《数字信号处理》课程 实验报告
- 格式:doc
- 大小:1.64 MB
- 文档页数:30
数字信号处理》实验报告年级:2011 级班级:信通 4班姓名:朱明贵学号:111100443 老师:李娟福州大学2013 年11 月实验一快速傅里叶变换(FFT)及其应用一、实验目的1. 在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB^的有关函数。
2. 熟悉应用FFT对典型信号进行频谱分析的方法。
3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
4. 熟悉应用FFT实现两个序列的线性卷积和相关的方法。
二、实验类型演示型三、实验仪器装有MATLA爵言的计算机四、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:JV-1 $生反变换为:如-器冃吋科—有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。
FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。
它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。
常用的FFT 是以2为基数的,其长度A - o它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。
(一)在运用DFT进行频谱分析的过程中可能的产生三种误差1 .混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
数字信号处理第二次实验报告学院:信息工程学院班级:2012级电子信息工程*班姓名:学号:20125507**指导老师:实验四:IIR数字滤波器设计及软件实现一、实验目的1、熟悉双线性变换设计IIR滤波器的原理与方法2、掌握IIR滤波器的MATLAB实现方法二、实验原理简述IIR数字滤波器间接法基本设计过程:1、将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;2、设计过渡模拟滤波器;3、将过渡模拟滤波器系统函数转换成数字滤波器的系统函数三、程序与图形1、%-----------------信号产生函数mstg---------------function st=mstg %功能函数的写法%产生信号序列向量st,并显示st的时域波形和频谱%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600N=1600 %N为信号st的长度。
Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号st=xt1+xt2+xt3; %三路调幅信号相加fxt=fft(st,N); %计算信号st的频谱%-------绘制st的时域波形和幅频特性曲线-----subplot(2,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(2,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')-10123t/ss (t )(b) s(t)的频谱f/Hz幅度2、%-------实验4-2--------- clear all;close allFs=10000;T=1/Fs; %采样频率%调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;fp=280;fs=450; %下面wp,ws,为fp,fs 的归一化值范围为0-1wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A);y1t=filter(B,A,st); %滤波器软件实现 figure(2);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y1t)-1)*T; plot(t,y1t);%axis([0,1,-80,0])-10123t/ss (t )(b) s(t)的频谱f/Hz幅度-80-60-40-20000.020.040.060.080.10.120.140.16-1-0.500.511.53、%-------实验4-3---------fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y2t=filter(B,A,st);figure(3);subplot(2,1,1);plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y2t)-1)*T; plot(t,y2t);00.20.40.60.81-80-60-40-20000.020.040.060.080.10.120.140.16-2-10124、%-------实验4-4--------- fp=900;fs=550;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs);%调用ellipord 算椭圆DF 阶数N 通带截止频率 [B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y3t=filter(B,A,st);figure(4);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y3t)-1)*T; plot(t,y3t);-80-60-40-20000.020.040.060.080.10.120.140.16-2-1012四、实验结果分析由图可见,三个分离滤波器指标参数选取正确,损耗函数曲线达到所给指标。
实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。
其延拓周期为采样角频率(T /2π=Ω)。
只有满足采样定理时,才不会发生频率混叠失真。
在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。
公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。
为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
长春理工大学电工电子实验教学中心学生实验报告2014 —— 2015 学年第一学期实验课程数字信号处理实验实验地点东1教学楼414实验室学院电子信息工程学院专业通信工程学号120421101姓名杨杰2、 同实验任务一一样,做出信号的时域波形,及fft 变换后的频谱图。
图二 任务二程序框图3、 这里要求引入100KHz 的正弦干扰信号,由于由1中已得到fs 为22050Hz ,根据奈奎斯特频率采样定理,采样频率必须大于等于原信号最高频率的2倍,所以必须将原信号的采样频率提高到200KHz 以上才能引入100KHz 的噪声,所以这里考虑用一阶线型插值interp1将原信号的采样频率提高到220500Hz ,这样就可以引入100KHz 噪声。
做出提高采样频率后的信号的时域波形和频谱图,确认信号并没有发生变化。
接着生成100KHz 的正弦信号,根据2中做出的信号的时域波形的幅度,这里取噪声的幅值为0.5。
将提高采样频率后的信号与噪声叠加。
对加噪后的信号做出时域波形和频谱图,观察波形的变化。
4、 这里要求设计数字滤波器,根据对加噪前的频谱以及加噪后的频谱的观察,可以采用低通滤波器,这里用巴特沃斯低通滤波器即可满足要求,所以考虑设计相对较为简单的巴特沃斯低通滤波器进行滤波。
滤波前首先要确定设计指标,观察频谱这里暂取。
然后开始设计巴特沃斯低通滤波器,这里我把设计的程序打包成一个函数方便调用,函数的框图如图三(巴特沃斯低通滤波器开始读入signal ,fs 截取音频信号为1s 做音频信号时域波形 对signal 做fft 做音频信号频谱 提高信号的采样频率 生成100KHz 噪声 将信号与噪声叠加对加噪后的信号做时域波形和频谱图根据原信号频谱图确定低通滤波器设计指标巴特沃斯低通滤波器设计 计算出滤波器系统函数分子分母系数 做滤波系统幅频特性曲线 对加噪后信号滤波 原信号及滤波后信号的时域及频谱比较结束图三巴特沃斯低通滤波器函数,,k = 1,Nk = 1,Nk = 1,NRSS=RS/FSk = 1,N开始NY结束Mod(N,2) = 1输出BZ,AZYk = length(B)+1,N+1NLength(B)< N+1参量输入函数)所示。
数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
《数字信号处理》实验报告实验一、系统响应与系统稳定性专业:通信工程班级:通信1204班实验一、系统响应及系统稳定性一、设计目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析,观察及检验系统的稳定性。
二、实验原理和方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。
系统的稳态输出是指当n→∞时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零三、实验内容和分析实验内容编程如下:(1)给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号 x1(n)=R8(n), x2(n)=u(n)① 分别求出x 1(n)=R 8(n)和x 2(n)=u(n)的系统响应,并画出其波形。
② 求出系统的单位脉冲响应,画出其波形。
数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。
二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。
2、数据采集卡。
三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。
在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。
2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。
通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。
3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。
四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。
2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。
3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。
4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。
(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。
五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。
通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。
2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。
数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。
在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。
在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。
通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。
接着,我们进行了数字信号滤波的实验。
滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。
在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。
除了滤波,我们还进行了数字信号变换的实验。
数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。
在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。
我们进行了数字信号解调的实验。
数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。
在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。
总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。
《数字信号处理》课程 实验报告
西安交通大学 电子与信息工程学院 实验一 快速傅立叶变换 一 实验目的 1 在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2 熟悉并掌握按时间抽取FFT算法的程序; 3 了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。
二 实验内容 1 仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT进行信号分析的C语言(或MATLAB 语言)程序; 2 用FFT程序计算有限长度正弦信号
()sin(2),0*ytfttNT
分别在以下情况下所得的DFT结果并进行分析和讨论:
a) 信号频率f=50Hz,采样点数N=32,采样间隔T=0.000625s b) 信号频率f=50Hz,采样点数N=32,采样间隔T=0.005s c) 信号频率f=50Hz,采样点数N=32,采样间隔T=0.0046875s d) 信号频率f=50Hz,采样点数N=32,采样间隔T=0.004s e) 信号频率f=50Hz,采样点数N=64,采样间隔T=0.000625s f) 信号频率f=250Hz,采样点数N=32,采样间隔T=0.005s g) 将c) 信号后补32个0,做64点FFT
三 实验步骤 1 根据要求,使用MATLAB软件编写出相应的用FFT进行信号分析的程序。
程序如下: clear; clc; f=input('信号频率f(HZ)\n'); N=input('采样点数N\n'); T=input('采样间隔T(s)\n'); %输入N,T,f的具体数值, n=0:N-1; t=n/f; for j=0:1:N-1 x(j+1)=sin(2*pi*f*j*T); end
BL=input('是否需要补0?1(是)/0(否)\n'); %判断是否需要补0 if BL==1 gs=input('补0个数\n'); %输入补0个数 for j=N:1:N+gs-1 %给采样点后补0 x(j+1)=0; end N=N+gs; %修正采样点数 end
M=log2(N); %判断分解级数 for t=1:1:N %码位倒置 s=dec2bin(t-1,M); %把十进制整数t-1转换成2进制形式s, M表示转换成2进制后的数的位数 s=fliplr(s); % 实现矩阵的左右翻转 s=bin2dec(s); %把2进制数s转换成十进制形式 y(s+1)=x(t); end
x=y; %按时间抽取的FFT蝶形运算 for L=1:1:M %将FFT分为M级进行 for J=0:1:(2^(L-1)-1) for k=(J+1):2^L:N T=y(k)+y(k+2^(L-1))*exp((-i*2*pi*J*2^(M-L))/N); y(k+2^(L-1))=y(k)-y(k+2^(L-1))*exp((-i*2*pi*J*2^(M-L))/N); y(k)=T; end end end
x=abs(y); %将所得频谱取模值 y=max(x); %模值归一化 X=x/y;
for j=1:1:N %绘制棒状图 stem(j-1,X(j)); hold on end axis([0 N 0 1]); %设置坐标值范围 2、运行程序,完成实验各项要求,并对所得的DFT结果进行分析和讨论。 (a)信号频率f=50Hz,采样点数N=32,采样间隔T=0.000625s
分析:对于信号错误!未找到引用源。,由于采样点数为N=32,采样间隔为T=0.000625s,而信号的频率为f=50HZ,所以刚好是在信号错误!未找到引用源。的一个周期中采样了32个点,在FFT时,由于采样点除了第一和第三十一个点有增益,其余点的增益均为0,因此DFT只在第一点和第三十一点有值,其余点的值为0.
b)信号频率f=50Hz,采样点数N=32,采样间隔T=0.005s 分析:对于信号错误!未找到引用源。,由于采样点数为N=32,采样间隔为T=0.005s,而信号的频率为50HZ,也即周期为0.02s,所以是在信号错误!未找到引用源。的8个周期中采样了32个点,FFT时,只在第8个点和第24个点有增益,所以所得的DFT只有第8个点和第24个点有值,其余值均为0.
(c)信号频率f=50Hz,采样点数N=32,采样间隔T=0.0046875s 分析:对于信号错误!未找到引用源。,由于采样点数为N=32,采样间隔为T=0.0046875s,而信号的频率为50HZ,也即信号的周期为0.02s,所以是在信号错误!未找到引用源。的7.5个周期采样了32个点,在使用蝶形算法进行FFT时,由于不是在整倍周期采样,没有采样到50HZ的点,所以傅里叶变换的图形不会出现图2中第8个点有峰值,其余点值为0的情况,而是会出现32个点均有一定的增益,即32个点均有一定的值。
(d)信号频率f=50Hz,采样点数N=32,采样间隔T=0.004s 分析:对于信号错误!未找到引用源。,由于采样点数为N=32,采样间隔为T=0.004s,信号的频率为50HZ,即信号的周期为0.02s,所以是在信号错误!未找到引用源。的6.4和周期中采样了32个点,由于不是在信号的整数倍周期上采样,所以傅里叶变换的信号波形也是会像图3中,所有采样点均有增益,不是出现采样点增益为0的情况,所有图形中32个点均有一定的值。
(e)信号频率f=50Hz,采样点数N=64,采样间隔T=0.000625s 分析:对于信号错误!未找到引用源。,由于采样点数为N=64,采样间隔为T=0.000625s,信号的频率为50HZ,即信号的周期为0.02s,所以是在信号错误!未找到引用源。的2个周期中采样了32个点,由于是周期的整数倍采样,所以通过傅里叶变换的波形会出现第2个点和第30个点有增益,其余点增益为0,所以图中点2和点30有值,其余点值为0.由此得出结论,增加采样点数,可以更好的恢复采样信号的波形。
(f)信号频率f=250Hz,采样点数N=32,采样间隔T=0.005s 分析:对于信号错误!未找到引用源。,由于采样点数为N=32,采样间隔为T=0.005s,信号的频率为250HZ,即信号的周期为0.004s,所以是在信号错误!未找到引用源。的40个周期中采样了32个点,由于是周期的整数倍采样,所以傅里叶变换的波形会再第8个点和第24个点有增益,其余点增益为0,所以图中8点和24点有值,其余点为0。
(g) 将c) 信号后补32个0,做64点FFT 分析:对于信号错误!未找到引用源。,由于采样点数为N=32,采样间隔为T=0.0046875s,但是是做64个点的FFT,也即在采样的32个点后补32个0,将图7与图3对比可以发现,(7)是在(3)的每两个点之间加了一个零点,同时在点15和点49出现了峰值,这是因为在做64点的FFT时,改变了sa函数的分布情况,使频带压缩,原先相消的点变成增益加强,产生了峰值。
四.实验心得与体会 通过本次实验,让我对FFT变换的运算方法和性质,有了更加深入的理解,把课本上的抽象的知识通过自己动手设计程序,实现验证,并进行思考和讨论,让我对这一部分知识有了更加直观的认识。熟悉并掌握了按时间抽取FFT算法的程序,了解了应用FFT进行信号频谱分析过程中可能出现的问题。通过实验,我也把课堂上一些原本不是很清晰透彻的地方彻底搞懂,是我对这些知识进行了二次学习。此外,实验中运用MATLAB软件编写程序,使我熟练了此程序的应用,更加熟悉的掌握了这一重要而又基础的学习工具。 实验二 频率采样型滤波器 一、实验目的 1. 通过该实验学会使用频率采样型结构实现 FIR 滤波器,初步熟悉FIR 滤 波器的线性相位特点。 2. 通过该实验直观体会频率采样型滤波器所具有的“滤波器组”特性,即 在并联结构的每条支路上可以分别得到输入信号的各次谐波。 3. 通过该实验学会如何使用周期冲激串检测所实现滤波器的频域响应。
二、实验内容 频率采样型滤波器是由一个梳状滤波器和若干路谐振器构成的,可用公式表 述如下:
1-01---N-1Nr-1NkkN
NzrWkHz
zH
其中 r 值理论上为1,实际中取非常接近1 的值。 为了使系数为实数,可以将谐振器的共轭复根合并,不失一般性,假设N 为 偶数,于是可以得到如图1 所示的结构。 其中,]k[HRe20k,][H(k)WRe2-kN1rk。 以下实验中假设频率采样型滤波器阶数16N。
1.构造滤波器输入信号30kkt(t)ss,其中,)2(cos0kkktkfAts。基波频率
Hzf500,5.00A,11A,5.02A,23A,00,21,2,2-3。
设时域信号ts的采样频率0Nffs,绘制出采样时刻从0到1-L的采样信号波形,其中采样点数为NL2,确认时域信号采样正确。
2.对采样信号的第二个周期1-,...,1,LNNn,进行离散傅里叶变换,画出幅频特性和相频特性图,观察并分析其特点。
3.设10H,NNjH1--exp1,NNjH1-2-exp2,013...43HHH,NNjH1-14-exp-14,
N1-15-exp-15NjH
,计算滤波器抽头系数1,-N,...,1,0,nnh画出该滤波器的
频谱图,观察并分析其幅频特性和相频特性。 4.编程实现图1所示的频率采样型滤波器结构,其中999.0r,kH取第3步中的值。为了简化编程,梳状滤波器可以调用CombFilter.m,谐振器可以调用Resonator2.m,使用help CombFilter和help Resonatoe2查看如何配置参数。将第1步生成的采样信号通过该滤波器,画
出输出信号第二个周期1-,...1,LNNn的时域波形和频谱,并与第2步的频谱图进行对比,观察并分析二者的区别。
5.(选做)分别画出图1中前4路谐振器的输出信号第二个周期1-,...1,LNNn的时域波形,观察并分析输出信号的特点。
6.(选做)将输入信号换成周期为N的冲激串,画出输出信号第二个周期1-,...1,LNNn的幅频特性,并与第3步的滤波器幅频特性进行对比,观察并分析二者
的关系。