势。
土壤重金属污染的潜在环境风险较高,对生态环境和人类健康构成潜在威胁。
(二)建议1. 加强污灌水源的管理和控制,减少污水中的重金属含量。
2. 加强对农田土壤的监测和监管,及时发现和处理土壤重金属污染问题。
重金属废水主要含哪些有害物质重金属废水是指矿冶、机械制造、化工、电子、仪表等工业生产过程中排出的含重金属的废水。
那么重金属废水主要含哪些有害物质呢?重金属(如含镉、镍、汞、锌等)废水是对一环境污染最严重和对人类危害最大的工业废水之一,其水质水量与生产工艺有关。
污水中的酸、碱、氧化剂,以及铜、镉、汞、砷等化合物,苯、二氯乙烷、乙二醇等有机毒物,会毒死水生生物,影响饮用水源、风景区景观。
污水中的有机物被微生物分解时消耗水中的氧,影响水生生物的生命,水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、硫醇等难闻气体,使水质进一步恶化。
除了大家熟知的部分工业生产、农业生产会导致污水排放外,在城市地区,由于地面渗透性差,下雨时,雨水四处横流,过程中带走了大量城市污染物。
通常这些雨水不经任何处理,直接通过排水管道排放到河流、湖泊中。
同时,城市降雨可能会造成另一个问题——混合污水溢流。
混合污水溢流物未经任何处理或仅进行一级处理就直接排放到水域里,也会造成水质污染。
按照其作用可分为物理法、生物法和化学法三种。
物理法主要利用物理作用分离污水中的非溶解性物质,在处理过程中不改变化学性质。
常用的有重力分离、离心分离、反渗透、气浮等。
生物法利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的有机物分解氧化为稳定的无机物质,使污水得到净化。
常用的有活性污泥法和生物膜法。
化学法是利用化学反应作用来处理或回收污水的溶解物质或胶体物质的方法,多用于工业废水。
常用的有混凝法、中和法、氧化还原法、离子交换法等。
我们在平时最好多学习一些水污染安全小知识,饮用水尽量安装家用净水器过虑在饮用,这样更有利于用水安全。
污水中砷超标有哪些危害采矿、冶炼的废渣,冶金、化工、农药、染料和制革等的工业废水和地热发电厂的废水中均含砷,被砷污染的河水,会降低生化需氧量。
那么污水中砷超标有哪些危害呢?地面水中含砷量因水源和地理条件不同而有很大差异。
据H.J.M.鲍恩估算,淡水为0.2~230微克/升,平均为0.5微克/升;海水为3.7微克/升。
海洋中溶解的砷的形态主要是砷酸氢根和以甲基胂为主的有机砷化物。
在海洋和土壤中,细菌可使砷甲基化成为甲基胂或二甲基胂。
采矿和冶炼的废渣,冶金、化工、农药、染料和制革等部门的工业废水,地热发电厂的废水,均含有砷。
美国W.H.杜鲁姆等于1971年取河川、湖泊水样727件,其中79%含砷量不足10微克/升,21%大于10微克/升,总样品中有2%大于50微克/升,最高的达1100微克/升。
J.E.萨巴德尔和R.C.阿克斯特曼在1975年报道了新西兰的地热发电厂废水中含有较多的砷,废水排入河流,河水砷浓度高达0.25ppm。
被砷污染的水无色,无味,透明度不变,可降低生化需氧量。
污水中砷浓度如大于1毫克/升,会影响污水净化工程的净化效率。
砷化合物在水中相当稳定,但如水温升高,沉积于河底的砷化合物会产生重新溶解的现象。
砷对水生生物毒性很大。
一些人问:水污染成因与污水处理方法?含氰废水主要来自电镀、煤气、焦化、冶金、金属加工、化纤、塑料、农药、化工等部门。
含氰废水是一种毒性较大的工业废水,在水中不稳定,较易于分解,无机氰和有机氰化物皆为剧毒性物质,人食入可引起急性中毒。
氰化物对人体致死量为0.18,氰化钾为0.12g,水体中氰化物对鱼致死的质量浓度为0.04一0.1mg/L。
含氰废水治理措施主要有:(1)改革工艺,减少或消除外排含氰废水,如采用无氰电镀法可消除电镀车间工业废水。
(2)含氰量高的废水,应采用回收利用,含氰量低的废水应净化处理方可排放。
回收方法有酸化曝气—碱液吸收法、蒸汽解吸法等。
治理方法有碱性氯化法、电解氧化法、加压水解法、生物化学法、生物铁法、硫酸亚铁法、空气吹脱法等。
污水厂安全风险评估污水厂是处理城市污水的重要设施,然而,由于涉及大量的化学物质和细菌,污水厂存在一定的安全风险。
以下是对污水厂安全风险的评估:1. 化学品风险:污水厂使用多种化学品进行水质处理,如氯化物、硫酸盐、氨水等。
这些化学品可能对工作人员和环境造成危害,例如化学品泄漏、气体泄漏和化学品不当储存等。
2. 气体风险:污水厂会产生大量污水气味,如硫化氢、甲烷和氨等,这些气体对人体有害并且易燃。
呼吸这些气体可能导致中毒和爆炸。
3. 细菌和病毒风险:污水中可能含有各种致病细菌和病毒,如大肠杆菌、沙门氏菌和流感病毒等。
工作人员接触到这些细菌和病毒可能导致感染和传播疾病。
4. 机械风险:污水厂使用大量的机械设备,如泵、压力容器、搅拌器等。
这些设备如果不正确使用、维护或老化可能存在故障和事故的风险,如压力容器爆炸、泵故障等。
5. 电气风险:污水厂使用大量的电气设备,如电动机、电控系统等。
电气设备的故障、过载和短路可能导致火灾和电击事故。
6. 火灾风险:由于污水厂中存在大量有机物质和易燃气体,火灾风险较高。
例如,化学品泄漏、电气设备故障或维修不当等,都可能引发火灾。
基于以上评估的安全风险,污水厂应采取以下措施来降低风险:1. 建立完善的安全管理制度和操作规程,并进行培训和演练,提高员工的安全意识和技能。
2. 定期检查和维护设备,确保其正常运行和安全性能。
3. 使用高效的防护设施,如防毒面具、防护服等,以保护工作人员免受化学品和气体的危害。
4. 加强污水处理过程的监测,及时发现和处理可能的问题,防止细菌和病毒的传播。
5. 定期进行测量和监测,确保气体浓度在可接受范围内,并采取适当的通风措施。
6. 定期进行火灾风险评估,加强火灾预防和灭火设施的设置和维护。
综上所述,通过对污水厂安全风险的评估,并采取相应的措施,可以降低事故和风险发生的概率,保障污水厂的安全运行。
水体重金属污染的危害及其治理水体重金属污染是指水中存在较高浓度的金属元素,如铅、镉、汞、铬等,达到一定的程度会对生态环境和人体健康带来极大的危害。
下面我们将从不同角度探讨水体重金属污染的危害及其治理方法。
1. 生态环境危害:水体重金属污染对生态环境的危害是十分严重的。
金属元素经过水生物的摄食和吸收,会在生物体内不断积累,被称为生物累积作用。
当水中金属元素浓度过高,水中的生物体和生态系统将受到影响,有些物种甚至可能灭绝。
此外,有些金属元素也有毒性,可以导致水生植物死亡,减少水体生态系统的生物多样性。
2. 健康危害:水体重金属污染会对人体健康产生危害。
人体如果长期饮用水中含有高浓度金属元素的水,会导致中毒症状,比如智力发育受损、肝损伤、肾损伤、免疫力下降等。
对于短期饮用水中含有高浓度金属元素的水,也会引发急性中毒反应,比如头痛、恶心、呕吐、腹泻等。
3. 土地和水资源资源危害:水体重金属污染也会对土地和水资源产生危害。
当金属元素流入水中后,会随着水流沉积到河底或地下水层中,形成金属污染。
如果这些水源被用于灌溉或工业用途,会使土壤或工业物质中累积大量金属元素,影响农作物的生长和产品的品质。
同时,污染的地下水也影响人们的饮用水资源,对环境质量和社会生产带来巨大影响。
针对水体重金属污染带来的危害,我们需要采取科学有效的治理方法。
现有的治理措施主要包括以下几种:1. 生态修复:加强水体和土地的生态修复和修复,利用生物吸附、植物修复等技术,减少污染物的排放量和生物的累积作用。
2. 改善工艺流程:针对工业和城市排放的污水,采用先进的污水处理技术,如高级氧化技术、膜分离技术等,将金属污染物去除或降低其浓度。
3. 治理污染源头:加强污染源头管理,严格限制有害金属元素的产生、使用和排放,提高企业和个人的环境保护意识,控制水体重金属污染源。
4. 加强监管与管理:建立完善的监管体系和制度,定期对水环境进行监测,对发现的污染源进行处罚和追究法律责任。
我国冶炼厂周边土壤重金属污染现状与风险评价我国冶炼厂周边土壤重金属污染现状与风险评价近年来,我国冶炼厂周边的土壤重金属污染问题备受关注。
冶炼厂作为重金属污染的主要源头之一,其废气和废水排放中含有大量恶劣环境因子。
本文将对我国冶炼厂周边土壤的重金属污染现状进行调查,并对其带来的环境风险进行评估。
首先,我们先来了解一下什么是重金属污染。
重金属污染是指土壤中超出一定限量标准的金属元素,如铅(Pb)、镉(Cd)、汞(Hg)、铜(Cu)等,对环境和人体健康产生危害的现象。
冶炼厂周边土壤重金属污染主要是由于冶炼过程中金属元素的排放和渗透导致的,这些金属元素都具有毒性、积累性和稳定性,对生态系统和人类健康造成严重威胁。
调查数据显示,我国冶炼厂周边土壤重金属污染普遍存在。
在不同地区的调查中,都发现了超标的情况。
以河北省的一个冶炼厂为例,其周边一定范围内土壤中的镉、铜、铅等重金属元素含量超过了国家土壤环境质量二级标准。
类似的情况也在其他地区出现,表明冶炼厂周边土壤重金属污染具有普遍性和广泛性。
冶炼厂周边土壤重金属污染对环境和人类健康造成了巨大的风险。
首先,重金属元素的积累会导致土壤的质量下降,减少其肥力,进而影响农作物的生长和产量。
其次,重金属通过食物链进入人体,对人体健康造成潜在风险,如镉容易引发骨骼病变,铅则可对神经系统、肾功能、血液等造成严重影响。
此外,重金属污染还对环境生态系统造成破坏,危害物种多样性和生态平衡。
针对我国冶炼厂周边土壤重金属污染现状和环境风险,我们需要采取一系列措施。
首先,冶炼厂应加大技术改造力度,提升污染物处理设施的效率和质量。
同时,加强冶炼厂的环境保护监管力度,严禁超标排放和违法行为。
其次,应强化土壤修复和重金属排放控制的技术研发,探索有效的治理方法。
投入更多资金,加强科研力量,提高对冶炼厂周边土壤重金属污染的风险评估和监测能力。
此外,还需增强公众的环境意识和参与度。
公众可通过自觉减少金属污染源的使用,积极参与环境保护活动,提高环境风险的防范意识。
重金属污染:来源、危害和处理技术随着工业化和城市化的快速发展,重金属污染问题引起了越来越多的关注。
重金属是指密度较大的金属元素,如铅、铬、镉、汞等。
它们在自然界中普遍存在,但由于人类活动的不当处理和排放,导致了重金属污染的产生。
本文将从来源、危害和处理技术三个方面来详细介绍重金属污染及其应对措施。
一、来源1. 工业排放:工厂生产过程中产生的废水和废气中含有大量的重金属物质,当排放不当时会导致环境污染。
2. 农业活动:农药和化肥中的某些成分含有重金属,这些农化物质在农田中积累,随降雨进入水体和土壤中,对生态系统造成危害。
3. 生活污水:家庭和城市的污水中含有大量的重金属物质,如果不经过适当的处理直接排入河流和湖泊中会造成严重的水体污染。
4. 废弃物处理:不当处理或拆解废弃电子产品、电池等会造成重金属的释放,对大气和土壤造成污染。
二、危害1. 生态系统破坏:重金属进入土壤和水体后,会通过食物链逐渐传递,对生物体造成生物积累,破坏生态平衡。
2. 健康风险:人体长期接触或摄入含有重金属的食物和水会导致多种疾病,如中毒、神经系统损伤、癌症等。
3. 土壤质量下降:重金属进入土壤后不易分解,会累积在土壤中,使土壤质量下降,导致作物减产。
三、处理技术1. 物理处理:采用各种物理方法,如沉淀、过滤、吸附等来净化水体中的重金属。
这种方法可以移除大部分的重金属,但处理成本较高。
2. 化学处理:利用化学药剂将重金属转化为不易溶解的盐类沉淀或沉降,达到净化水体和土壤的目的。
3. 生物处理:利用具有重金属吸附能力的微生物或植物来减少重金属的含量。
这种方法具有环保、经济的优势,但处理周期较长。
4. 热处理:采用高温处理方法,通过热分解或燃烧等方式将重金属物质分解或转化为无害物质。
综上所述,重金属污染是一种严重的环境问题,对人体健康和生态系统都带来巨大的危害。
为了有效应对重金属污染,我们应该从源头控制,加强工业排放、农业活动和废水处理的管理和监管。
污水处理厂重金属污水特点及潜在风险 1 引言 污泥是污水处理过程中的必然产物,主要由多种菌胶团与其吸附的有机和无机物集合体所组成.随着我国污水处理能力及处理率的快速增长,产生了大量剩余污泥,污泥处置将成为我国一个更加突出的实际环境问题.由于污泥中含有大量的有机质和养分元素,因此,污泥农用有望成为一种具有重要前景的处置方法.然而,污泥中可能同时含有大量病原菌、有机污染物和重金属等污染物质,在农用过程中重金属会释放并进入土壤生态环境,重金属作为一种持久性潜在有毒污染物,一旦进入环境后,因不能被生物降解而长期存在于环境中且不断积累,致使重金属在土地农用过程中可能产生生态危害风险,从而限制其大规模土地利用.因此,对污泥中重金属污染特征进行研究,并评价潜在风险及健康风险应该引起高度重视.
目前,有关污泥中重金属的研究主要集中在污染水平、赋存形态及生态风险方面.例如,刘敬勇等分析了广州市城市污泥中重金属的污染特征,并评价了其生态风险;涂剑成等分析了东北地区污水处理厂污泥重金属浓度及形态,并评价了潜在生态风险;刘晓光等研究了某城市污水处理厂的剩余污泥在厌氧消化过程重金属形态转化,并分析了生物有效性;姚金铃等探讨了我国16家城市污水处理厂的重金属污染状况并与不同重金属标准进行了比较;孙西宁等研究了污泥在好氧堆肥过程中重金属形态的变化,发现堆肥有利于重金属形态的稳定.然而,关于污泥重金属健康风险的研究较少,健康风险评价主要集中在气体颗粒物及水体等方面.因此,本研究在分析重金属形态及潜在风险评价的基础上,进一步分析污泥中重金属的健康风险,以更好地评价污泥重金属污染情况,为污泥农用等资源化利用提供参考.
2 材料与方法 2.1 污泥样品的采集与预处理 污泥取自北京市某污水处理厂污泥脱水车间,为均匀反映污泥重金属含量情况,连续取样7 d并分别标记为S1~S7.每次取样500 g于聚乙烯自封袋取回,样品在通风阴凉处自然风干后混匀,用四分法多次筛选后取30 g 污泥样品,研磨过150 μm尼龙筛(100目),装入密封袋标号备用.
2.2 样品处理与测试 2.2.1 含量分析 称取样品0.2 g,置于聚四氟乙烯消解罐中,滴加2~3滴去离子水润湿,加6 mL硝酸、6 mL氢氟酸及2 mL盐酸,设定微波消解程序消解,消解后在电热板上加热赶酸,冷却加1%硝酸定容至50 mL,于4 ℃下保存待测. 2.2.2 重金属形态分析方法 常用的形态分析方法包括Tessier逐级提取法和BCR逐级提取法,Tessier提取法分级更详细,但BCR提取法重现性相对较好.重金属元素化学形态分析采用欧共体修正的BCR顺序提取法:①酸可提取态:称取0.50 g土壤到50 mL离心管中,加入20 mL 0.11 mol · L-1醋酸(HOAc),室温振荡16 h,在3000 r · min-1的转速下离心20 min,取上清液待测,残渣留存;②可还原态:向上一步的残渣中加0.5 mol · L-1的NH2OH · HCL溶液(盐酸羟胺)20 mL,室温振荡16 h,在3000 r · min-1的转速下离心20 min,取上清液待测,残渣留存;③可氧化态:向上一步的残渣中加30%的H2O2 5 mL,室温反应1 h,偶尔振荡,(85±2)℃下水浴硝化1 h,蒸发至体积少于2 mL,补加5 mL H2O2,重复上述操作,体积减少到大约1 mL;冷却后加1.0 mol · L-1 NH4OAc溶液25 mL,室温下振荡16 h,在3000 r · min-1转速下离心20 min,取上清液待测,残渣留存;④残渣态:方法同全量检测方法.
2.3 分析方法 2.3.1 污泥重金属污染评价 单因子指数法:单因子指数法是国内外普遍采用的方法之一,是对土壤中某一污染物的污染程度进行评价,其计算公式为:
式中,Pi为土壤中污染物i的环境质量指数;Ci为污染物i的实测含量(mg · kg-1);Si为污染物i的环境质量标准(mg · kg -1).
内梅罗综合污染指数法:内梅罗综合污染指数法可全面反映土壤中各污染物的平均污染水平,也突出了污染最严重的污染物给环境造成的危害,其计算公式为:
式中,P为监测点的综合污染指数;Pimax为 i 监测点污染物单污染指数中的最大值;Piave为 i 监测点所有污染物单污染指数平均值.依据单因子指数法和内梅罗综合污染指数法可将土壤重金属污染划分为5 个等级,具体如表 1所示.
表1 土壤重金属污染分级标准
GB15618—1995土壤环境质量标准提供的土壤环境质量标准如表 2所示,本次研究选用国家土壤质量Ⅰ级标准为评价标准. 表2 土壤环境质量执行标准值 2.3.2 土壤重金属潜在生态风险指数计算 沉积物重金属潜在生态风险评价采用瑞典科学家Hakanson 提出的评价方法,该方法综合考虑了多元素协同作用、毒性水平、污染浓度及环境对重金属污染敏感性等因素,消除了区域差异及异源污染的影响,已成为目前沉积物重金属污染质量评价应用广泛的一种方法计算公式如下:
式中,Cfi 为重金属i 相对参比值的污染系数;Csi 为重金属i 的实测含量;Cni为重金属i 的评价参比值;Eri 为第i 种重金属环境风险指数;Tri 为重金属i 毒性响应系数;RI 为多元素环境风险综合指数.在本研究中,8 种土壤重金属毒性响应系数Tri参照文献(表 3);为方便同类研究结果间比较,评价参比值Cni采用Hakanson 提出的工业化前全球土壤(沉积物)最高背景值,由于Hakanson 未提供元素Ni 的评价参比值,用土壤质量Ⅰ级标准值替代.潜在环境风险指数评价结果分级见表 4.
表3 不同重金属的毒性效应系数 表4 不同生态风险水平的划分 2.3.3 重金属健康风险评价 参考土壤重金属评价模型,本研究设定2种暴露途径:①通过手-口直接摄入;②通过皮肤接触摄入.其中,手-口摄食途径和皮肤接触途径下的摄入量(AOD)计算公式分别如式(6)和(7)所示.
式中,C为污泥中重金属含量(mg · kg-1);IR为摄取速率(mg · d-1);CF为转换因子(kg · mg-1);EF为暴露频率(d · a-1);ED为暴露年限(a);BW为受体体重(kg);AT为平均作用时间(a);SA为可能接触的皮肤面积(cm2 · d-1); SL 为皮肤对土壤的吸附系数(mg · cm-2); ABS为皮肤对化学物的吸附系数.相关参数取值见表 5.
表5 健康风险评价模型暴露参数
毒性评估指分析受试物引起暴露人群不良健康反应的各种证据,估计暴露强度与不良反应增加的可能性和不良健康反应程度之间的关系,对人体健康危害进行定性和定量估算,分为致癌和非致癌毒性评估.
单个污染物单一暴露途径的非致癌风险以 HQ表示,多污染物多途径联合非致癌风险以 HI表示,计算公式分别如下:
式中,CDIij为第i种污染物第j种暴露途径的平均每日单位暴露量(mg · kg-1 · d-1);RfDij为第i种污染物第j种暴露途径的慢性参考剂量(md · d · mg-1);n1为非致癌影响的污染物个数;n2为暴露途径的个数.
污染物致癌风险值则以R表示,当暴露人群处于低风险水平(估算风险值在0.01以下)时,采用线性低剂量致癌风险模型,计算公式见式(10);当暴露人群处于高风险水平(估算风险值高于0.01)时,采用一次冲击模型,计算公式见式(11). 多个污染物多种暴露途径的联合致癌风险计算公式分别如下: 本次研究相关的污染物的毒性数据主要来源于国际癌症研究机构(IARC)和世界卫生组织(WHO),As、Cd 为化学致癌物,其致癌强度斜率因子(SF值)和评价模型各重金属RfD 值如表 6所示.
表6 SF和RfD 参考值
3 结果与讨论 3.1 污泥中重金属污染水平及形态特征分析 本研究所取污泥中重金属含量最高的元素是Zn,其含量为930.08 mg · kg-1(以干重计),重金属含量从高到低分别为Zn> Cu>Cr>Pb>As>Ni>Cd(图 1).污泥中重金属含量主要影响因素包括污水来源、污水组成、污水处理工艺和水平及污泥处理技术等,其中,污水来源是重要的影响因素.本次所研究的污泥中含有一定量的重金属,因此,在污泥资源化前应充分分析污泥中重金属的特性,有针对性地采取有效的削减措施,以提高污泥的利用价值同时避免其产生环境负效应. 图1 污泥重金属含量 通过BCR连续提取法分析了污泥中重金属的形态,各重金属赋存形态比例如图 2所示.从图 2可以看出,污泥中不同重金属赋存形态差异较大,该污泥中残渣态比例最高的是Cr,占到79.32%;其中,残渣态比例最低的是Cd,污泥中镉的残渣态含量已经低于检测限.污泥中Cr、Pb元素含量相对较高,但二者的存在状态主要以残渣态为主.值得注意的是,重金属的活性更大程度取决于其赋存状态,不同形态的重金属生物毒性不同并能够产生不同的环境效应,重金属的赋存形态主要受到pH、有机质及酶活性的影响.样品中Zn、Cu的含量较高,且其活化状态所占比例大,因此,应重视Zn、Cu元素可能造成的环境危害.
图2 污泥重金属形态 3.2 重金属污染评价分析 本次重金属污染评价研究过程中,以国家土壤环境质量Ⅰ级标准为评价标准进行污染评价,污泥中重金属污染评价指数结果如表 7所示.污泥中Pb的风险指数Pi值为0.33,指数值最低且其污染等级为安全;Cr、Ni元素的风险指数Pi值均小于1,但已经达到了污染等级中的警戒限;As的Pi处于1~2之间,属于轻污染程度,Cu的Pi处于2~3之间,属于中污染程度;Cd、Zn的Pi均超过3,已经属于重污染程度.从综合污染指数方面来看,污泥中重金属综合污染指数为4.84,属于重污染水平.不同的污泥中重金属污染评价指数存在一定的差异,这主要与所处理的污水有关.本样品中重金属综合污染指数为4.84,达到了重污染水平,在资源化利用过程中应注意其可能带来的重金属风险.应该指出的是,Cd元素的环境浓度要求极为严格,污泥综合污染等级属于重污染,与Cd元素的浓度有很大的关系.
表7 重金属污染评价指数
3.3 重金属潜在环境风险分析 污泥中重金属的环境风险系数(Eri)及综合危害指数(RI)如表 8所示,由表 8可知,各重金属中环境风险系数最高的是Cd,其环境风险指数为115.50,属于极高生态风险;其次是Cu,其环境风险指数为46.97,属于高生态风险;As和Pb的环境风险指数均在20~40之间,属于较高生态风险;Zn的环境风险指数为11.63,属于中生态风险;环境风险指数小于10的重金属元素是Cr和Ni,二者属于低生态污染水平;综合风险指数为237.60,属极高生态风险.需要指出的是,本次研究为了充分保证安全性,是基于污泥独立农用进行分析的,在实际使用过程中,污泥一般作为土壤改良剂施用,因此,其可能造成的生态风险小于分析值.