当前位置:文档之家› 药物颗粒和粉末堆密度测量与分析

药物颗粒和粉末堆密度测量与分析

药物颗粒和粉末堆密度测量与分析
药物颗粒和粉末堆密度测量与分析

药物颗粒和粉末堆密度测量与分析详情

FT-100E Multi-functional powder heap densimeter (upgrade version) 工作原理:

1.原理:

装有粉末或颗粒的刻度量筒随着电机带动机械振动装置垂直上下振动,振动次数达到设定值后,停止振动,读出刻度量筒的体积.

计算公式:

质量/体积=振实密度。

表征应用:

粉体或混合物在外力作用下的最大包装密度。

这时,粉体具有最小的包装体积。

包装体积还依赖其它因素,包括粒度分布,真密度,粒形以及因湿度导致的粘度变化等。

因此,材料的振实密度,既能反映材料的流动性,也能反映其可压缩性。

这恰恰是药物制片过程中最重要两个参数

——在制剂过程中,需要将松散的粉体以正确的机械强度,依据孔隙率和分散特性压成一定的形状,在胶囊填充的操作中也是一样.

功能概述Outline:

1.频率和振次数显

2.计算功能和打印机系统

3.具有密码设定功能,存储功能,平均值计算功能,能打印出测试时间

(年月日时分秒)质量、体积、振实密度值,平均值及测试编号等数据功能;

4.同时具备振动次数和振动时间两种测量模式;

5.通过量筒测试松装密度,可以获得豪斯纳比和压缩度.

6.提供单、双、三工位三种机型选购.

适用范围scope of application:

本品主要适用于粉末和颗粒物科研院所、大专院校对测试要求和测试数据要求精准之单位使用;也用于广大生产企业对粉末和颗粒性状分析,成本管控作用。

标准Standard:

符合USP(美国药典)、BP (英国药典)和EP(欧洲药典)的规范要求,仪器含盖国标GB/T 5162-2006/ISO3953:1993中的各项指标,与国际上通用检测方法相通。

技术参数明细Technical parameters

?

整机示意图

测试工位

频率调节频率显示控制按键

振次显示打印机

步骤及流程

1.样品称重并装入量筒.

2.设定好振动次数或时间.并启动

3.到达设定值,仪器停止工作.

4.读取体积数据,并输入数据

5.打印测试数据

优势描述:

五金结构采用数控整料切割成型工艺,

钣金数控成型技术,

高集成控制电路系统

部分客户案例:

国药集团、深圳市药品检验所辉瑞制药有限公司浙江海正集团香港奥美制药厂上海创诺制药有限公司山东罗欣药业集团股份有限公司新疆药物研究所深圳万和制药有限公司贵州同济堂制药有限公司和记黄埔医药(苏州)有限公司丽珠医药集团股份有限公司

服务项目

1.质保:12个月,终身维护.

2.培训:操作培训:

电话教学;视频教学文件;远程视频沟通;现场教学;说明书教学文件3.保养和维护:

提供因知保养和简单维护文件、标识、表格、保养提醒.

4.验证文件:

3Q验证文件、计量证书

5.扩展服务:

延保服务,样品测试服务,后延技术服务,仪器租赁服务.

本机常用配套方案:

1.生物/食品/制药/化工行业常用仪器方案:

水分仪,松装密度仪,休止角测试仪,粉体流动性测试仪,筛分粒度仪,振实密度仪,静电荷测试仪,体积密度仪.

粉体综合分析解决方案:

FT-3400粉体流动行为分析仪(静态力学,剪切法)

FT-7100粉体流动测试仪(动态力学,转鼓法或旋转圆筒法)

FT-3900粉末屈服强度分析仪(单轴压缩法)

FT-3500粉体压缩强度测试仪(可压性,压缩方程)

FT-2000智能颗粒和粉末特性分析仪系列(传统方法)

FT-301系列智能粉末电阻率测试系统(电性能)

品牌分享:

ROOKO瑞柯品牌

-----专注于粉体&新材料测量与分析仪器解决方案

---解决粉体表征:

流与不流分析;粒度;水分;体积分析;电导性、静电电荷分析.

----我们一直在做:

研发、生产、销售、租赁、实验室样品分析及后延扩展服务.

商标、专利知识产权

FZS4-4振实密度测定仪

第一章性能与特点 1.1性能指标 ◆被测试样重量:≤100.00克。 ◆振实试样体积:≤100.00毫升。 ◆单次振动次数:≤99999次(国标中规定为3000次)。每万次 误差少于1次。 ◆电机允许力矩:0.86 N.m. ◆振动频率:250-300转//分钟 ◆振动幅度:国标中规定为3mm; ◆重复性误差:≤1%。 ◆准确性误差:≤1%。 1.2环境要求 ◆电源:交流200V ±10% 50Hz,35W。 ◆相对湿度:小于85%,无凝结现象。 ◆其它要求:环境整洁无烟尘,周围没有机械振动源或电磁干扰 源。 1.3测试对象 ◆各种金属粉:如铁粉、铝粉、银粉,锆粉、镍粉、钨粉、锡粉、 锌粉、钼粉、镁粉、铜粉以及其它稀有金属粉、合金粉或金 属氧化物粉末等。 ◆各种非金属粉:如滑石粉、高岭土、碳酸钙、煤粉、荧光粉、 水镁石、方解石、硅灰石、电气石、金刚石、重晶石、萤石、 沸石、碳化硼、石墨、石英、石膏粉、膨润土、硅藻土、硅 酸锆、刚玉、云母、粘土、钛白粉等。 ◆其它粉末:如土壤、染料、医药、农药、磨料、涂料、食品添 加剂、催化剂、水泥、泥沙等。 第二章安装与使用

松开量杯固定座,将量杯通过固定螺母(含硅胶垫)中心过孔,与底座固定即可! 注意:固定是只要量杯不要晃动即可! 2.1 量筒的选择 FZS4-4振实密度测定仪配备了25ml、100 ml、二种不同规格的量筒(见附件)。为了提高测试的精度,请依据被测粉体的重量(m)和松装密 注:为提高测试精度,请选择容积小的量筒。 2.2 量筒的安装 根据所选择的量筒,按如下步骤完成量筒的安装: 1)将配套的聚氨酯垫圈从量筒上部慢慢套入量筒; 2)将铝质的量筒托架上层也从量筒上部慢慢套入; 3)将带有导向杆的铝质量筒托架下层与托架上层慢慢旋紧,并固 定牢固。 。 注意:不可用力过度,损坏量筒。 2.3 振幅的调整 本仪器振动组件的最大振幅为3mm,国标GB/T 5162-2006以及ISO3953:1993中规定为3mm;。仪器出厂时振幅已调整为3mm

近年铁基粉末冶金行业发展浅析

第20卷第2期2010年4月 粉末冶金工业 PO WDER MET ALLURGY INDUST RY Vo l.20No.2 A pr.2010 收稿日期:2009-10-22 作者简介:孙世杰(1966-),男(汉),北京人,硕士,工程师,主要从事粉末冶金材料科学与工程信息咨询工作。 近年铁基粉末冶金行业发展浅析 孙世杰 (北京钢友粉末冶金技术咨询中心,北京 100081) 摘 要:本文分析说明了美国、欧洲和日本铁基粉末冶金行业的生产和市场状况,列举了近年铁基粉末冶金行业出现的一些比较重要的新技术,指出铁基粉末冶金行业的经济技术交流正向跨地区、跨行业和更进一步专业化的方向发展。铁基粉末冶金行业中一些传统的交流方式可以利用网络增强,互联网上一些研究领域的信息则需要被分类整理、集中发布,形成更高效的沟通机制,提出在一些铁基粉末冶金研究领域建立研究网络的设想。关键词:铁基粉末冶金;产业网络;研究网络中图分类号:TF12 文献标识码:A 文章编号:1006-6543(2010)02-0053-07 ADVA NCE IN T H E FERROU S POWDER M ETALLURGY SUN Sh-i jie (Beijing Gang you Consult Center for Pow der M etallurg y,Beijing 100081,China) Abstract:T he market and pro duction of ferr ous pow der m etallurgy in America,Europe and Japan are analy sed 1Several key new techno logies are enumerated 1T he econom ic and technical exchange o f ferro us pow der metallurg y becam e mo re transregional,m ult-i industrial and spe -cialized 1The traditional w ays of ex chang e may be ex tended by w eb 1Inform ation on w eb needs to be classified and issued centralized 1A batter channel for ex chang e is necessary 1A proposal of set up som e resear ch netw or ks in this field is put fo rw ar d. Key w ords:Ferr ous Pow der Metallurg y;Industry Netw ork;Research Netw ork 从第二次世界大战末期德国工程师发现铁粉经过压制、烧结后可以用于替代有色金属制造弹箍,至今铁基粉末冶金制品的生产已经有了60多年的历史,一些铁基粉末冶金制品的生产技术已经比较成熟。同时由于发展中国家的劳动力价格相对低廉,如果发展中国家掌握了铁基粉末冶金制品的生产技术和经营管理,发展中国家生产的铁基粉末冶金产品就会在国际市场具有很强的竞争力。当前,随着一些新兴工业化国家的崛起,形成了一些新兴的粉末冶金市场,世界铁基粉末冶金生产和市场的格局正在改变。为此,了解世界主要地区铁基粉末冶金行业的发展状况,研究铁基粉末冶金行业的技术创 新、经济技术交流和生产,有利于我国获得和利用相 关资源,从而增强我国铁基粉末冶金行业的竞争力。 1 近年欧洲、美国和日本铁基粉末冶金行业的发展和预测 粉末冶金生产用铁基粉末的货运量基本可以做为衡量铁基粉末冶金行业发展状况的标尺,表1中的统计数据大致反映了近年世界主要地区铁基粉末冶金行业的发展状况。 1999年-2007年美国粉末冶金生产用铁基粉末货运量的统计见表1。近年美国三大汽车公司汽

密度测量实验小结

密度测量实验小结 一、理解题目所给条件的含义 1、瞧清固体与液体 “液体”-----重点测质量(先后步骤影响精度) 缺器材利用水密度已知道的条件间接求体积“固体”-----重点测体积 2、瞧清固体大小: “小”石块、“小”木块等----可以用量筒、量杯测体积 “大”石块、“大”木块等----不可用量筒、量杯测体积,用烧杯溢水法测体积 3、瞧清固体形状 块状:规则---用尺子测量求体积 不规则---用排水、溢水、沉砂法等求体积 沙状、颗粒状---不溶于水,用排水、溢水、沉砂法等求体积 (注意排净气泡、注意器材感度) ---溶于水,换不溶解液体或沉砂法等求体积4、瞧清固体“溶不溶解” 溶于水-----不能用排水、溢水法,换细沙或不溶解的液体(煤油、汞等) 5、瞧清“吸不吸水”

吸水-----换细沙或饱与水后再放入水中 6、注意实验步骤影响测量结果 二、记牢典型物体密度测量步骤及准确描述 典型一:测小石块(小铁块,银元等)密度 分析:小石块---不规则、不溶于水(不特殊说明就就是不溶于水)、体积小、密度比水大 要得到密度,必须测出其质量与相应体积,质量---天平,体积---量筒、细线、水 器材:天平、被测小石块、量筒、水、细线

步骤:1、用调节好的天平测出小石块质量m; (说明:此步骤多与天平使用方法中的“放、拨、调、测、读”联考) 2、将适量水倒入量筒,读出体积v1; (说明:此步骤多与量筒读数考点相结合;还有可能考察“适量”的理解------既能确保小石块能完全没入水下,又不能使总体积超过最大量程) 3、用细线系好小石块,将其慢慢放入已盛有适量水的量筒中,读出体积v2; (说明:此步骤多量筒读数考点相结合;注意“细线的应用”、“慢慢”等,还有可能考察小石块表面有无气泡,若提到就回答“轻摇量筒,使气泡完全溢出”,再读数) 4、根据密度公式得到小石块密度ρ 典型二:测小塑料块( 分析:塑料块——不规则、密度小于水,体积小,需要把水换成细沙或者用小铁块沉到水里。 方法1——沉坠法 器材:天平 量筒 细线 小铁块 水 小塑料块 步骤:1、用调节好的天平测出塑料块的质量m 2、量筒中倒入适量的水,将小塑料块与小铁块用拴在一起(小铁块在下),先用手提塑料块上方的细线,只将小铁块浸没在量筒的水中,读出量筒的示数为V1 3、将拴好的小塑料块与小铁块一起浸入量筒的水中,读出量筒的示数为V2 4、根据密度公式得到小塑料块密度ρ ρ m V = m

粗集料松方密度及空隙率试验

二. 粗集料松方密度及空隙率试验 1.试验原理 粗集料的松方密度是指集料单位体积(包括物质颗粒固体及其闭口、开口孔隙和颗粒间空隙体积)物质颗粒的质量。 松方密度是计算粗集料空隙率的重要参数,它与表观密度的区别在于:测定的体积中包含了集料颗粒间的空隙体积,因此,松方密度是将集料填装在规定的容积筒中进行测定,根据粗集料颗粒在容积筒中排列的松紧程度不同,又包括堆积状态、振实状态和捣实状态下的三种松方密度。 2.试验目的 测定粗集料的松方密度,可以计算粗集料的空隙率,亦可计算粗集料的质量和数量。 3.主要仪具 (1)天平或台秤:感量不大于称量的0.1%。 (2)容量筒 (3)平头铁锹。 (4)烘箱:能使温度控制在105℃±5℃。 (5)振动台:频率为3000次/min±200次/min,负荷下的振幅为0.35mm,空载时的振幅为0.5mm。 (6)捣棒:直径16mm,长600mm,一端为圆头的钢棒。 4.试验方法

(1)采用四分法将试样缩分至满足试验要求的质量,在105℃±5℃的烘箱中烘干,也可以摊在清洁的地面上风干,拌匀后分成2份备用。 (2)堆积密度测定 取试样一份,置于平整干净的水泥地(或铁板)上,用平头铁锹铲起试样,从铁锹的齐口至容量筒上口的距离约为50mm左右,使石子自由落入容量筒内。装满容量筒,并除去凸出筒口表面的颗粒,并以合适的颗粒填入凹陷空隙,使表面稍凸起部分和凹陷部分的体积大致相等,称取试样和容量筒总质量(m2)。 (3)振实密度测定 按堆积密度的试验步骤,将装满试样的容量筒放在振动台上,振动3min,或者将试样分三层装入容量筒:装完一层后,在筒底垫放一根直径为25mm的圆钢筋,将筒按住,左右交替颠击地面各25下;然后装入第二层,用同样的方法颠实(但筒底所垫钢筋的方向应与第一层放置方向垂直);然后再装入第三层,如法颠实。待三层试样装填完毕后,加料填到试样超出容量筒口,用钢筋沿筒边缘滚转,刮下高出筒口的颗粒,用合适的颗粒填平凹处,使表面稍凸部分和凹陷部分的体积大致相等,称取试样和容量筒总质量(m2 )。 (4)捣实密度测定 将试样装入容量筒中达1/3的高度,由边至中用捣棒均匀地捣实25次。再向容量筒中装入1/3高度的试样,用捣棒均匀地捣实25次,捣实深度约至下层的表面。然后重复上一步骤,加最后一层,捣实25次,使集料与容量筒口齐平。用合适的集料填充表面的大空隙,用直尺大体刮平,目测估计表面凸起的部分与凹陷的部分的容积大致相等,称取容量筒与试样的总质量(m2)。

颗粒分析试验(密度计法)1

颗粒分析试验(密度计法) (一)概述 颗粒分析试验的目的是测定土中各种粒组含量占该土总质量的百分数,并据此绘制颗粒大小分配曲线。 密度计法适用于分析粒径小于0.075mm 的土样,若试样中含有大于0.075mm 的粒径时,应联合使用密度计法和筛析法。 (二)试验原理 密度计法是将一定质量的试样加入4%浓度的六偏磷酸钠10mL ,混合成1000mL 的悬液,并使悬液中的土粒均匀分布。此时悬液中不同大小的土粒下沉速度快慢不一。一方面根据斯笃克(Stokes, G .G , 1845)定律计算悬液中不同大小土粒的直径,另一方面用密度计测定其相应不同大小土粒质量的百分数。 1. 斯笃克定律 斯笃克研究了球体颗粒在悬液中下沉问题,认为不同球体颗粒在悬液中的下沉速度υ与它们直径大小d 有关,这种反映悬液中颗粒下沉速度和粒径关系的规律,称为斯笃克定律。按照这一定律,土颗粒在溶液中下沉时,较大的土粒首先下沉,经过某一时段t ,只有比某一粒径d 小的土粒仍然浮在悬液中,这些土粒在悬液中通过铅直距离L ,在时间t 内下沉速度υ为 2 w s 1800)(d t L η ρρυ-== t L G G d ?-= -=wo wT s w s )(1800)(18γηρρηυ 式中: η —纯水的动力粘滞系数,Pa·s (10-3); d —土颗粒粒径,mm ; ρ —土粒的密度,g/cm 3; G s —土粒的比重; w ρ—水的密度,g/cm 3; wo ρ—温度4℃时水的密度,g/cm 3;

wT G ——温度T ℃时水之比重; L —某一时间t 内土粒的沉降距离,cm ; t —沉降时间,s 。 为了简化计算,用图 1–1的斯氏列线图,便可求得粒径d 值。此时,悬液中在L 范围内所有土粒的直径都比算得的d 值小,而大于d 的土粒都下沉到比L 大的深度处。 图1–1 斯笃克列线图

密度测量实验报告

实验一、测固体的密度 姓名:班级: 一、实验目的:掌握测密度的一般方法 二、实验器材:托盘天平、滴管、细线、固体、烧杯、量筒、水 三、实验原理:ρ=m∕? 四、探究过程: 1、检查器材是否完全、完好 2、用天平测固体的质量 ①将天平放在水平桌面上 ②观察天平的最大量程 g,分度值 g ③取下保护圈 ④用镊子将游码归零 ⑤调节平衡螺母使天平衡量平衡 ⑥将物体轻放在左盘,估计被测物体质量,然后在右盘按由大到小的原则舔家砝码和移动游码使天平再次平衡 ⑦读出被测物体质量(注意游码读数) 3、向量筒内倒入适量水(1/2)以下,读出此时水的体积(视线齐平)并记录 4、用细线将物体拴好,轻放入量筒内,读出此时的总体积并记录;算出物体的 体积 5、利用公式ρ=m/v算出物体的密度 项目物体质 量 m/g 水的体积 V 1 /mL 物体和水的总体 积 V 2 /mL 物体的体积 V 3 /mL 物体的密度 ρ/(Kg/m3) 数据 6、实验完毕,整理器材保持桌面清洁 实验二测液体的密度 1. 主要器材:天平、量筒 2. 实验原理:ρ=m∕? 3、测量步骤: (1)在烧杯中装适量的未知液体放在调节好的天平上称出其质量m 1 ;( 2)将烧杯中的未知液体倒一些在量筒中测出其体积V; (3)将盛有剩下未知液体的烧杯放在天平上,测出它们的质量m 2 4、计算结果:根据得 项目烧杯和 水的总 质量 m 1 /g 倒入量筒 水的体积 V/mL 烧杯和剩余水的 总质量 m 2 /g 物体的密度 ρ/(Kg/m3)数据 5、实验完毕,整理器材保持桌面清洁 评分点操作考试内容满分 值1正确安装天平并调零。32物体和砝码放法正确。23用镊子取放砝码与移动游码。24量桶内倒入适量的水,水不溅出。记下刻度。2

粉料特性常见指标

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 粉料特性常见指标 粉料特性常见指标一.目数目数越大,说明物料粒度越细;目数越小,说明物料粒度越大。 筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以 1 英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为目数。 各国标准筛的规格不尽相同,常用的泰勒制是以每英寸长的孔数为筛号,称为目。 例如 100 目的筛子表示每英寸筛网上有 100 个筛孔。 二.粒度颗粒的大小。 通常球体颗粒的粒度用直径表示,立方体颗粒的粒度用边长表示。 对不规则的矿物颗粒,可将与矿物颗粒有相同行为的某一球体直径作为该颗粒的等效直径。 实验室常用的测定物料粒度组成的方法有筛析法、水析法和显微镜法。 ①筛析法,用于测定 250~0.038mm 的物料粒度。 实验室标准套筛的测定范围为 6~0.038mm;②水析法,以颗粒在水中的沉降速度确定颗粒的粒度,用于测定小于 0.074mm 物料的粒度;③显微镜法,能逐个测定颗粒的投影面积,以确定颗粒的粒度,光学显微镜的测定范围为 150~0.4m,电子显微镜的测定下限粒度可达 0.001m 或更小。 1 / 11

常用的粒度分析仪有激光粒度分析仪、超声粒度分析仪、消光法光学沉积仪及 X 射线沉积仪等。 三.差角休止角与崩溃角之差称为差角。 差角越大,粉体的流动性与喷流性越强。 d=休止角 r-崩溃角 f 四.均齐度用粒度测试仪测出 D60和 D10,用下式计算均齐度: 均齐度=D60/D10 五.压缩度同一试样的振实密度与松装密度之差与振实密度之比为压缩率。 压缩度越小,粉料流动性越好。 Cp=(pp-pa) /pp*100% 式中, Pp:振实密度 Pa: 松装密度六.休止角粉体堆积层的自由表面在静平衡状态下,与水平面形成的最大角度叫做休止角。 它是通过特定方式使粉体自然下落到特定平台上形成的。 休止角对粉料的流动性影响最大,休止角越小,粉料的流动性越好。 休止角也称安息角、自然坡度角等。 测定方法: (1)注入法: 微粒物料由漏斗流出落于平面上形成圆锥体,铝底角即为休止角。 (2)排出法:

11.1土颗粒分析(密度计法)

颗粒分析试验记录任务单 (密度计法) 委托编号 接受任务时间 任务发放人 任务接受人 工程名称 检验依据 □GB/T50123-1999 □JTG E40-2007 □其它 试样种类 检验项目 1.□ 颗粒分析 2. □不均匀系数 3. □曲率系数 样品状态 1.□符合要求 样品编号 2.□ 偏离 判定依据 颗粒分析试验(密度计法) 试验编号 检测地点 土工室 试验日期 检测环境 T= ℃ P= % 仪器设备编号 干土总质量(g) 含水率(%) 密度计号 量筒号 烧瓶号 土粒比重 含盐量(%) 湿土质量(g) 干土质量m d (g) 比重校正值 弯月面校正值 大于2mm 颗粒土质量百分数(%) 小于0.075mm 颗粒土质量百分数(%) T ℃时水的比重G wT 分散剂种类 20℃时纯水的密度ρw20(g/cm 3) 0.998232 4℃时水的密度ρwT (g/cm 3) 下降 时间 t(min) 悬液 温度 T (℃) 密度计测试结果 土粒 落距 L(cm) 土粒 粒径 d(mm) 小于某粒径的土质量百 分数 (%) 小于某粒径的总土质量百分数(%) 密度计 读 数 R 温 度 校正值 m t 分散剂校正值 C D R m =R +m t +n-C D R H = R m ×C G 0.5 1 5 15 30 60 120 240 1440 颗粒大小分布曲线: >2mm >0.075mm >0.005mm >0.002mm 含量(%) d 60= d 30= d 10= ==1060d d C u =?=10 6030 2d d d C c t L g G G d wT wT s ? -??= ρη)(1018004 定名 备注 检验校核 计算者 试验者

粉末冶金期末复习题-155

P/M 题库 填空题 1.工业上三大制粉方法分别是:雾化法、还原法、电解法。 2.粉末制备的唯一性提现在:用特殊方法才能制备获得特定性能的粉末。 3.金属氧化物还原法是应用最广的制取金属粉末的方法。 4.氧化物的ΔG-T图是以含1mol 氧的金属氧化物的生成反应的ΔG作直线而绘制成的。 5.ΔG-T关系线在相变温度处发生明显的转折。 6.金属氧化物还原,最常见的还原反应类型是:气-固多相反应。 7.[ 8.低温时反应过程由化学反应环节控制,高温时由扩散环节控制。 9.化学反应动力学一般分为均相反应动力学和多相反应动力学。 10.1atm的气压下,大于685°C Fe稳定存在;位于650°C-685°C FeO 稳定存在;小于 650°C Fe3O4稳定存在。 11.氧化钨存在的四种稳定形式:WO3、、、WO2。 12.H2还原氧化钨中W粉的长大机制为挥发—沉积。 13.电解法制粉的两种基本方法为:熔盐电解和水溶液电解。 14.电解法制备粉末,粉末的最大的特点为:结晶粉末的形状一般为树枝状。 15.影响二流雾化法的因素有:金属液体、雾化介质、装置设计。 16.% 17.粉末的化学成分主要指主要金属的含量、杂质的种类和含量。 18.粉末的物理性能包括:颗粒的形状与结构、颗粒的粒度与分布、颗粒的硬度、密度、电 热光学性能、熔点、比表面积。 19.以下制粉方法分别对应何种形状粉末,雾化法:球形粉末还原法:多孔粉末电解法: 树枝状粉末研磨法:片状粉末。 20.粉末体中的孔隙包括颗粒内孔隙和颗粒间孔隙。 21.以下粒径基准分布对应何种测量方法,几何学粒径:显微镜法、当量径:重力沉降光透 法、比表面积径:气体透过法、光透径:激光衍射法。 22.100目的粉末的粒度为:150微米。 23.粉末体中的孔隙包括一次孔隙、二次孔隙、拱桥效应孔隙。 24.影响压制过程中粉末位移的因素有:颗粒的显微硬度、润滑条件、粉末颗粒之间的摩擦、 粉末形状、粉末体间可填充的体积、颗粒表面粗糙度 25.& 26.颗粒变形的三种主要形式为:塑性变形、脆性断裂、弹性变形 27.实际粉末位移变形的复杂性体现在:不同粉末的位移,变形规律不同、位移与变形总是 同时发生、模压成形不能得到完全致密压坯 28.压制时的总压力可以分为:净压力和压力损失 29.减小模具的压力损失可以:添加润滑剂、提高模具硬度和光洁度、改善工艺技术采用双 面压制。 30.压胚密度随压制压力变化的三个阶段为:位移阶段、平衡阶段、颗粒变形阶段。 31.适用于硬质粉末或中等硬度粉末在中压范围内压坯密度的压制公式为:lgP_max-lgP=L (β-1)

粉末冶金是什么

粉末冶金是什么? 粉末冶金(Powder Metallurgy)是制取金属粉末,及采用成形和烧结工艺将金属粉末(或金属粉末与非金属粉末的混合物)制成材料和制品的工艺技术。它是冶金和材料科学的一个重要分支学科。 粉末冶金有历史 2500年前块炼铁锻造法制造铁器 20世纪初制取难熔金属。1909年制造电灯钨丝,推动了粉末冶金的发展;1923年粉末冶金硬质合金的出现被誉为机械加工中的革命。 30年代成功制取含油轴承。粉末冶金铁基机械零件的发展,充分发挥了粉末冶金少切削甚至无切削的优点。 40年代金属陶瓷、弥散强化等材料 60年代粉末冶金高速钢,粉末高温合金应用 80年代~ 汽车领域应用迅速发展 粉末冶金的特点 节材,节能 低环境污染 较好的尺寸精度 较好的表面状态 接近最终形状 降低产品制造成本 产品一致性好 特殊的多合金组织 多孔性组织 复杂的形状 适合大批量生产 经济性 节能:粉末成形所需压力远低于锻造、辊轧等传统制程;烧结温度又低于主成分熔点。故耗费之能源远低于铸造、机械加工等其它制程。 省材:粉末冶金法的材料利用率高达95%以上,远高于其它制程。例如机械加工法的材料利用率平均仅有40~50%之间。 省时:在自动化生产在线,成形一个生胚的时间可低至0.5秒;而每一成品所耗费的平均烧结时间亦可低至数秒钟。其时间成本远低于其它制程。 精度:粉末冶金产品的尺寸精度极高,在一般用途中,几乎无须后续加工 性质上 某些具有独特性质或显微组织的产品,除粉末冶金制程外,无法以其它制程获得。例如: 多孔材料:过滤器、含油轴承、透气钢等 复合材料:弥散强化或纤维强化复合材料 合金系统:大部分合金系统均有固溶限,超过此一限度,其铸造组织会产生共晶、共析、或金属间化合物等偏析现象,形成不均匀的组织结构;而某些元素间即使在熔融状态下也不互溶,故不可能以铸造法制造。粉末冶金法的特性却使其可轻易调配出任意比例且组织均匀的合金材质(因其制程中未达熔点)。 特殊性上

颗粒分析试验 密度计法

试验一、颗粒分析试验(密度计法) (一)概述 颗粒分析试验的目的是测定土中各种粒组含量占该土总质量的百分数,并据此绘制颗粒大小分配曲线。 密度计法适用于分析粒径小于0.075mm 的土样,若试样中含有大于0.075mm 的粒径时,应联合使用密度计法和筛析法。 (二)试验原理 密度计法是将一定质量的试样加入4%浓度的六偏磷酸钠10mL ,混合成1000mL 的悬液,并使悬液中的土粒均匀分布。此时悬液中不同大小的土粒下沉速度快慢不一。一方面根据斯笃克(Stokes, G.G, 1845)定律计算悬液中不同大小土粒的直径,另一方面用密度计测定其相应不同大小土粒质量的百分数。 1. 斯笃克定律 斯笃克研究了球体颗粒在悬液中下沉问题,认为不同球体颗粒在悬液中的下沉速度υ与它们直径大小d 有关,这种反映悬液中颗粒下沉速度和粒径关系的规律,称为斯笃克定律。按照这一定律,土颗粒在溶液中下沉时,较大的土粒首先下沉,经过某一时段t ,只有比某一粒径d 小的土粒仍然浮在悬液中,这些土粒在悬液中通过铅直距离L ,在时间t 内下沉速度υ为 或 t L G G d ?-=-= wo wT s w s )(1800)(18γηρρηυ ( 1–1) 式中 η ——纯水的动力粘滞系数,Pa·s(10-3); d ——土颗粒粒径,mm ; ρ——土粒的密度,g/cm 3 ; G s ——土粒的比重; w ρ——水的密度,g/cm 3 ; wo ρ——温度4℃时水的密度,g/cm 3 ; wT G ——温度T℃时水之比重; L ——某一时间t 内土粒的沉降距离,cm ; t ——沉降时间,s 。 为了简化计算,用图 1–1的斯氏列线图,便可求得粒径d 值。此时,悬液中在L 范围内所有土粒的直径都比算得的d 值小,而大于d 的土粒都下沉到比L 大的深度处。

粉体综合特性测试仪中振实密度的设定依据标准及测定方法

粉体综合特性测试仪中振实密度的设定依据标准及测定方法振实密度是涉及到粉末特性的很多工厂高校及其科研单位所必测的项目之一。 粉体密度是指单位体积的粉体所对应的质量。由于粉体中颗粒与颗粒之间或颗粒内部存在空隙(或孔隙),其粉体的密度通常小于所对应物质的真密度。粉体密度按其测试方式的不同可以分为松装密度(又称堆积密度)和振实密度。松装密度是指粉体试样以松散状态,均匀、连续的充满已知容积的量杯,称出量杯和粉体试样的质量,便可算出粉体试样的松装密度。振实密度:振实密度是指粉体装填在特定容器后,在一定条件下对容器进行振动,从而破坏粉体中的空隙,使粉体处于紧密填充状态后的密度,一般情况下粉体的振实密度小于粉体中单颗颗粒的真密度。 型粉体综合特性测试仪提供了美国标准(卡尔指数)中规定的振实密度测定方法和国家标准(金属粉末振实密度的测定)中规定的振实密度测定方法。并参照美国药典针对非金属粉末,粉体密度测试仪扩展了部分功能,如:“振动幅度”由国标中规定的扩展到~整数可调;“振动频率”由国标中规定得~次分钟可调,扩展到~次分钟可调。“振动次数”由国标中规定次扩展到~次任意设定(注:当设定为次时结果输出为“松装密度”)。 操作流程具体如下: 、设定振幅:本仪器振动组件的最大振幅为,仪器出厂时振幅已调整为。国标(金属粉末振实密度的测定)中规定振幅为,美国药典规定振幅为。您可以依据需要将附件中的、或启振垫适量加入到振实组件顶针与直线轴承间既可(如右图)。 振幅启振垫总高度 、振动组件的安装:型粉体综合特性测试仪配备了、、三种不同规格的量筒(见附件)。为了提高测试的精度,请依据被测粉体的重量()和松装密度(ρ)选择合适的量筒。

粉末冶金常识

粉末冶金常识 1.粉末冶金常识之什么是粉末冶金 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称"金属粉末")。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为"粉末冶金材料")或制品(称为"粉末冶金制品")。 2、粉末冶金常识之粉末冶金最突出的优点是什么 粉末冶金最突出的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造出合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高达95%以上,它还能在一些制品中以铁代,做到了"省材、节能"。 粉末冶金件 3、粉末冶金常识之什么是"铁基"什么是铁基粉末冶金 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3)消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物理性能主要包括那几项

粉体综合特性测试

粉体综合特性测试 一、实验目的 1、了解粉体基本特性。 2、掌握BT-1000粉体综合特性测试仪的使用方法。 二、实验仪器设备 BT-1000型离心沉降式粒度分布仪 三、实验原理 1)振实密度:振实密度是指粉体装填在特定容器后,对容器进行振动,从而破坏粉体中的空隙,使粉体处于紧密填充状态后的密度。通过测量振实密度可以知道粉体的流动性和空隙率等数据。(注:金属粉等特殊粉体的振实密度按相应的标准执行)。 2)松装密度:松装密度是指粉体在特定容器中处于自然充满状态后的密度。该指标对存储容器和包装袋的设计很重要。(注:金属粉等特殊粉体的松装密度按相应的标准执行)。 3)休止角:粉体堆积层的自由表面在静平衡状态下,与水平面形成的最大角度叫做休止角。它是通过特定方式使粉体自然下落到特定平台上形成的。休止角对分体的流动性影响最大,休止角越小,粉体的流动性越好。休止角也称安息角、自然坡度角等。 4)崩溃角:给测量休止角的堆积粉体以一定的冲击,使其表面崩溃后圆锥体的底角称为崩溃角。 5)平板角:将埋在粉体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)和平板之间的夹角与受到震动后的夹角的平均值称为平板角。在实际测量过程中,平板角是以平板提起后的角度和平板受到冲击后除掉不稳定粉体的角度的平均值来表示的。平板角越小,粉体的流动性越强。一般地,平板角大于休止角。 6)分散度:粉体在空气中分散的难易程度称为分散度。测量方法是将10克试样从一定高度落下后,测量接料盘外试样占试样总量的百分数。分散度与试样的分散性、漂浮性和飞溅性有关。如果分散度超过50%,说明该样品具有很强的飞溅倾向。 BT-1000型粉体特性测试仪测试项目包括粉体的振实密度、松装密度、安

粉末冶金的优缺点及其技术

粉末冶金的优缺点及其技术 粉末冶金工艺的优点: 1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。 2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。 3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。 4、粉末冶金法能保证材料成分配比的正确性和均匀性。 5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。 粉末冶金工艺的基本工序是: 1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。 2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。 3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。 4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

实验一基本长度测量密度测定实验

实验一:流体静力称衡法测定固体密度的测量 密度是物质的基本属性之一,每种物质具有确定的密度。密度与物质的纯度有关,工业上常通过对物质密度的测定来做成份分析和纯度鉴定。 【实验目的】 1.掌握游标卡尺、千分尺的读数原理。 2.了解物理夭平的构造,掌握物理夭平的调节与使用方法。 3.学会用游标卡尺、千分尺测量规则固体物体的密度。 4.学会用流体静力称衡法测量固体的密度。 5.理解不确定度及有效数字基本概念,用不确定度正确表示测量结果。 【实验器材】 游标卡尺、千分尺、物理大平、玻璃烧杯、细线、铝块、铜圆柱、铜圆管、钢球。 【实验原理】 一、用游标卡尺、千分尺测量规则固体物体的密度 若物体的质量为m、体积为V,密度为,则根据密度定义有 m 二一(4-1-1) V 可见只要测量了物体的质量和体积,就可确定其密度。物体的质量可由夭平测出,当待 测物体是规则的铜圆柱体时,可分别测出直径d和高度h,贝U体积为V d2h/4。因此, 该铜圆柱体的密度为 4m = 2(4-1-2) d2h 当待测物体是一圆管时,设其外径为D,内径为d,局度为h,质量为m ,则其笞度 公式为 4m (4-1-3) (D -d )h 当待测物体是小球时,设小球直径为D,则小球密度公式为 6m ,.、 -- 3 4-1-4 D 二、用流体静力称衡法测量固体物体的密度 根据阿基米德定律:浸没在液体中的物体要受到向上的浮力,浮力大小等于它排开的同

体积液体的重量。如果忽略空气的浮力,物体在空气中的重量W1 = m1g(m〔为物体的质量), 全部浸入水中的重量W2 = m2g( m2为物体在水中的表观质量),则物体在水中所受的浮力为W i -W2 (m i-m2)g,应等于同体积水的重量0Vg ,由此可得物体的体积 V (m i m2)/ 0,所以,该物体的密度为 m i ,」、 = -------- 0 (4-1-5) m1 - m2 【实验内容】 一、测量铜圆柱体的密度 1 .用千分尺测圆柱体的直径,在上、中、下各部分测量三次,将测量数据填入表4-1-1中,求出其平均值和不确定度。 2. 用游标卡尺测圆柱体高度,在不同方位测量 5次,将测量数据填入表4-1-2中,求出其平均值和不确定度。 3. 正确使用物理大平,称出圆柱体的质量m ° 4. 用式(4-1-2)算出铜圆柱体的密度。 5. 求出密度的不确定度和相对不确定度。 6. 正确表达测量结果。 表 表 二、测量圆管的密度 用游标卡尺测量圆管的外径D,内径d和高度h,要在不同部位各测量5次。用物理天平测量

土的颗粒分析试验

土的颗粒分析试验 第一节 筛析法 一、试验目的 测定小于某粒径的颗粒或粒组占砂土质量的百分数,以便了解土的粒度成分,并作为砂土分类及土工建筑选料的依据。 二、基本原理 筛析法是利用一套孔径不同的标准筛来分离一定量的砂土中与筛孔径相应的粒组,而后称量,计算各粒组的相对含量,确定砂土的粒度成分。此法适用于分离粒径大于的粒组。 三、仪器设备 1、标准筛一套(图1-1); 2、普通天平:称量500g ,最小分度值; 3、磁钵及橡皮头研棒; 4、毛刷、白纸、尺等。 四、操作步骤 1、制备土样 (1) 风干土样,将土样摊成薄层,在空气中放1~2天, 使土中水分蒸发。若土样已干, 则可直接使用。 (2) 若试样中有结块时,可将试样倒入磁钵中,用橡皮头研棒研磨,使结块成为单独颗粒为止。但须注意,研磨力度要合适,不能把颗粒研碎。 (3) 从准备好的土样中取代表性试样,数量如下: 最大粒径小于2mm 者,取100~300g ; 顶盖 2mm 1mm 底盘 1 2 3 取走 取走 4 图1-1标准筛 图1-2 四分法图解

最大粒径为2~10mm 之间的,取300~1000g ; 最大粒径为10~20mm 之间的,取1000~2000g ; 最大粒径为20~40mm 之间的,取2000~4000g ; 最大粒径大于40mm 者,取4000g 以上。 用四分法来选取试样,方法如下:将土样拌匀,倒在纸上成圆锥形(图, 然后用尺以圆锥顶点为中心,向一定方向旋转(图, 使圆锥成为1~2cm 厚的圆饼状。继而用尺划两条相互垂直的直线,把土样分成四等份,取走相同的两份(图、图, 将留下的两份土样拌匀;重复上述步骤,直到剩下的土样约等于需要量为止。 2、过筛及称量 (1) 用普通天平称取一定量的试样, 准确至; (2) 检查标准筛叠放顺序是否正确(大孔径在上,小孔径在下),筛孔是否干净,若夹有土粒,需刷净。将已称量的试样倒入顶层筛盘中,盖好盖,用手或摇筛机摇振,持续时间一般为10~15min, 然后按从上至下的顺序取下筛盘,在白纸上用手轻叩筛盘,摇晃,直到筛净为止。将漏在白纸上的土粒倒入下一层筛盘内,按此顺序,直到最末一层筛盘筛净为止。 (3) 称量留在各筛盘上的土粒质量,准确至, 并测量试样中最大颗粒的直径。若大于2mm 的颗粒超过50%,再用粗筛进行分析。 五、成果整理 1、某粒径的试样质量占试样总质量的百分比按下式计算,准确至小数后一位。 %100?= B A m m X (1-1) 式中,X 为小于某粒径的试样质量占试样总质量的百分比,%;m A 为小于某粒径的试样质量,g ;m B 为所取试样总质量,g 。 各筛盘上土粒的质量之和与筛前所称试样的质量之差不得大于1%,否则应重新试验。若两者差值小于1%, 应分析试验过程中误差产生的原因,分配给某些粒组;最终,各粒组百分含量之和应等于100%,将试验数据填写在记录表中。 2、查土类 若粒径小于的含量大于50% 则该土不是砂土,而是细粒土,将这一部分用密度计法(见第二节)继续分析。 3、在单对数坐标上绘制颗粒大小分布曲线,求不均匀系数u C 和曲率系数C C ,说明该土的均一性,并确定土的名称。 4、填写试验报告。 六、注意事项

粉末冶金原理习题库

粉末制备习题 * 粉末冶金产品在汽车工业中有许多用途,请列举三种汽车用粉末冶金产品。 * 有什么方法可以取代粉末冶金技术制备钨灯丝,为什么电熔断器中不采用钨灯丝材料。 * 粉末冶金一度称为金属陶瓷( Metal ceiamics) ,是什么工序类似于陶瓷产品制备。 * 粉末冶金与陶瓷的主要差别是什么?这些差别是如何影响过程的。 * 粉末冶金的定义是什么? * 粉末冶金的工程含义是什么? * 减少加工成本是粉末冶金产品过程的重要方面,要求减少模具结构误差,以确保产品尺寸精度与性能,在什么步骤上有利于减少产品加工成本(净静成形技术) * 金属基复合材料,如 SiC 纤维强化铝合金,是粉末冶金应用的领域,你能说明复合材料制备方法吗? * 在水雾化制粉时,怎样获得球形颗粒。 * 雾化青铜粉末经气流研磨成碟状。 ①如何测试该碟状粉末的粒度。 ②改变碟状粉末厚度的方法。 ③哪些工艺参数有助于获得碟状粉末。 * 用气体雾化制备合金粉末,雾化融液金属温度略高于液相线,对于粒径为100μm的颗粒,固化时间为0.04s,估算在同样条件下10μm粒径粉末颗粒的固化时间。 * 采用水平雾化时,发现所得粉末颗粒太小,不适合后续的工序,建议改变三个过程参数以增大粒径。 * 在气体雾化时,如果颗粒尺寸随融体粘度增加而增大,粒度对颗粒形状会有何种作用?高的过热温度会有利于形成球形颗粒吗? * 离心雾化粉末通常有双峰形粒度分布曲线,讨论产生这种结果的原因。 * 分别用水雾化,气体雾化和还原方法制备Cμ粉(理论密度=8.9g/cm3),测试指数如下: 性能 A B C 平均粒度μm 48 25 40 松装密度g/cm3 2.8 1.7 4.4

粉末冶金材料与相应致密材料的异同

1.论述粉末冶金材料与相应致密材料有什么不同? 粉末冶金材料是指通过粉末冶金的方法得到的材料。粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术[1]。粉末冶金技术具有显著节能、省材、性能优异、产品精度高且稳定性好等一系列优点,适合于大批量生产。此外,部分用传统铸造方法和机械加工方法无法制备的材料和难以加工的零件也可用粉末冶金技术来制备,故而备受工业界的重视[2]。 粉末冶金最多可以达到99%左右的理论密度。关于烧结材料与致密材料的区别,可以分为韧性材料和脆性材料来说[3]。一般而言韧性材料粉末冶金后的性能很难达到致密材料,因为那不到1%的孔隙率足够恶化性能了。但是如果是脆性材料,可以通过粉末冶金大大细化晶粒,使得材料获得晶界强化,韧性反而提高。 在粉末冶金材料中,存在大量的晶间裂纹,由于材料细观结构的复杂性、微裂纹相互作用的影响及损伤材料的各向异性性质,使得类似的脆性或拟脆性材料的宏、细观损伤研究变得十分困难[4]。粉末冶金材料往往要经历一定的热循环载荷.而在室温下表现为脆性断裂的粉末冶金材料在高温时塑性明显增加,可能在某一段温度下会形成脆性断裂向韧性断裂转变,而随着温度的降低材料的破坏模式又会由韧性断裂转变为脆性断裂,同时不同应力约束状态下材料本身也存在韧脆转变,而材料的损伤是一个逐渐积累的过程,必须对其韧脆损伤进行统一描述[5]。 有些粉末冶金复合材料无论是在冲击压缩还是冲击扭转下其变形强化行为都具有颗粒尺寸效应,即增强颗粒越小,强化效果越好。在冲击扭转形成的简单热剪切变形局部化同样具有增强颗粒尺寸依赖效应,具体表现为:增强颗粒越小,材料越易出现绝热剪切变形局部化[6]。增强颗粒尺寸越小,在复合材料基体中诱导的应变梯度越高。例如碳化硅颗粒增强铝基复合材料。 粉末在烧结过程中要发生体积收缩、密度提高和气孔率减少等现象。在整个烧结过程中,在不同温度下铁氧体坯件的变化规律是不同的。总的来说可以这样描述:在烧结开始,随着烧结时温度的升高,坯件内的水分、粘合剂和某些杂质因升温而被排除,颗粒开始有点接触,但孔隙还很多而且分散并相互贯通,坯件的体积收缩、致密度以及强度都不会出现明显的变化[7]。随着温度的继续升高,

相关主题
文本预览
相关文档 最新文档