立体几何中探索性问题的求解策略
- 格式:docx
- 大小:815.12 KB
- 文档页数:6
浅析立体几何中的探索性问题江苏省泗阳中学 张 涛 (223700)立体几何的探索性问题在近几年高考中经常出现,这种题型有利于考查学生的归纳、判断等各方面的能力,也有利于创新意识的培养,因此应注意高考中立几探索性命题的考查趋势。
立体几何探索性命题的类型主要有:一、探索条件,即探索能使结论成立的条件是什么;二、探索结论,即在给定的条件下命题的结论是什么。
一、对命题条件的探索对命题条件的探索常采用以下三种方法:1、先猜后证,即先观察与尝试给出条件再给出证明。
2、先通过命题成立的必要条件探索出命题成立的条件,再证明充分性。
3、把几何问题转化为代数问题,探索出命题成立的条件。
例1:四棱锥P-ABCD 的底面是矩形,侧面PAD 是正三角形,且侧面PAD ⊥底面ABCD ,当ABAD的值等于多少时,能使PB ⊥AC ?并给出证明。
解法一:取AD 中点F∵PF ⊥AD ,面PAD ⊥面ABCD∴PF ⊥面ABCD 连结BF 则若PB ⊥AC ,则AC ⊥BF 设AD=x, AB=y ∵∠FOA=90° ∴在ΔAOF 中,AF=2x AO=2231y x +,FO=22)2(31y x + 根据题意AF 2=AO 2+FO 2 代入可得2=yx,若AB AD =2容易证得FB ⊥AC由三垂线定理可证得PB ⊥AC.解法二:如图,建立坐标系,设AD=2,PF=3,AB=x ,A 点坐标为(0,―1, 0),C 点坐标为(x,1,0),P 点坐标(0, 0,3),B 点坐标为(x,―1, 0),=(x,―1,―3),=(x, 2, 0)CBD APFy∵PB ⊥AC ∴·=0 即x 2―2=0 ∴x=2 ∴ABAD=2 解题回顾:这类题通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件。
⑵找出命题成立的必要条件,也证明充分性。
例2:在三棱锥A-BCD 中,AB ,BC ,CD 两两垂直,若AD 与平面BCD 所成的角为α,AD 与平面ABC 所成角为β,且AD=6,则当α=30°,β为何值时,三棱锥A-BCD 的体积最大,最大值是多少?解:∵V A-BCD =31AB ·S ΔBCDAB ⊥面BCD ∴∠ADB=30° 又∵DC ⊥面ABC∴∠=DAC=β,则AB=3,CD=ADsin β=6sin β AC=ADcos β=6cos β ∴BC=223)cos 6(-β∴V A-BCD =31×3×21×6sin β=)1cos 4(sin 42922-⋅ββ≤42721cos 4sin 42922=-+⋅ββ当4sin 2β=4cos 2β―1 即β=arcsin46时,三棱锥A-BCD 体积取得最大值827.解题回顾:在探索几何极值问题中,常把要求的几何量当成自变量,然后列出目标函数,再求出要求的几何量。
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1AC ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC , 又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EFDF F =,1ABA C A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB ,11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2),1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2), 设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB =1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1AO ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1AO A C O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO A O BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A A C O =,得1AO ⊥底面ABCD , 所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0),(0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-, 由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>=⨯, 解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1AC ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC ,又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EF DF F =,1ABA C A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2n t=,平面CBF的一个法向量21(,0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=,解得0x=,2y t=,∴1(0,2n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(,0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC ==12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a ,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴,OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(BA =-,12(A D =0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D x y ⎧=-+=⎪⎨==⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =, 02a a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BD =AD BD ∴⊥,1AA ⊥平面ABC ,1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点,BD CD =,1//AC DE ∴, 又1AC ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=故三棱锥11A A B D - 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC ==所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-,(3,0)AE λ=,1(0,1,1)AD =⋯(7分) 设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ=,即1CE =(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M ,G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF-,此时DE的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD-中,90ABC BAD∠=∠=︒,112AD AB BC===,PD⊥平面ABCD,PD=M为PC上的动点.(Ⅰ)当M为PC的中点时,在棱PB上是否存在点N,使得//MN平面PDA?说明理由;(Ⅰ)BDM∆的面积最小时,求三棱锥M BCD-的体积.【分析】(Ⅰ)当N为PB中点时,//MN平面PDA.取PB的中点N,连接MN,由M,N分别为PC,PB中点,可得//MN BC,又//BC AD,得//MN AD,再由直线与平面平行的判定对立即可证明//MN平面PDA;(Ⅰ)由PD⊥平面ABCD,DB⊂平面ABCD,知PD BD⊥,又BD CD⊥,CD PD D=,得BD⊥平面PCD,又M D⊂平面PDC,可得BD M D⊥,进一步得到DBM∆为直角三角形,当MD PC⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD-的体积.【解答】解:(Ⅰ)当N为PB中点时,//MN平面PDA.证明如下:取PB的中点N,连接MN,M,N分别为PC,PB中点,//MN BC∴,又//BC AD,//MN AD∴,又DA⊂平面PDA,MN⊂/平面PDA,//MN∴平面PDA;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又M D ⊂平面PDC ,BD M D ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴=在Rt PDC ∆中,由PD =CD =可得PC =MD =则CM =12MCD S ∆∴==.∴1133M BCD B MCD MCD V V S BD --∆===⨯8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a . 【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1ACAA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCAC C =, 1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4),1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4), 设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221|||332216n a ==++. 解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得//MC平面PBD?说明理由.【分析】(1)通过证明CD AD⊥,证明CM⊥平面AMD,然后证明平面AMD⊥平面BMC;⊥,CD DM(2)存在P是AM的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD所在平面与半圆弦CD所在平面垂直,所以AD⊥半圆弦CD所在平面,CM⊂半圆弦CD所在平面,∴⊥,CM ADM是CD上异于C,D的点.CM DM∴⊥,DM AD D∴⊥平面AMD,CM⊂平面CMB,=,CM∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得//MC OP,MC⊂/平面BDP,OP⊂平面BDP,所以//MC平面PBD.。
【高考地位】探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.【方法点评】方法一直接法使用情景:立体几何中的探索问题解题模板:第一步首先假设求解的结果存在,寻找使这个结论成立的充分条件;第二步然后运用方程的思想或向量的方法转化为代数的问题解决;第三步得出结论,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在..例1.【2018河南漯河市高级中学第三次模拟】如图,AB为圆AB EF,矩形ABCD所在的平面和O的直径,点,E F在圆O上,且//圆O所在的平面垂直,且1,2====.AD EF AF AB(1)求证:平面AFC⊥平面CBF;(2)在线段CF上是否存在了点M,使得//OM平面ADF?并说明理由.【变式演练1】如图,三棱柱111ABC A B C -中,底面ABC 为正三角形, 1AA ⊥底面ABC ,且13AA AB ==, D 是BC 的中点.(1)求证: 1//A B 平面1ADC ;(2)求证:平面1ADC ⊥平面1DCC ;(3)在侧棱1CC 上是否存在一点E ,使得三棱锥C ADE -的体积是98?若存在,求出CE 的长;若不存在,说明理由.(2)∵底面为正三角形,是的中点,∴AD CD ⊥, ∵ 平面,平面, ∴。
∵, ∴ 平面,∵ 平面,∴平面平面.(3)假设在侧棱上存在一点,使三棱锥的体积是。
2022年新高考数学总复习:立体几何中的探索性问题例(2021·陕西省西安中学模拟)如图所示,四棱锥P -ABCD 中,底面ABCD 为菱形,且PA ⊥平面ABCD ,∠ABC =60°,E 是BC 中点,F 是PC 上的点.(1)求证:平面AEF ⊥平面PAD ;(2)若M 是PD 的中点,当AB =AP 时,是否存在点F ,使直线EM 与平面AEF 的所成角的正弦值为15?若存在,请求出PF PC的值;若不存在,请说明理由.【分析】①利用面面垂直的判定定理,证AE ⊥平面PAD 或证AD ⊥平面AEF 即可;②建立空间直角坐标系,假设符合条件的点F 存在,且PF →=λPC →,利用向量法求解λ回答.【标准答案】——规范答题步步得分(1)连接AC ,因为底面ABCD 为菱形,∠ABC =60°,所以△ABC 是正三角形,∵E 是BC 的中点,∴AE ⊥BC ,又AD ∥BC ,∴AE ⊥AD ,∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA ⊥AE ,又PA ∩AD =A ,∴AE ⊥平面PAD ,又AE ⊂平面AEF ,所以平面AEF ⊥平面PAD .(2)又PA ⊥AD ,∴PA 、AE 、AD 两两垂直,以A 为坐标原点建立如图所示空间直角坐标系,不妨设AB =AP =2,则AE =3,则A (0,0,0),C (3,1,0),D (0,2,0),P (0,0,2),E (3,0,0),M (0,1,1),7分得分点⑦设PF →=λPC →=λ(3,1,-2),0≤λ≤1,则AF →=AP →+PF →=(0,0,2)+λ(3,1,-2)=(3λ,λ,2-2λ),又AE →=(3,0,0),设n =(x ,y ,z )是平面AEF 的一个法向量,n ·AE →=3x =0n ·AF →=3λx +λy +(2-2λ)z =0,取z =λ,得n =(0,2λ-2,λ),设直线EM 与平面AEF 所成角为θ,由EM →=(-3,1,1),得:sin θ=|cos 〈EM →,n 〉|=|EM →·n ||EM →|·|n |=|3λ-2|5·(2λ-2)2+λ2=15.化简得:10λ2-13λ+4=0,解得λ=12或λ=45,故存在点F 满足题意,此时PF PC 为12或45.【评分细则】①证出△ABC 是正三角形得1分.②证出AE ⊥AD 得1分.③由线面垂直性质证出PA ⊥AE 得1分,不写AE ⊂平面ABCD 不得分.④由线面垂直的判定证出AE ⊥平面PAD 得1分.⑤证出平面AEF ⊥平面PAD 得1分,条件不全不得分.⑥建出空间直角坐标系得1分.⑦设出PF →=λPC →得1分.⑧求出平面AEF 的法向量得3分,算错但写出AE →,AF →坐标得1分.⑨求出λ得2分,算错但写出sin θ=|cos 〈EM →,n 〉|=|EM →·n ||EM →||n |得1分.⑩得出正确结论得1分.【名师点评】1.核心素养:本题考查线面的位置关系及线面角,考查学生转化与化归的思想,考查的核心素养是逻辑推理、直观想象、数学运算.2.解题技巧:(1)写全得分步骤:对于解题过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写,如第(1)问中AE ⊂平面ABCD .(2)写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在解答时一定要写清得分关键点,如第(2)问中空间直角坐标系的建立;再如AF →=AP →+PF →等.(3)思维发散:也可通过证AD ⊥PA 、AD ⊥AE 证得AD ⊥平面AEF ,进而证得平面AEF ⊥平面PAD .〔变式训练4〕(2021·陕西省质检)如图所示,等腰梯形ABCD 的底角∠BAD =∠ADC =60°,直角梯形ADEF 所在的平面垂直于平面ABCD ,且∠EDA =90°,ED =AD =2AF =2AB =2.(1)证明:平面ABE ⊥平面EBD ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MAB 与平面ECD 所成的锐二面角的余弦值为34.[解析](1)证明:∵平面ABCD ⊥平面ADEF ,平面ABCD ∩平面ADEF =AD ,ED ⊥AD ,∴ED ⊥平面ABCD ,AB ⊂平面ABCD ,∴ED ⊥AB ,∵AB =1,AD =2,∠BAD =60°,∴BD =1+4-2×1×2cos 60°=3,∴AB 2+BD 2=AD 2,∴AB ⊥BD ,又∴BD ⊂平面BDE ,BD ∩ED =D ,AB ⊥平面BDE ,AB ⊂平面ABE ,∴平面ABE ⊥平面EBD .(2)以B 为坐标原点,以BA ,BD 为x 轴,y 轴建立如图所示的空间直角坐标系B -xyz ,则A (1,0,0),B (0,0,0),-12,32,D (0,3,0),E (0,3,2),F (1,0,1),则CD →,32,DE →=(0,0,2),BA →=(1,0,0),EF →=(1,-3,-1),设EM →=λEF →=(λ,-3λ,-λ),(0≤λ≤1),则BM →=BE →+EM →=(λ,3-3λ,2-λ),设平面CDE 的法向量为m =(x 1,y 1,z 1),平面ABM 的法向量为n =(x 2,y 2,z 2),·CD →=12x 1+32y 1=0,·DE →=2z 1=0,1=-3y 1,1=0,不妨取y 1=1,则m =(-3,1,0),·BA →=x 2=0,·BM →=λx 2+(3-3λ)y 2+(2-λ)z 2=0不妨取y 2=2-λ,则n =(0,2-λ,3λ-3),∴|cos θ|=|m ·n ||m |·|n |=|2-λ|24λ2-10λ+7=34,即λ=12或λ=54(舍),即点M 为线段EF 的中点时,平面MAB 与平面ECD 所成的锐二面角的余弦值为34.。
立体几何中的探索性问题作者:桂晓宇来源:《数学金刊·高考版》2013年第12期重点难点立体几何的计算和证明常常涉及两大问题:一是位置关系,它主要包括线线垂直、线面垂直、线线平行、线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等.方法突破一、与平行有关的探索性问题对线面平行问题的向量解法,有两种思路:(1)用共面向量定理,证明直线的方向向量能用平面内两条相交直线的方向向量表示出来,即这三个向量共面,根据共面向量定理及直线在平面外,可得线面平行;(2)求出平面的法向量,然后证明平面的法向量与直线的方向向量垂直即可.对面面平行问题的向量解法,有两种思路:(1)利用向量证明一个平面内两条相交直线分别与另一个平面平行,根据面面平行的判定定理即得;(2)分别求出两个平面的法向量,若能证明这两个法向量平行,则这两个平面就平行.二、与垂直有关的探索性问题对坐标系易建立的空间线面垂直问题,通常用向量法. 先求出平面的法向量和直线的方向向量,证明平面的法向量与直线的方向向量平行或者直接用向量法证明直线与平面内两条相交直线垂直,再运用线面垂直的判定定理即可.三、与角有关的探索性问题利用向量知识求线线角、线面角、二面角的大小的方法.四、与距离有关的探索性问题如图1,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形. 平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;思索空间中的线线、线面、面面垂直问题都可以转化为两向量的垂直问题来解决,使几何问题代数化,降低思维的难度. 立体几何中的点的位置的探求经常借助于空间向量,引入参数,综合已知和结论列出等式,解出参数. 这是立体几何中的点的位置的探求的常用方法.破解(1)略.(2)因为AB=3,AC=4,BC=5,所以AB⊥AC,所以AB,AC,AA1两两垂直. 以A为原点,分别以AC,AB,AA1为x,y,z轴建立空间直角坐标系(如图2).。
探索性问题的解决策略扬州大学附属中学 何继刚数学问题由条件、解题依据、解题方法和结论这四个要素组成,这四个要素中有两个是未知的数学问题称为探索性问题。
条件不完备和结论不确定是探索性问题的基本特征。
解决探索性问题,对观察、联想、类比、猜测、抽象、概括诸方面的能力有较高要求。
高考题中一般对这类问题有如下思考方法:(1)直接法;(2)观察—猜测—证明;(3)赋值法;(4)数形结合;(5)联想类比;(6)从特殊到一般;(7)从特殊到一般再到特殊;(8)等价转化。
(一)解决条件追溯型问题的主要策略条件追溯型问题是针对一个结论,条件未知尚需探究,或条件增删尚需确定,或条件正误尚需判断。
解决这类问题的基本策略是执果索因,先寻找结论成立的必要条件,再通过检验或论证找到结论成立的充分条件。
例1 当[]1,0∈x 时,不等式()()0sin 11cos 22>-+--θθx x x x 恒成立吗?若恒成立,请给出证明。
若不恒成立,请简述理由,并求出该不等式恒成立的条件。
解法1 反例:当2πθ=时,该不等式不恒成立。
若该不等式恒成立,令x=0, x=1, 由已知条件可知0cos ,0sin >>θθ,设()()θθsin 11cos )(22x x x x x f -+--=θθθθsin )sin 21()sin cos 1(2++-++=x x()()θθθθθθθθθsin cos 14sin 21sin sin 2cos 22sin 21)sin cos 1(22+++-+⎪⎭⎫⎝⎛+++-++=x 由0cos ,0sin >>θθ 可知1sin 2cos 22sin 210,0sin cos 1<+++<>++θθθθθ结合原不等式对任意[]1,0∈x 恒成立可知()⎪⎪⎩⎪⎪⎨⎧>+++-=>>0)sin cos 1(4sin 21sin )(0cos 0sin 2min θθθθθθx f 可得212sin >θ 所以)(1252122Z k k k ∈+<<+ππθππ解法2 反例同上。
龙源期刊网
难点攻略:立体几何中的探索性问题
作者:朱建霞
来源:《数学金刊·高考版》2014年第12期
1. 与平行有关的探索性问题
对线面平行问题的解法,有两种思路:(1)传统方法:利用线面平行的判定定理或面面平行的性质定理解决.(2)向量法:①用共面向量定理(对不易建立坐标系的问题):证明直线的方向向量能用平面内的两条相交直线的方向向量表示出来,即这三个向量共面,根据共面向量定理可得线面平行.②空间向量的坐标运算(易建立坐标系的问题):求出平面的法向量,然后证明平面的法向量与直线的方向向量垂直.
对面面平行问题的解法,有两种思路:(1)传统方法:利用面面平行的判定定理或线面垂直的性质( l⊥α,l⊥β?圯α∥β)解决.(2)向量法:①利用向量证明一个平面内的两条相交直线分别与另一个平面平行.②空间向量的坐标运算(易建立坐标系的问题):分别求出两个平面的法向量,然后证明这两个法向量平行,则这两个平面平行.
2. 与垂直有关的探索性问题
对立体几何中的垂直问题的解法,有两种思路:(1)传统方法:利用线面垂直的判定与性质定理、面面平行的判定与性质定理解决垂直问题.(2)对坐标系易建立的垂直问题,a向量和平面的法向量,结合线面垂直、面面垂直的判定只需证明直线的方向向量与平面的法向量之间的平行与垂直可得线面垂直、面面垂直.
3. 与角有关的探索性问题。
立体几何中探索性问题的求解策略作者:刘卫东
来源:《新高考·高三数学》2018年第02期
在立体几何试题中,探索性问题是一种具有开放性和发散性的问题,是高中数学最难掌握的一类问题,它既能突出以能力立意为核心的命题原则,又能开发学生的思维和解决问题的能力.一般情况下探索性问题主要是针对平行、垂直关系以及二面角的探索,对条件和结论不完备的开放性问题的探究,解决这类问题一般是根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定结论,立体几何中的探索性问题主要包括以下三类:条件追溯型、存在判断型、结论探索型,本文通过探索性问题一题多解的方法来阐述解题策略,使学生的解题能力有所提升.探索性问题的求解步骤为:
第一步,写出探索的最后结论;
第二步,证明探求结论的正确性;
第三步,给出明确的答案;
第四步,反思回顾,查看关键点、易错点和答题的规范性、完备性.
当然也可以按类似分析法的格式书写步骤:从结论出发“要使……成立”“只需使……成立”.下面我们来看具体的例题.例如图1,在三棱柱ABC-A1B1c1中,AA1⊥平面ABC,E在线段
B1C1上,B1E=2EC1,BC=1,AC=CC1=2,AB1=3.
(l)求证:BC⊥AC;
(2)探究:在AC上是否存在点F,满足EF∥平面A1ABB1?若存在,请指出点F的位置,并给出证明;若不存在,请说明理由.
由AA1⊥平面ABC⇒BC⊥AA1,进而证明BC⊥平面AA1C1C得到结果.
(2)信息提取:B1E=2EC1,
F在线段AC上,满足EF∥平面A1ABB1.
破题思路:技巧一假设存在,利用空间向量进行计算得到点的坐标,达到题目所要求的结果,但要注意直线平行于平面必须是直线的方向向量与平面的法向量垂直.(空间向量解决问题的优点是利用向量计算得到所要的结果,但是它的缺点是要求准确地找到坐标以及准确的运算,否则就会前功尽弃)
技巧二假设存在,由E是B1C1靠近C1的三等分点,猜想F可能是AC且靠近C的三等分点,通过假设确定F的位置,即取AF=2FC,再证明EF∥AM.(给中点找中点,给等分点找等分点,利用等分点之间比例得到直线与直线平行)
技巧三假设存在,通过假设确定F的位置,即AF =2FC,BN=2NC,再证明平面EFN∥平面AA1B1B.(要得到直线与平面平行,可以通过平面与平面平行得到)
所以点F在靠近C的三等分点处.
策略二:线平行于面,可以通过线平行于线得到,线平行于线最常见的方法是三角形的中位线平行、平行四边形的对边平行.(其中解题技巧要牢记:给中点找中点,即三角形的中位线;给等分点找等分点,利用等分点之间线段成比例,得到线线平行)
审题视角在A1B1上取点M使B1M=2A1M,由B1E=2C1E得EM∥A1c1且EM=2/3A1C1(或直接作EM∥A1C1交A1B1于M),连结AM,推导出四边形EFAM是平行四边形,从而EF∥AM,由此能证明EF∥平面A1B1BA.
解答过程当AF=2FC时,EF∥平面A1ABB1.
理由如下:在平面A1B1C1内,过E作EM∥A1C1交A1B1于点M.
因为B1E=2EC1,EM∥A1C1,
所以ME=2/3A1C1
因为AC =A1C1,AC∥A1C1,
所以ME=2/3AC, ME∥AC.
又因为AF =2/3AC,
所以ME=AF,ME∥AF.
所以四边形AFEM为平行四边形.
所以EF∥AM.
因为AM⊂平面AA1B1B,EF⊄平面AA1B1B,
所以EF∥平面AA1B1B.
策略三:線平行于面,可以通过面面平行得到,利用两平面平行,其中一个平面内的线平行于另一个平面即可证得.
审题视角过E作EN∥BB1交BC于N,连结FN,可得EN∥平面A1ABB1,再证FN∥平面A1ABB1,得到平面EFN∥平面A1ABB1,则有EF∥平面AA1B1B.
解答过程当AF=2FC时,EF∥平面A1ABB1.
理由如下:在平面BB1C1C内,过E作EN∥BB1交BC于N,连结FN.
由EN∥BB1,BB1⊂平面AA1B1B,EN⊄平面AA1B1B,
则有EN∥平面AA1B1B.
因为EN∥BB1,B1E =2EC1,
所以BN=2CN.
又因为AF=2FC
所以FN∥AB.
因为AB⊂平面AA1B1B,FN⊄平面AA1B1B,
所以FN∥平面AA1B1B.
又因为FN∩EN =N,
所以平面EFN∥平面AA1B1B.
因为EF⊂平面EFN,
所以EF∥平面AA1B1B.
解题反思
本题求解时常出现的四种错误:
一是对探索性问题的求解思路不明;二是在证明平行关系时,线面关系表示不清;三是线面平行中会丢掉线在面内、线在面外的表达语句;四是利用空间向量解决问题时,求直线方向向量和平面法向量的运算一定要准确无误,否则可能会导致结论错误,
立体几何中的探索性问题是一种具有开放性和发散性的问题,有利于培养同学们探索、分析、归纳、判断、证明与实践等方面的能力,使大家经历一个发现问题、研究问题、解决问题的全过程,其类型多样,解法灵活多变,本文通过立体几何中的探索性问题的解题策略,谈了一些自己的看法,希望对同学们有所帮助.。