硝酸工业含氮氧化物工艺设计尾气处理方案
- 格式:doc
- 大小:32.50 KB
- 文档页数:8
氮氧化物(NOX)的危害及治理方法氮氧化物(NOX)的危害及治理方法氮氧化物(NOX)是造成大气污染的主要污染源之一,造成NOX的产生的原因可分为两个方面:自然发生源和人为发生源。
自然发生源除了因雷电和臭氧的作用外,还有细菌的作用。
自然界形成的NOX由于自然选择能达到生态平衡,故对大气没有多大的污染。
然而人为发生源主要是由于燃料燃烧及化学工业生产所产生的。
例如:火力发电厂、炼铁厂、化工厂等有燃料燃烧的固定发生源和汽车等移动发生源以及工业流程中产生的中间产物,排放NOX的量占到人为排放总量的90%以上。
据统计全球每年排入到大气的NOX总量达5000万t,而且还在持续增长。
研究与治理NOX成已经成为国际环保领域的主要方向,也是我国“十二五”期间需要降低排放量的主要污染物之一。
一、主要危害:通常所说的氮氧化物(NOx)主要包括NO、NO2、N2O、N2O3、N2O4、N2O5等几种。
这些氮氧化物的危害主要包括: ①NOX 对人体及动物的致毒作用; ②对植物的损害作用;③NOX是形成酸雨、酸雾的主要原因之一; ④NOX 与碳氢化合物形成光化学烟雾;⑤NOX 亦参与臭氧层的破坏。
1.1、对动物和人体的危害N0对血红蛋白的亲和力非常强,是氧的数十万倍。
一旦NO进入血液中,就从氧化血红蛋白中将氧驱赶出来,与血红蛋白牢固地结合在一起。
长时间暴露在1~1.5mg/l 的NO。
环境中较易引起支气管炎和肺气肿等病变.这些毒害作用还会促使早衰、支气管上皮细胞发生淋巴组织增生,甚至是肺癌等症状的产生。
1.2 形成光化学烟雾N0排放到大气后有助于形成O3。
,导致光化学烟雾的形成N0+HC+02+阳光NO2+O3(光化学烟雾)这是一系列反应的总反应。
其中HC为碳氢化合物,一般指VOC(volatile organic pound)。
VOC的作用则使从NO转变为NO2时不利用03,从而使03富集。
光化学烟雾对生物有严重的危害,如1952年发生在美国洛杉矶的光化学烟雾事件致使大批居民发生眼睛红肿、咳嗽、喉痛、皮肤潮红等症状,严重者心肺衰竭,有几百名老人因此死亡。
硝酸雾氮氧化物-概述说明以及解释1.引言1.1 概述硝酸雾是一种由氮氧化物(NOx)在大气中氧化形成的颗粒状悬浮物。
它主要由工业排放和交通尾气排放中产生的氮氧化物以及大气中的其他有机氮物质反应生成。
硝酸雾在许多地区都是一个严重的环境问题,对人类健康和生态系统造成了严重危害。
硝酸雾的形成过程主要涉及氮氧化物的光化学反应。
在光照的作用下,氮氧化物与大气中的氧气和水反应生成硝酸。
这些硝酸分子会聚集形成微小颗粒,并随着大气中的气流而扩散。
当这些颗粒悬浮在空气中时,它们能够吸附其他污染物质,如重金属和有机物,从而增加了其毒性和危害性。
硝酸雾的危害主要表现在对人体健康和环境的影响上。
首先,硝酸雾中的颗粒物能够进入人体呼吸道,导致呼吸系统疾病的发生,如支气管炎、哮喘和肺癌等。
其次,硝酸雾中的氮氧化物还参与光化学反应,产生臭氧和其它有害气体,对大气质量产生进一步的破坏。
此外,硝酸雾的形成也对生态系统造成了许多负面影响,如土壤酸化、水质污染和植被损害等。
针对硝酸雾的危害,应对措施方面需从源头减少氮氧化物的排放量,如加强工业废气治理、改善交通尾气排放标准等。
此外,通过提高能源利用效率和推广清洁能源技术,也可以有效地减少氮氧化物的产生。
在治理硝酸雾过程中,还需要采取空气污染监测和预警机制,及时通报大气质量状况,并制定合理的应急措施。
展望未来,应进一步加强国际合作,共同应对全球硝酸雾问题。
在技术上,需要加大对氮氧化物治理和减排技术的研究和开发力度,推动环保科技创新。
在政策层面,需要建立更为严格的环境保护法规和标准,加大对污染企业的监管力度。
只有各方共同努力,才能有效地减少硝酸雾的形成和危害,保护人类健康和生态环境的可持续发展。
1.2文章结构文章结构是指文章的整体组织形式和内容安排方式。
在本文中,为了清晰地展现硝酸雾和氮氧化物相关的信息,我们将按照以下结构来进行表述:1. 引言1.1 概述在引言部分,我们将简要介绍硝酸雾和氮氧化物的概念,以及它们在环境污染和健康方面的重要影响。
江苏专版新教材高中化学新人教版必修第二册:第五章分层作业4 氮气与氮的固定一氧化氮和二氧化氮必备知识基础练1.(2023·江苏盐城高一期中)自然界中氮的循环如图所示。
下列说法错误的是( )A.工业上用N2和H2合成NH3属于人工固氮B.减少开私家车可减少氮氧化物的排放C.氨和铵盐转化为硝酸盐时发生复分解反应D.豆科植物的根瘤菌将游离态的氮转化为化合态的氮2.下列对NO和NO2的描述正确的是( )A.NO2与水的反应中,NO2既是氧化剂又是还原剂B.NO是无色气体,可用向上排空气法收集C.NO2可由N2和O2直接化合得到D.从元素化合价角度看,NO只有还原性3.(2023·河北沧州高一期末)在一定条件下,将NO2和O2的混合气体12 mL通入足量水中,充分反应后剩余2 mL气体(同温同压下),则原混合气体中氧气的体积为( )①1.2 mL ②2.4 mL ③3 mL ④4 mLA.①②B.②③C.③④D.①④4.(2023·北京昌平区高一期末)汽车尾气中的NO x、CO、碳氢化合物通过排气系统的净化装置(催化剂主要由Rh、Pd、Pt等物质和稀土材料组成)转化过程如图。
下列分析不正确的是( )A.该净化装置可将有毒的氮氧化物转化为无毒的氮气B.该过程中CO是还原剂C.该过程中NO x发生了还原反应D.该过程中,碳氢化合物没有发生反应5.(2023·浙江宁波高一期中)近年来,利用半导体光催化实现还原氮气制备NH3引起全世界的极大关注。
下图是在半导体光催化的作用下,N2被光催化材料捕获进而被还原实现“N2→NH3”的转化原理示意图。
下列说法中正确的是( )A.该方法不属于人工固氮技术B.由转化示意图可知,氮气的化学性质很活泼C.该反应过程中有极性键的断裂和形成D.该反应的化学方程式为N2+3H22NH36.(2023·江苏扬州中学校考阶段练习)氮是参与生命活动的重要元素。
三、氨催化氧化制硝酸硝酸和硫酸一样,也是无机化学工业中的重要产品,但它的产量比硫酸要小得多,1985年全世界的硝酸产量为3000万t/a,中国1993年的产量(以100%硝酸计)已达56.3万t/a。
硝酸大部分用来制造肥料,如硝酸铵、氮磷钾复合肥料等,亦大量用来制造炸药、染料和医药中间体、硝酸盐和王水等,还用作有机合成原料。
图3-1-13 HNO3-H2O系统的沸点、组成与压力的关系曲线硝酸是五价氮的含氧酸,纯硝酸是无色液体,相对密度1.5027,熔点-42℃,沸点86℃。
一般工业品带微黄色。
含硝酸86%~97.5%以上的浓硝酸又称发烟硝酸,它是溶有二氧化氮的红褐色液体,在空气中猛烈发烟并吸收水分。
硝酸是强氧化剂,有强腐蚀性,在生产、使用和运输中要注意安全。
与硫酸不同,硝酸与水会形成共沸混合物,共沸点与温度和压力的关系示于图3-1-13,由图3-1-13可见,共沸点随压力的增加而上升,但共沸点下的硝酸浓度却基本一样。
在101.32 kPa 下共沸点温度为120.5℃,相应的硝酸浓度为68.4%。
因此,不能直接由稀硝酸通过蒸馏方法制得浓硝酸,而应该首先将稀硝酸脱水,制成超共沸酸(即浓度超过共沸点时的硝酸浓度),经蒸馏最后才能制得浓硝酸。
1. 生产方法综述在十七世纪,人们用硫酸分解智利硝石(NaNO3)来制取硝酸。
硫酸消耗量大,智利硝石又要由智利产地运来,故本法目前已趋淘汰。
1932年建立了氨氧化法生产硝酸的工业装置,所用原料是氨和空气。
氨氧化催化剂是编织成网状的铂合金(常用铂-铑网),产品为稀硝酸(硝酸浓度为45%~62%)和浓硝酸(硝酸浓度为98%)。
(1)稀硝酸生产过程A氨氧化主要反应有:4NH3+5O2=4NO+6H2O这是一个强放热反应。
反应温度760~840℃,压力0.1~1.0MPa,通过铂网的线速度大于0.3 m/s,氧氨比(O2/NH3)为1.7~2.0,在以上工艺条件下,氨的氧化率可达95%~97%。
臭氧脱硝的介绍臭氧脱硝是一种重要的氮氧化物治理技术,它可以高效地减少工业排放所带来的氮氧化物对环境的污染。
本文将介绍臭氧脱硝的基本原理、工作机理、工艺流程、优缺点及适用范围等方面的内容。
一、臭氧脱硝的基本原理臭氧脱硝利用臭氧氧化一氧化氮(NO)或氨(NH3),生成亚硝酸和亚硝酸盐或硝酸盐,然后通过一系列反应使其还原为气态氮(N2)和水(H2O)释放出来。
臭氧氧化一氧化氮或氨的反应方程式如下:NO + O3 = NO2 + O2 + ONH3 + O3 = NO + H2O + 2O2亚硝酸/盐和硝酸盐的反应方程式如下:3NO2 + O2 = 2NO + 2NO22NO2 + 2OH- = NO2- + NO3- +H2ONO2- + 2OH- = NO3- + H2ON2 + 2O2 = 2NO22NO + 2OH- = NO2- + H2O2NO2 + 4OH- = 2NO3- + 2H2O这样,臭氧脱硝可以将一氧化氮和氨等氮氧化物转化为更易处理的亚硝酸/盐和硝酸盐,进而进行还原反应,形成氮和水。
该过程所需要的臭氧可以通过电解氧化水产生,也可以通过空气中氧气电离而产生。
二、臭氧脱硝的工作机理臭氧脱硝的工作机理主要分为三个步骤:1. 氮氧化物氧化阶段:臭氧与一氧化氮或氨等氮氧化物接触,臭氧通过氧化作用使其转化为亚硝酸/盐和硝酸盐。
2. 氮氧化物还原阶段:亚硝酸/盐和硝酸盐经过还原反应转化为氮和水,减少氮氧化物对环境的污染。
3. 臭氧再生阶段:通过对使用过的臭氧进行再生,确保臭氧脱硝系统的稳定性和持续作用。
三、臭氧脱硝的工艺流程臭氧脱硝是一种先进的氮氧化物治理技术,其工艺流程主要包括前处理、臭氧反应器、后处理等三个部分。
前处理:通过对氮氧化物的预处理,使各种氮氧化物处于最佳的反应状态。
臭氧反应器:该反应器正常运行条件下获得良好的催化效果,可以将一氧化氮或氨转化为亚硝酸盐和硝酸盐,这些化合物随后通过后处理系统进一步处理,使其发生还原反应,最终转化成无害的氮和水。
己二酸生产工艺中氮氧化物尾气处理浅析摘要:己二酸又名肥酸,己二酸的工业生产方法主要是环己烷法。
该工艺路线生产能力约占全球己二酸总生产能力的93%。
环己烷路线,即由纯苯催化加氢生成环己烷,环己烷再经空气氧化生成环己酮和环己醇,再由硝酸氧化合成己二酸,该路线在反应过程中产生大量的氮氧化物气体。
本文结合笔者工作经验,分析了己二酸生产工艺中氮氧化物尾气处理的相关问题,为今后开展工作提供参考。
关键词:己二酸,氮氧化物,尾气处理引言:近年来,全球很多地区与国家己二酸的消费量都呈现出增长态势,亚洲是己二酸需求增长最快的地区,因此己二酸的投资项目也主要集中在亚洲,但韩国、日本和我国台湾需求增量很少,亚洲的增长动力主要是我国大陆需求增长强劲。
近年来己二酸随着产品质量的提升带动国内己二酸出口量也在逐年增加。
随着国家对生态文明建设提出新要求,为了更好地保护环境,减少大气污染,以下结合己二酸生产工艺,探讨如何降低氮氧化物尾气排放。
1氮氧化物尾气对环境产生的影响由上文能够得知,现阶段的工业己二酸生产过程当中较为常见的生产工艺包括苯酚法、环己烷法以及环己烯法三种类型。
在己二酸生产技术的应用过程当中,由于硝酸催化环己醇以及环己酮这一关键性环节和流程的影响,会出现大量含有氮氧化物的废气,给环境带来极大的压力与危害。
具体表现在以下几个方面。
1.1使大气污染不断加剧首先是进一步加剧了大气污染现象。
大量氮氧化物废气的排放会与空气当中的氧气发生反应,从而转化为一氧化氮以及二氧化氮,从而给人体造成严重的刺激现象,甚至使受污染人群发生肺水肿、器官病变、变性血红蛋白生成以及中枢神经紊乱等现象,使公众的生命健康安全受到极大的威胁和损害。
1.2出现酸沉降现象由己二酸制备生成并排放到大气当中的各类含氮污染物受到气相氧化或液相氧化等反应现象的影响,形成硝酸或硝酸盐,并在降水、重力等作用下沉降至地面,被地表的植物、动物所吸收,使硝酸类物质进入到整个生态循环当中,使生物链的稳定性受到显著冲击和影响。
C 硝酸生产工艺技术简介1 建设规模及产品方案1.1 产品方案利用本公司生产的液氨生产硝酸,最终产品为98%浓硝酸。
1.2生产规模1.2.1 设计规模:公称能力为日产浓硝酸350吨(以100%HNO3计)(公称能力产浓硝酸10万吨/年,计算产能10.5万吨/年,配套建10.5万吨/年稀硝酸装置)。
年运行时间:7200小时。
1.2.2 确定本装置设计规模依据以下因素:结合耀隆集团原材料供应、辅助工程条件以及市场需求,将本工程浓硝酸生产规模定为10万吨/年(以100%HNO3计)。
2 工艺技术方案及技术来源2.1工艺技术方案选择2.1.1稀硝酸2.1.1.1国内外稀硝酸工艺技术概况目前,国内外工业上生产稀硝酸的方法有常压法、综合法、全中压法、高压法、双加压法,现分述如下:(1)常压法:氨氧化和吸收均在常压下进行的生产工艺。
早期硝酸生产多采用这种方法,该工艺流程的特点为系统压力低,设备结构简单,工艺操作稳定,氨氧化率高,铂耗较低。
但吸收比容积大(20~25m3),酸吸收率较低(仅为92%左右)。
为减少对大气的污染并提高氨利用率,需附有碱吸收NOX尾气装置并副产硝盐,即便如此尾气中NOX浓度仍很高,不符合目前日益严格的环境要求。
加上设备相对台数较多,设备体积大,装置占地面积多,投资大,成品酸浓度低等因素,国家经贸委已明文规定禁止采用此种流程新建硝酸装置。
(2)综合法常压氨氧化和中压(0.25~0.5MPa)酸吸收的稀硝酸生产工艺。
这种方法在一定程度上弥补了常压酸吸收的缺点,我国在本世纪50年代末引进该流程进行稀硝酸的工业生产。
该方法主要缺点是常压氨氧化、设备庞大、占地多,需要配备较昂贵的不锈钢材质的氧化氮压缩机,其投资高于下面介绍的中压法,且吸收压力低仅0.35MPa(A),因此酸浓度低及尾气排放不能达到环保要求,不适用于规模较大的硝酸装置,国家经贸委也明文规定了不能采用此种流程建设硝酸装置。
(3) 全中压法氨氧化和酸吸收均在中压下进行的稀硝酸生产工艺。
1 摘要:硝酸是基本化学工业的重要产品之一,也是一种重要的化工原料,产量在各类酸中仅次于硫酸。工业上制取浓硝酸(HNO3浓度高于96%)的方法有三种:一是在有脱水剂的情况下,用稀硝酸蒸馏制取的间接法,习惯上称“间硝";二是由氮氧化物、氧及水直接合成浓硝酸,称为’直硝’;三是包括:氨氧化、超共沸酸(75%—80%HNO3)生产和精馏的直接法。 关键词:浓硝酸、氨氧化、超共沸精馏法
前言 硝酸是基本化学工业的重要产品之一,也是一种重要的化工原料广泛用于生产化肥、炸药、无机盐,也可用于贵金属分离、机械刻蚀等。目前,我国有浓硝酸厂家20多家,年生产能力在80万吨以上。1999年产量在73万~75万吨,到2005年稀硝酸生产能力达544.7万吨,2004年浓硝酸产量130.5万吨,2005年产量157万吨,2006年新增产能达300万吨。稀硝酸是合成氨的下游产品,与化肥生产紧密相关。浓硝酸最主要用于国防工业,是生产三硝基甲苯(TNT)、硝化纤维、硝化甘油等的主要原料。生产硝酸的中间产物——液体四氧化二氮是火箭、导弹发射的高能燃料。硝酸还广泛用于有机合成工业;用硝酸将苯硝化并经还原制得苯胺,用硝酸氧化,苯可制造邻苯二甲酸,均用于染料生产。此外,制药、塑料、有色金属冶炼等方面都需要用到硝酸。 我国硝酸的消费结构大致为:化学工业占65%左右,冶金行业占20%,医药行业占5%,其他行业占10%。在化学工业中生产浓硝酸的工艺主要有多种大同小异的工艺流程,生产中是根据氨氧化和氮氧化物吸收操作压力的不同分为间接法、直硝法和直接法三种类型。
1 硝酸的性质、用途及生产方法 1.1 硝酸的性质 纯硝酸为带有窒息性与刺激性的无色液体,其相对密度1.522,沸点83.4℃,熔点‐41.5℃,分为浓硝酸和稀硝酸。无水硝酸极不稳定,一旦受热见光就会分解,生成二氧化氮和水。 硝酸能与任意比例的水混合,形成浓硝酸(96%~98%HNO3 )和稀硝酸(45%~70% HNO3)。硝酸是三大强酸之一,具有很强的氧化性。除金、铂及一些稀有金属外,各种金属都能与稀硝酸作用生成硝酸盐。由浓硝酸与盐酸按1:3(体积比)组成的混合液称为“王水”,能溶解金和铂,故称“王水”。 硝酸还具有强烈的硝化作用,与硫酸制成的混酸能与很多有机化合物结合成 2
脱硝的工艺流程脱硝是指利用化学或物理方法将燃煤、燃油等燃料中的二氧化硫和氮氧化物去除的过程。
脱硝工艺流程是工业生产中非常重要的环保工艺之一,能够有效降低大气污染物排放,保护环境和人类健康。
本文将介绍脱硝的工艺流程及其原理。
一、脱硝工艺的原理。
脱硝工艺主要包括选择性催化还原(SCR)、燃烧脱硝(SNCR)和吸收法脱硝(FGD)等方法。
其中,SCR是最常用的脱硝工艺之一,其原理是将氨气与烟气中的氮氧化物在催化剂的作用下发生反应,生成氮气和水,从而实现脱硝的目的。
SNCR则是利用燃烧过程中的高温条件下,将氨气喷入燃烧区域,与烟气中的氮氧化物发生反应,达到脱硝的效果。
FGD则是利用吸收剂吸收烟气中的二氧化硫和氮氧化物,形成硫酸盐和硝酸盐,从而达到脱硝的目的。
二、SCR脱硝工艺流程。
1. 烟气预处理,首先需要对燃烧产生的烟气进行预处理,包括除尘、除硫等工序,确保烟气中的杂质和颗粒物得到有效去除。
2. 氨水制备,将氨气和水按一定的比例混合制备成氨水,用于后续的脱硝反应。
3. 催化剂喷射,将催化剂喷射到烟气中,催化剂通常是由钒、钼、钨等金属氧化物组成的复合氧化物,能够促进氨气与氮氧化物的反应。
4. 脱硝反应,烟气中的氮氧化物与氨气在催化剂的作用下发生反应,生成氮气和水,从而达到脱硝的目的。
5. 脱硝效果监测,对脱硝后的烟气进行监测,确保脱硝效果符合环保要求。
三、SNCR脱硝工艺流程。
1. 燃烧预处理,燃烧过程中需要控制燃烧温度和氧化剂的供应,以保证燃烧产生的烟气中含有足够的氮氧化物。
2. 氨气喷射,将氨气喷入燃烧区域,与烟气中的氮氧化物发生反应,达到脱硝的效果。
3. 脱硝效果监测,对脱硝后的烟气进行监测,确保脱硝效果符合环保要求。
四、FGD脱硝工艺流程。
1. 烟气处理,首先需要对燃烧产生的烟气进行除尘、除硫等工序,确保烟气中的杂质和颗粒物得到有效去除。
2. 吸收剂制备,制备适当的吸收剂,通常是石灰石或者石膏。
. . 硝酸工业含氮氧化物工艺尾气处理方案
随着二十一世纪的到来,“绿色环保浪潮”已在世界范围掀起,环境保护已成为国际交往与协商的重要议题。成果内容简介 在各种硝酸工业中会产生大量的含NOX工艺尾气,NOX的排空即引起了严重的环境污染又造成了NOX资源的浪费。 当前对含NOX废气的处理方法主要有干法和湿法两大类,干法由于不能有效回收氮氧化物资源,多用于汽车尾气处理,而很少用于硝酸工业尾气治理;湿法一般是将尾气中的NO首先氧化成活性更高的NO2,然后通过水、或稀酸、碱溶液吸收NOX。由于氮氧化物的吸收过程,在气相和液相中都存在着数种可逆与不可逆反应,使得处理难度较大,目前国外一般采用中压或高压吸收来实现,但加压处理除了必然要对设备提出更高的要求外,操作费用也会随着压力的提高而直线上升。本技术采用填料塔技术在常压下实现对硝酸酸工业含NOX尾气处理,处理结果完全达到国家环保要求。 本技术采用多塔串联处理含氮氧化物硝酸工业工艺尾气,其中前部分为水吸收,后部分采用碱吸收。从硝酸工业生产工段出来的工艺尾气,混入一定量的富氧空气后,首先进入水吸收塔,一方面氮氧化物迅速被液相吸收形成稀酸,另一方面吸收过程生成的稀硝酸会对氮氧化物起到氧化作用,提高氮氧化物的氧化度,使其更加利于吸收。从水洗塔出来的尾气依次进入碱吸收塔,此时由于氧化度已经很低,有利于价值较高的亚硝盐生成。当尾气从系统出来后,已经达到了国. . 家排放标准的净化气体经过引风机排空。在整个过程中,可以从水洗塔得到稀硝酸,经混入一定比例的浓硝酸后,可返回生产工段继续使用;从碱吸收塔可以得到硝酸盐和亚硝酸盐母液,去结晶工段经结晶分离最终得到硝酸盐、和亚硝酸盐副产品。既避免了氮氧化物资源的损失,又减少了氮氧化物对大气的污染。 工业塔的流程简图见图1,填料塔内充高效规整填料,型号为250Y波纹板聚丙烯塑料填料。由图可知,由草酸反应釜出来的氮氧化物,通入足量空气经缓冲罐后,由防腐风机塔底引入塔内。塔顶的吸收剂自上而下流动,逐步与气体接触,进行气液反应吸收。在塔底产生的稀硝酸溶液由硝酸循环泵运送到换热器中进行换热,降温后的硝酸溶液重新被打入塔顶,在塔底累计达到设计浓度后再进行出料,这样共经历四个类似过程的吸收塔。在进入第五个塔前,需要用捕沫器将雾沫夹带或是气流中的酸雾捕集下来,将这部分液体返回到酸塔底部。穿过捕沫器的气体再次由底部进入碱吸收塔内,此时塔顶下降的是循环的碱液,经过三个碱吸收后,气体由60米的烟囱排出。 根据国家最新标准,60米烟囱的氮氧化物的排放浓度为≤240ppm,而本装置的尾气为178ppm,已完全符合国家规定。根据厂方反馈的信息表明在正常操作条件下,不会出现所谓的“黄龙”现象,而且尾气达标,吸收塔设备运行可靠,此外每小时可以副产硝酸钠0.5吨,亚硝酸钠1.5吨。所有这些指标均显示本技术已可作为一项成熟技术向外推广。该项目所实施的研究开发圆满地完成了各项指标。经过生产运行实践考核,系统性能稳定,特别是大幅度地削减氮氧化物排放. . 量,社会效益和经济效益突出。立项情况 化学工业如何实施减少废料、防止污染,向“洁净化工”转化,已成为社会关注的焦点。在水环境、生态环境遭到人类生产活动严重破坏的同时,大气环境也日趋恶化,历史上世界各地曾多次发生大气污染公害事件,对人类的生存环境构成了极大的威胁。在各种硝酸工业中会产生大量的含NOX工艺尾气,NOX的排空即引起了严重的环境污染又造成了NOX资源的浪费。为此,对硝酸工业工艺尾气中的NOX进行回收利用,既是“洁净化工”生产的要求,又是厂家降低生产成本,提高产品市场竞争力的必然选择。 草酸作为一种基本的化工原料,在国民生产中具有重要的地位。硝酸氧化法生产草酸是目前最具有市场竞争力,前景最好的一种方法,但该法的生产过程中,会产生大量的含氮氧化物尾气,如不对该部分进行回收利用,在造成环境污染的同时,也大大的提高了草酸生产的成本。 工业中,控制氮氧化物的排放的方法一般有干法和湿法两种,干法一般是将NOX分解或者用还原性气体对NOX进行选择性或非选择性还原,因此,实质上干法并没有降低N排放量,此为消极的方法,限制了干法不能大规模应用在各种硝酸工业中;湿法既在特定的工艺条件和特定设备下,采用一定的吸收剂来吸收处理NOX是目前工业中最常用的方法。但NOX气体的吸收过程在气相和液相中都存在数种可逆与不可逆反应,同时,加上NOX吸收是放热过程,不利于吸收过程的3 进行,使其处理难度较大,目前国外多采用高压法来解决此问题。但. . 高压法必然带来较高的能量消耗,和对设备的强度、制造、控制、安全等等提出更高的要求。为此能在常压下实现对含NOX废气处理的技术,则必然会受到各个生产厂家的青睐。 本课题正是在上述工业实际背景下提出的,解决常压操作,排放达标是本技术要解决的最重要的两个问题。 目前该技术已完成2万吨草酸尾气处理的工业化装置。本技术共采用七个填料塔完成对该废气的整个处理过程,其中前四塔为水吸收塔,后三塔为碱吸收塔,经过本系统处理的草酸生产过程产生的硝酸尾气,最终氮氧化物排放浓度小于200ppm,根据最新国家标准,60米烟囱的氮氧化物排放浓度为不高于240ppm,因此,所排尾气已完全符合国家标准。评价情况 1999年6月至1999年10月天津大学,在湖南省株洲选矿药剂厂完成了20000吨/年氧化法草酸NOX回收装置的设计、制造、安装和试车工作,于1999年11月投入运行,2000年经双方共同测试,结果表明达到合同规定的各项经济技术指标和国家关于氮氧化物的排放标准。试车成功以来设备运行稳定,氮氧化物各项指标完全达标排放。和同类技术相比,使用该技术硝酸回收率提高10~15%。 由于常压操作,与同类中高压设备相比每年节能 (1000千瓦/时-39千瓦/时)×7200×0.5元/度=345.96万元 使用该技术每年可以副产硝酸钠1000吨,亚硝酸钠4000吨。每年为企业新增销售收入 4000吨×0.24万元/吨+1000吨×0.16万元/吨=1120万元新增利. . 税(硝酸钠成本0.15万元/吨,亚硝酸钠成本0.14万元/吨)(0.16-0.15)×1000+(0.24-0.14)×4000=410万元/年 经当地环境保护部门测试,所排尾气氮氧化物含量符合国家二级排放标准。平均氮氧化物排放浓度小于200ppm。 2001年12月该项目通过了天津市科委主持的科技成果鉴定,鉴定会专家一致评价认为,综合各项指标均达到高水平,该项技术属国际先进水平。 4.应用情况 该项目由湖南株洲选矿药剂厂提出,天津大学、株洲选矿药剂厂与安徽省芜湖市大江化工经济技术开发研究所合作共同完成。 1998年10至1998年底首先在河北省唐山市石城化工厂3000吨/年氧化法草酸生产装置上实现工业化,运行结果表明达到设计要求和国家关于氮氧化物的排放标准。 1999年6月至1999年10月天津大学与大江研究所合作,在湖南省株洲选矿药剂厂完成了20000吨/年氧化法草酸NOX回收装置的设计、制造、安装和试车工作,于1999年11月投入运行,2000年经双方共同测试,结果表明达到合同规定的各项经济技术指标和国家关于氮氧化物的排放标准。 从工业装置的运行情况来看,本技术同目前同类的其他的技术相比,1、在同等达标的条件下,比中高、压法脱氮操作费用低,以2万吨草酸生产为例,如用高压法,由于系统加压引起动力消耗大约为1000千瓦/小时,而本技术仅用一39千瓦/小时引风机即可;动力消耗每. . 年减少近300万元。2、与其他低压法脱氮技术相比,本技术易实现达标,而其他技术如喷射吸收等难以有较高的氮氧化物脱除率。推广的目的和意义 含NOX尾气排放是目前造成大气污染的重要原因之一,大气中的光化学烟雾基本上来自氮氧化物与烃类之间的光化学作用。NOX废气不但造成酸雨、酸雾,还能破坏臭氧层,给自然环境和人类生产、生活带来严重危害。因此,气体氮氧化物的吸收是环境治理和各种硝酸工业生产中的重要组成部分,这既是实现我国经济可持续发展的需要、也是为了人类自身健康的需要。目前,我国很多省市都已出台了,含氮尾气的达标排放作为硝酸工业投产运行首要条件的产业政策。为此本技术的成功实施首先急各硝酸工业生产厂家之所需,使得生产得以正常进行。 本技术实现了在常压下通过填料塔技术处理硝酸工业工艺尾气,处理结果可以完全达到国家环保标准,这为各个生产厂家节省了大量的操作费用。本技术在减少氮氧化物污染的同时,还可以回收NOX资源,得到稀硝酸和硝酸盐、亚硝酸盐等副产品,这对生产厂家降低生产成本,增收节支是很重要的。综合上述可以看出本技术的成功实施具有重要经济及社会效益。 5.推广的主要技术内容 本技术采用天津大学具有新型塔内件的高效规整填料塔技术,大幅度的提高塔的处理能力和吸收效率,降低了设备投资,使吸收过程得以顺利实现;实现了常压下,采用七塔串联处理含氮氧化物硝酸工业工. . 艺尾气,排放达到国标;整个工艺前部分采用水吸收后部分采用碱吸收,水吸收过程生成的稀硝酸会对氮氧化物起到氧化作用,提高氮氧化物的氧化度,使其更加利于吸收。从碱吸收塔可以得到硝酸盐和亚硝酸盐母液,去结晶工段经结晶分离最终得到硝酸盐、和亚硝酸盐副产品;该项目实施过程中采用先进的设计理念和计算方法,经实际验证符合实际;所用设备采用槽式液体分布器和双环旋流气体分布装置,同时考虑气体和液体分布,使吸收塔保持大通量和高效率。运用本技术由酸塔回收所得的硝酸浓度最大可达54.6%,由碱塔所得到的亚硝酸钠与硝酸钠比例可达8:1。实施该项目的基础条件 该项目属于环境保护领域的高新技术,项目最初应用于处理硝酸氧化法生产草酸过程中所产生的尾气。担实际上该技术可广泛用于各种硝酸工业含氮氧化物的尾气处理问题。不需要特殊的实施基础条件。国内外市场前景 本技术首先在最大程度上利用了天津大学的先进的高效填料塔及塔内件技术,优良的设备为该技术的顺利实施提供了前提。本技术是在常压下实现的,这是本技术的重要特点,常压操作不仅为厂家大幅减少了能耗,而且,由于常压操作对设备强度等要求不高,因此可以在一定程度上降低投资成本。本技术采用多塔串联处理含氮氧化物硝酸工业工艺尾气,其中前部分为水吸收,后部分采用碱吸收。从硝酸工业生产工段出来的工艺尾气,混入一定量的富氧空气后,首先进入水吸收塔,一方面氮氧化物迅速被液相吸收形成稀酸,另一方面吸收过程生成的稀硝酸会对氮氧化物起到氧化作用,提高氮氧化物的氧化