PP/碳纤维复合材料力学性能的研究
- 格式:pdf
- 大小:110.46 KB
- 文档页数:2
碳纤维增强环氧树脂基复合材料的制备及力学性能研究碳纤维增强环氧树脂基复合材料的制备及力学性能研究摘要:碳纤维增强环氧树脂基复合材料具有出色的力学性能和优异的耐腐蚀性能,因此在许多领域广泛应用。
本研究使用真空浸渍工艺制备了碳纤维增强环氧树脂基复合材料,并对其力学性能进行了详细研究。
结果表明,制备过程中的浸渍时间、浸渍压力和固化温度对复合材料的力学性能有显著影响。
1. 引言碳纤维增强环氧树脂基复合材料被广泛应用于航空航天、汽车制造、体育器材等领域。
其具有轻质、高强度、高模量、优异的耐腐蚀性能等特点,因此在替代传统金属材料方面具有巨大潜力。
本研究旨在通过真空浸渍工艺制备碳纤维增强环氧树脂基复合材料,并对其力学性能进行评估和分析。
2. 实验方法2.1 材料准备碳纤维和环氧树脂材料被选作本实验的主要原料。
碳纤维具有优良的力学性能和导电性能,是制备复合材料的理想选择。
环氧树脂具有良好的粘接性能和化学稳定性,可以作为基体材料。
同时,活性固化剂和助剂用于提高复合材料的性能。
2.2 制备过程(1)将环氧树脂均匀涂布在碳纤维上;(2)将涂布好的碳纤维经过真空排气处理;(3)将预处理好的碳纤维进行真空浸渍;(4)浸渍后的碳纤维进行固化过程。
2.3 力学性能测试采用传统的拉伸试验和冲击试验评估复合材料的力学性能。
拉伸试验用于评估复合材料的拉伸强度、弹性模量和断裂应变,冲击试验用于评估复合材料的冲击强度。
3. 结果与讨论3.1 浸渍时间通过改变浸渍时间,研究了浸渍时间对复合材料力学性能的影响。
结果表明,随着浸渍时间的增加,复合材料的拉伸强度和弹性模量呈增加趋势,但当浸渍时间过长时,力学性能开始下降。
这是由于过长的浸渍时间导致材料内部产生孔隙和缺陷。
3.2 浸渍压力通过改变浸渍压力,研究了浸渍压力对复合材料力学性能的影响。
结果显示,随着浸渍压力的增加,复合材料的强度和韧性都得到了提高。
这是由于高压可以更好地填充碳纤维与环氧树脂之间的空隙,提高界面的粘合强度。
碳纤维增强陶瓷基复合材料的制备及性能研究碳纤维增强陶瓷基复合材料是一种具有优异性能的复合材料,具有高强度、高刚度、低密度、高温耐性、抗腐蚀等优点,被广泛应用于航空、航天、汽车、新能源等领域。
本文将对碳纤维增强陶瓷基复合材料的制备及其性能研究进行探讨。
1. 背景传统金属材料存在密度大、重量重、强度低等问题,难以满足现代工业的需求。
而复合材料的出现解决了这一问题,毫不夸张地说,“复合材料就是未来工业的材料”。
其中最为突出的就是碳纤维增强陶瓷基复合材料。
2. 制备方法制备碳纤维增强陶瓷基复合材料的方法有多种,其中最为常见的是热压法和热处理法。
热压法是将预先制备的碳纤维增强陶瓷基复合材料在高温高压下进行加热压制,使其形成连续的结构。
这种方法适用于制备块状和板状复合材料。
热处理法则是先将碳纤维增强材料进行数次高温氧化处理,使其表面形成含有氧的层,然后进行碳化处理和陶瓷化处理,最终得到陶瓷基复合材料。
这种方法适用于制备复杂形状的复合材料。
3. 性能研究碳纤维增强陶瓷基复合材料具有优异的性能,如高强度、高刚度、低密度、高温耐性、抗腐蚀等,其力学性能和热学性能是研究的重点。
力学性能研究主要包括拉伸强度、屈服强度、断裂韧性等指标的测试和评估。
热学性能研究主要包括热膨胀系数、导热系数、热稳定性等指标的测试和评估。
研究表明,碳纤维增强陶瓷基复合材料的力学性能远远优于传统金属材料,具有极高的强度和刚度;而其热学性能也表现出卓越的优势,具有很高的耐热性和热稳定性。
4. 应用前景碳纤维增强陶瓷基复合材料具有广泛的应用前景。
在航空和航天产业中,用以制造减重、高刚度、高强度的重要部件;在汽车产业中,用于制造轻量化结构件和发动机;在新能源领域,用于制造高温耐受的储能材料等。
总之,碳纤维增强陶瓷基复合材料具有优异的性能和广泛的应用前景,能够为现代工业的发展做出巨大的贡献。
国内外碳纤维复合材料现状及研究开发方向概要碳纤维复合材料是一种具有很高强度和轻质化特性的新型材料。
它由碳纤维和树脂等基质材料组成,具有优异的力学性能和低密度,广泛应用于航空航天、汽车、船舶、体育器材等领域。
本文将对国内外碳纤维复合材料的现状以及研究开发方向进行概述。
首先,国内外碳纤维复合材料的现状可以概括为以下几个方面。
一是碳纤维复合材料在航空航天领域的应用。
由于碳纤维复合材料具有高强度、低密度和热稳定性等特点,被广泛应用于航空航天领域,如飞机机体、发动机和燃气涡轮等部件。
二是碳纤维复合材料在汽车领域的应用。
汽车制造商越来越倾向于采用碳纤维复合材料制作汽车车身和结构件,以提高汽车的燃油效率和减轻车重,提高车辆的性能。
三是碳纤维复合材料在体育器材领域的应用。
碳纤维复合材料制作的高级运动器材,如高尔夫球杆、网球拍和自行车等,具有很高的刚性和强度,能够提高运动员的表现水平。
四是碳纤维复合材料在船舶领域的应用。
船舶结构件的重量和强度对于船舶的性能至关重要。
碳纤维复合材料具有高强度和轻质化特性,因此被广泛应用于船舶制造,可以提高船舶的性能和节能减排。
接下来,本文将重点讨论国内外碳纤维复合材料的研究开发方向。
一是开发新型碳纤维原料。
目前,市场上主要使用的碳纤维原料是聚丙烯腈纤维。
研究人员正在开发新型纤维原料,如石墨烯、纳米碳纤维等,以提高碳纤维的力学性能和热稳定性。
二是改善碳纤维与基质材料的界面粘结性能。
碳纤维与树脂等基质材料的界面粘结性能对复合材料的力学性能和耐久性影响很大。
研究人员正在探索提高界面粘结性能的方法,如表面改性和介入增韧等。
三是提高碳纤维复合材料的制备工艺。
制备工艺是影响碳纤维复合材料质量的关键因素之一、研究人员正在开发新的制备工艺,如预浸法、纺丝法和层合法等,以提高复合材料的力学性能和制造效率。
四是研究碳纤维复合材料的寿命与损伤机理。
碳纤维复合材料容易受到外界环境和应力加载的影响,会出现疲劳和损伤现象。
碳纤维增强复合材料薄壁管件力学性能试验方法第2 部分:压缩试验1 范围本标准规定了碳纤维增强复合材料薄壁管件压缩性能试验的试样、试验设备、试验条件、试验步骤、计算、试验结果和试验报告等。
本标准适用于测定壁厚不大于1mm(公称直径小于50mm)的纤维增强复合材料薄壁管的压缩强度和模量。
其他复合材料管可参照使用。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 1446-2005 纤维增强塑料性能试验方法总则GB/T 1448—2005 纤维增强塑料压缩性能试验方法GB/T 5350—2005 纤维增强热固性塑料管轴向压缩性能试验方法3 术语和定义本文件没有需要界定的术语和定义。
4 试验条件4.1试验环境条件4.1.1 试验环境要求如下:a) 温度:(23±5)℃;b) 相对湿度:≤70%。
4.1.2 仲裁试验时,环境条件要求如下:a) 温度:(23±2)℃;b) 相对湿度:(50±10)%。
4.2 试验状态调节试样压缩性能试验示意图见图1 4.2.1试验前,压缩试样在4.1.1规定的试验环境条件下至少放置24h,并在相同环境下进行试验。
4.2.2仲裁试验时,压缩试样在4.1.2规定的试验环境条件下至少放置40h,并在相同环境下进行试验。
4.3 试件测试装态。
1——加载压板;2——压缩外套筒;3——内套筒;4——管件试样;5——胶层。
图1 压缩性能试验示意图4.4 加载速度4.4.1测定轴向压缩强度时,加载速度为(5~6)mm/min,误差不超过20%;仲裁试验时,加载速度为(1~2)mm/min,误差不超过20%。
4.4.2 测定轴向压缩弹性模量时,加载速度为(1~2)mm/min,误差不超过20%。
5 仪器设备5.1 试验机载荷相对误差不应超过±1%。
碳纤维复合材料的实物强度与模拟仿真研究碳纤维复合材料是一种具有高强度、轻质、耐腐蚀、抗疲劳等优异性能的材料,广泛应用于航空、航天、汽车、轨道交通、船舶等领域,成为新一代高性能材料。
然而,碳纤维复合材料的实物强度与模拟仿真研究一直是研究的热点和难点之一。
本文将分析碳纤维复合材料的实物强度与模拟仿真研究现状,并展望未来。
一、碳纤维复合材料的实物强度研究1. 实物试验实物试验是研究碳纤维复合材料实物强度的重要方法。
通过实物强度试验,可以获得材料的实际强度和断裂韧性等基本性能指标。
根据试验方法的不同,可以分为单轴拉伸试验、双向剪切试验、缩径拉压试验、冲击试验等。
单轴拉伸试验是最常用的实物试验方法,通过拉伸试验机将样品施加单向拉伸力并测量应力-应变曲线,从而得到材料的拉伸强度、屈服强度、弹性模量和拉伸应变能等指标。
缩径拉压试验可以获得材料在径向压缩和拉伸状态下的强度和变形行为,适用于研究压缩和拉伸异向性。
冲击试验则可以模拟材料在受到冲击载荷时的响应,研究材料的韧性和抗冲击性能。
2. 实物强度影响因素碳纤维复合材料的实物强度受多种因素影响。
材料的纤维类型、体积分数和层叠方式对材料强度有很大影响。
纤维和基体之间的界面粘结力也是影响强度的重要因素。
此外,加工过程中的处理方式和温度等因素也会对材料强度造成影响。
3. 实物强度研究进展随着复合材料在工业领域的广泛应用,实物强度研究也得到了长足发展。
目前,国内外研究机构多采用复合材料的细观结构分析和材料力学性能测试相结合的方法进行研究。
此外,利用样本的数字化设计和孔洞、缺陷等不良状态的模拟,并通过计算机仿真技术对碳纤维复合材料的实物强度进行研究也越来越成为趋势。
二、碳纤维复合材料的模拟仿真研究1. 模拟仿真原理模拟仿真技术是一种基于数值计算方法的虚拟试验方法,能够通过计算机模拟材料受载情况,并得到物理量的计算结果,如材料应力、变形、破坏等。
这些计算结果可以帮助研究人员更好地了解材料的性能特点和响应规律。
碳纤维及其复合材料研究进展(江苏理工学院材料工程学院12110116 于小健)摘要:本文在对碳纤维介绍的基础上,简单阐述了碳纤维的结构、特性及分类,并着重介绍了碳纤维复合材料的性质、分类、应用及成型方法,包括手糊成型,树脂传递模塑,喷射成型,注射成型,纤维缠绕成型及拉挤成型工艺。
关键词:碳纤维;复合材料;分类;成型Research progress of carbon fiber composite material Abstract: Based on the introduction of carbon fiber, briefly discusses the structure, characteristics and classification of carbon fiber, and emphatically introduces the properties of carbon fiber composite materials, classification, application and molding method, including hand lay-up molding, resin transfer molding, injection molding, Forming and pultrusion fiber windingKeywords: carbon fiber; composite material; classification; molding0.序言碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的新型纤维材料。
它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。
与传统的玻璃纤维(GF)相比,杨氏模量是其3倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。
碳纤维如何增强复合材料的⼒学性能2019-08-20摘要:碳纤维增强热塑性树脂基复合材料的应⽤范围进⼀步扩⼤,不难看出,这种材料因其较好的综合性能远远超越了单⼀组合的材料模式。
本⽂试图对碳纤维增强热塑性树脂基复合材料的⼒学性能进⾏深⼊的研究。
本⽂使⽤了简单概述,也采⽤了重点分析的研究策略,梳理了对研究对象的概述和主要的性能特点。
关键词:碳纤维;复合材料;⼒学性能本⽂以碳纤维增强热塑性树脂基复合材料为研究对象,对相关的概念和内容进⾏了梳理和总结。
其中概括了碳纤维的性质性能,对复合材料的概念进⾏了阐述,最后对碳纤维增强热塑性树脂基复合材料的⼒学性能作了详尽的分析说明。
1.关于碳纤维增强热塑性树脂基复合材料的概述⑴复合材料的概念:⾯对传统、单⼀组分的材料已经难以满⾜现在应⽤需要的现实状况,开发研制新材料,是解决这个问题的根本途径。
运⽤对材料改性的⽅法,来改善材料的性能是可取的。
⽽材料改性的⽅法中,复合是最为常见的⼀种。
国际标准化组织对于复合材料的概念有明确的界定:复合材料是指由两种或两种以上不同化学性质和物理性质的物质组成的混合固体材料。
它的突出之处在于此复合材料的特定性能优于任⼀单独组分的性能。
⑵复合材料的分类简介:复合材料的有⼏种分类,这⾥不作⼀⼀介绍。
只介绍两种与本论⽂相关的类别划分。
如果以基体材料分类,复合材料有⾦属基复合材料;陶瓷基复合材料;碳基复合材料;⾼分⼦基复合材料。
本⽂讨论的是最后⼀种⾼分⼦基复合材料,它是以有机化合物包括热塑性树脂、热固性树脂、橡胶为基体制备的复合材料。
第⼆,如果按增强纤维的类别划分,就存在有机纤维复合材料、⽆机纤维复合材料、其他纤维复合材料。
其中本⽂讨论的对象属于⽆机纤维复合材料这⼀类别,因为碳纤维就是⽆机纤维复合材料的其中⼀种。
特别值得注意的是,当两种或两种以上的纤维同时增强⼀个基体,制备成的复合材料叫做混杂纤维复合材料。
实质上是两种或两种以上的单⼀纤维材料的互相复合,就成了复合材料的“复合材料”。
FRP材料的力学性能分析及研究现状摘要:纤维增强复合材料(简称FRP)是一种高性能材料,其在建筑结构加固技术中的应用优势显著。
重点介绍了FRP材料的力学性能,并对FRP材料的研究现状作了综述性的概括。
关键词:FRP 力学性能研究进展如何提高钢筋混凝十结构的耐久性、增强使用寿命是土木工程中迫在眉睫的问题。
鉴于上述方面的需要,由于纤维增强聚合物(FRP)具有轻质、高强、耐久性好等优点,日本、美国、欧洲等发达国家很早就开始对其研究,探索其替代预应力高强钢筋(钢绞线)的可行性。
现在FRP材料在混凝土结构中的应用受到越来越多的国家学者的关注,已成为国际混凝土领域的一大热点。
1、FRP的组成根据FRP纤维种类的不同,FRP可分为碳纤维CFRP、玻璃纤维GFRP、芳纶纤维AFRP以及近来国外新开发的PBO-FRP复合材料和DFRP等复合材料,还有国内最近投入生产的连续玄武岩纤维CBF等。
FRP筋是以纤维为增强材料,以合成树脂为基本结合材料,并掺入适量的辅助剂,采用挤拉成型技术形成的一种新型复合材料。
FRP复合材料的物理力学特性与纤维种类、纤维含量、粘结基体、表面处理以及成型工艺等因素有关,不同成分的FRP筋性能差别很大。
2、FRP筋的特点及力学性能FRP复合材料具有抗拉强度高、质量轻、不锈蚀、热膨胀系数低、无磁性以及抗疲劳性能好等特性。
如CFRP的抗拉强度可达到3000MPa以上,比强度高(比钢材高lO~15倍);CFRP和AFRP的抗疲劳性能较好,大大优于钢材,其疲劳极限可达静荷载强度的70%~80%,但GFRP的疲劳性能低于钢材。
与钢筋不同,FRP筋是各向异性材料,FRP筋的应力-应变关系呈线性关系,与钢材应力-应变关系比较如图1所示。
FRP在达到极限抗拉强度之前无塑性交形,且FRP筋的极限应变比钢筋小。
FRP材料与普通钢材的性能比较见表1。
新型FRP产品PBO-FRP除具有与高强CFRP有相近的力学性能外,还表现出更好的物理性能,如良好的柔韧性等;DFRP冲也具有优异的物理力学性能,抗拉极限应变可达3.5%,延性良好[1]。
复合材料的力学性能与应用研究进展复合材料是由两种或两种以上具有不同物理和化学性质的材料通过特定工艺组合而成的一种新型材料。
由于其独特的性能优势,复合材料在众多领域得到了广泛的应用,并成为材料科学研究的热点之一。
本文将重点探讨复合材料的力学性能以及其在不同领域的应用研究进展。
一、复合材料的力学性能1、强度复合材料的强度通常高于其组成成分的单独材料。
这是因为复合材料中的增强相(如纤维)能够有效地承担载荷,阻止裂纹的扩展。
例如,碳纤维增强复合材料(CFRP)具有极高的强度,其强度可达到钢铁的数倍。
2、刚度刚度是材料抵抗变形的能力。
复合材料的刚度可以通过选择合适的增强相和基体材料进行调整。
例如,玻璃纤维增强复合材料(GFRP)在保持一定强度的同时,具有较好的刚度,适用于制造需要承受较大载荷的结构件。
3、韧性韧性是材料在断裂前吸收能量的能力。
复合材料的韧性往往优于传统材料,这是由于其内部的纤维和基体之间的界面能够有效地分散应力,延缓裂纹的扩展。
例如,芳纶纤维增强复合材料具有出色的韧性,在航空航天领域得到了广泛应用。
4、疲劳性能在循环载荷作用下,复合材料的疲劳性能表现优异。
其内部的纤维能够分担载荷,减少局部应力集中,从而延长材料的使用寿命。
例如,汽车工业中使用的复合材料零部件在长期的振动和交变载荷作用下,仍能保持良好的性能。
二、复合材料的应用研究进展1、航空航天领域在航空航天领域,复合材料的应用越来越广泛。
由于其轻质高强的特点,复合材料被用于制造飞机的机翼、机身等结构件,不仅减轻了飞机的重量,提高了燃油效率,还增强了飞机的性能和可靠性。
例如,波音 787 飞机的机身结构中复合材料的使用比例超过了 50%。
此外,复合材料还被用于制造卫星的结构件和太阳能电池板支架等,为航天任务的成功提供了有力保障。
2、汽车工业随着环保和节能要求的不断提高,汽车轻量化成为了发展的趋势。
复合材料在汽车工业中的应用逐渐增加,如汽车车身、底盘、发动机罩等部件。
碳纤维增强复合材料
首先,碳纤维增强复合材料的制备工艺包括预浸料法、手工层叠法、自动纺织
成型法等。
预浸料法是将碳纤维预先浸渍于树脂中,然后再进行成型和固化,这种工艺能够保证复合材料的质量和性能稳定。
手工层叠法是将预浸的碳纤维逐层手工叠放在模具中,然后浸渍树脂并进行固化,这种工艺成本低廉但生产效率低。
自动纺织成型法是利用自动化设备将预浸的碳纤维布料进行成型,然后进行固化,这种工艺能够快速高效地生产复合材料。
其次,碳纤维增强复合材料具有优异的力学性能,其比强度和比模量分别是金
属材料的2-5倍和5-10倍,因此能够在相同强度下减轻结构重量,提高结构的载
荷能力。
同时,碳纤维增强复合材料具有优异的疲劳性能和耐腐蚀性能,在复杂的工程环境中能够保持稳定的性能。
再者,碳纤维增强复合材料在航空航天领域得到广泛应用,例如飞机机身、机翼、舵面等结构件均采用碳纤维增强复合材料,能够显著减轻飞机重量,提高燃油效率,同时具有优异的抗疲劳和耐腐蚀性能,能够提高飞机的使用寿命和安全性。
最后,随着碳纤维增强复合材料制备工艺的不断改进和成本的降低,其在汽车、船舶、体育器材等领域的应用也在不断扩大。
碳纤维增强复合材料能够有效减轻汽车和船舶的重量,提高燃油效率和行驶性能,同时具有优异的外观和表面质量,能够满足高端体育器材对轻量化和高性能的要求。
总之,碳纤维增强复合材料以其优异的性能和广泛的应用前景,成为当今材料
科学领域的研究热点,随着技术的不断进步,相信碳纤维增强复合材料在未来将有更广阔的发展空间。
碳纤维复合材料的力学性能分析碳纤维复合材料(CFRP)是一种高强度、高刚度、轻量化的材料,广泛应用于航空航天、汽车、体育器材、建筑等领域。
CFRP的力学性能是其能够取代传统材料的主要原因之一。
因此,了解CFRP的力学性能对于材料设计和工程应用具有重要意义。
本文将对CFRP的力学性能进行分析。
强度和刚度CFRP的强度和刚度是其最突出的特点之一。
CFRP的强度通常由其短纤维或连续纤维的拉伸强度决定。
CFRP的刚度则由其纤维的弹性模量决定。
与钢铁等传统材料相比,CFRP的强度和刚度要高得多,可以承受更高的载荷和应变。
然而,CFRP的强度和刚度并不是固定不变的。
它们受到许多因素的影响,包括纤维类型、纤维排列方式、树脂基质的亲合性等。
例如,使用高强度的碳纤维可以显著提高CFRP的强度和刚度。
采用不同的纤维排列方式可以达到不同的性能指标。
因此,在CFRP的制备过程中,必须根据具体应用场景进行材料设计和工艺优化,以实现最佳的性能表现。
疲劳性能疲劳性能是材料在交替载荷作用下的耐久性能,也是CFRP力学性能评价的重要指标之一。
CFRP在疲劳加载的过程中,往往会发生纤维疲劳断裂、界面开裂、树脂基质变形等现象,导致材料性能下降。
因此,疲劳性能的评估需要考虑材料的蠕变、断裂、疲劳裂纹扩展等方面的影响。
近年来,许多研究已经针对CFRP的疲劳性能进行了深入探究。
这些研究结果表明,通过优化材料设计和工艺参数,可以显著改善CFRP的疲劳强度和寿命。
例如,采用更好的纤维预处理和树脂固化技术可以减少裂纹的产生和扩展,从而使CFRP的疲劳寿命延长。
应力分布和损伤在CFRP的应用过程中,由于受到复杂的力学载荷作用,会产生应力集中和局部应变增大的现象,这可能会导致材料损坏和失效。
因此,了解CFRP的应力分布和损伤特征对于材料设计和应用具有重要意义。
CFRP的应力分布和损伤部位通常受到材料组分、表面处理、结构制备等因素的影响。
通过采用力学测试、光学显微镜、扫描电镜等手段,可以对CFRP的应力分布和损伤机制进行更为详细的分析。
PP/碳纤维复合材料力学性能的研究
徐久升
摘要:综合考虑碳纤维材料的加工适应性以及对基体力学性能改善的能力,分别选取了短切碳纤维和碳纤维粉末作为增强相,比较了它们对于PP的增强效果以及加工的难易,通过测定拉伸性能和冲击韧性考察了短切碳纤维的含量以及碳纤维粉末的含量对各自复合材料力学性能的影响。
结果表明,随着碳纤维含量的增加,两种复合材料的冲击韧性以及拉伸性能都呈先增加后减小的趋势,短切碳纤维作为增强相对于基体树脂的力学性能增强效果更为显著,碳纤维粉末作为增强相的复合材料加工适应性强,性能更加稳定,该研究对碳纤维制品的实际注塑生产具有十分重要的意义。
关键词:PP/碳纤维复合材料;拉伸强度;冲击韧性
Research on Mechanical Properties of Carbon Fiber Reinforced PP Composites
Xu Jiusheng
Abstract:In consideration of the difficulty of producing and the ability of property improving,short carbon fiber and carbon fiber powder were selected as reinforced phase to compare the improving effect and producing difficulty of them,the influences of short carbon fiber/carbon fiber powder on the mechanical properties of these two composite materials were discussed by determining tensile property and impact toughness.The results show that with the content of carbon fiber increase,the impact toughness and the tensile property of these two composite materials increase first and then reduce,the reinforce effect of mechanical property are more obvious if short carbon fiber is chosen as the reinforced phase,on the contrary,when carbon fiber powder is chosen to be reinforced phase,a composite material with more stable property and easier producing adaptability is acquired,which is instructive to the actualinjection production of carbon fiber products.
Keywords:PP/CF composite;tensile strength;impact toughness
碳纤维是含碳量高于90%的无机高分子纤维,按其原料可分为3类:聚丙烯腈基(PAN)碳纤维、石油沥青基碳纤维和人造丝碳纤维,其中聚丙烯腈基碳纤维用途最广,需求量也最大,碳纤维是通过有机母体纤维(聚丙烯睛、粘胶丝或沥青等)高温(1000~3000℃,惰性气体环境)分解,碳化制成的,碳纤维增强复合材料(CFRP)是以碳纤维作为增强体的复合材料,与传统材料相比,它具有高比强度、高比模量、质量轻等优越性能,密度不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,拉伸强度一般都在3500MPa以上,是钢的7~9倍,拉伸弹性模量为23000~43000MPa,也高于钢,在新型民用超音速飞机、水下核潜艇、高速列车等尖端科学技术领域以及建筑、机械、化工等领域得到愈来愈广泛的应用,并且在某些领域有逐步取代传统金属材料的趋势。
碳纤维的加入大大改善材料的力学性能,目前市场上的碳纤维主要有纤维态、粉末态两种,对于纤维态碳纤维,由于本身纤维的形态可以承受高强度的力学性能,但对于大型复合制品,由于纤维表面的静电吸引作用,导致纤维和基体很难均匀混合所以加工成型的难度大、成本高,而对于粉末态碳纤维的复合制品,其力学性能略逊,但是加工成型则较容易,笔者通过测定短切碳纤维增强PP复合材料以及碳纤维粉末增强PP复合材料的力学性能,考察了短切碳纤维以及碳纤维粉末的含量对各自复合材
料力学性能的影响,最后比较了两者对于基体树脂(PP)的增强效果以及加工的难易,这为生产实际中使用碳纤维的形态选择提供了参考。
1实验部分
1.1实验原材料
短切碳纤维增强PP复合材料:东莞常平塑胶化工经营部;
碳纤维粉、PP:广东茂名石化实华股份有限公司。
1.2仪器及设备
注塑机:EM150–SVP型,震雄集团;
熔体流动速率测定仪:ZXNR–400A型,上海左科仪器设备有限公司;
拉伸试验机:TCS–2000型,台湾高铁科技股份有限公司;
简支梁摆锤式冲击试验机:扬州市江都道纯试验机械厂;
锥形双螺杆挤出机:SJSZ20/40型,武汉怡扬塑料机械厂。
2结论
(1)随着碳纤维含量的增加,两种复合材料的冲击性能以及拉伸性能都呈先增加后减小的趋势;
(2)短切碳纤维增强PP复合材料的力学性能在碳纤维质量分数达到8%左右达到极值,碳纤维粉末增强PP复合材料的力学性能在碳纤维质量分数达到25%左右达到极值;(3)短切碳纤维作为增强相对基体树脂的力学性能增强效果更为显著,碳纤维粉末由于其粉末形态,更容易均匀分散于基体树脂之中,其加工适应性强,性能更加稳定。
实验对于碳纤维复合制品的实际工艺生产具有一定的借鉴意义。