一道数学竞赛题的解法中蕴涵的数学思想方法
- 格式:pdf
- 大小:253.69 KB
- 文档页数:2
例谈整体思想在数学解题中的应用打开文本图片集“整体”与“局部”是一对哲学范畴的概念.整体是由各个局部构成的,但并非各个局部的简单相加,它表现出局部所不具有的优越性.局部是整体的一部分,它有时会影响整体,甚至还起到决定性的作用.整体思想在数学解题中非常重要,它使得我们在具体的解题过程中能不纠缠于“细枝末节”,达到“直捣黄龙”的境地,能使我们清楚地“看到”问题的本质,让人感到有种“居高临下”的感觉.函数零点问题一般都用零点分布定理,并结合分类讨论和数形结合的思想加以解决.这样的处理体现出解题的通性、通法,但解决过程有时会变得非常烦琐,看不到问题的本质.如果能借助于整体思想,那就使我们在解题时“既见树木,又见森林”了.例1已知函数f(某)=某2+2a某+b在[1,2]上有两个零点,证明:0≤a+b≤2.一般性解法:利用零点的分布问题加以讨论,可以得到有关a,b的不等式组,然后再利用线性规划的知识.尽管能将结果求出来,但计算量大,一不小心就会求错.这种解法是从“局部”入手,题目的意思被分解得很细,显得很程序化,策略性的东西没有体现出来,没有表现出一定的思维含量.如果我们从“整体”的角度加以求解,则又将会是另一番情境.另解:设f(某)的两个零点为某1,某2∈[1,2],则f(某)=某2+2a某+b=(某-某1)(某-某2),由题意知:要求a+b的范围,故可以先整体地将它表达出来,于是令某=,则+a+b=f()=-某1-某2,即a+b=某1-·某2--.由于某1,某2∈[1,2],即知某1-某2-∈[,],所以0≤a+b≤2.评注:上面的另解没有在细枝末节上下功夫,而是采用“设而不求,整体代换”的思想,关键是理解了零点与根的关系,计算过程显得简洁.此题还可以作如下的变式:已知函数f(某)=某3+2a某+b在[1,2]上有三个零点,证明:0≤a+b≤.如果采用一般性的解法,就会显得非常烦琐,让人“望而却步”,但如果采用另解的思想就能轻松地加以解决,由此可见从“整体”上切入问题的重要性.利用上面的解题思想方法,我们可以很容易解2022年浙江省高中数学竞赛第19题:设二次函数f(某)=a某2+(2b+1)某-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,求a2+b2的最小值.解:由题意,设t为二次函数在[3,4]上的零点,则有at2+(2b+1)t-a-2=0,将它变形为(2-t)2=[a(t2-1)+2bt]2.于是,由柯西不等式知,(2-t)2=[a(t2-1)+2bt]2≤(a2+b2)[(t2-1)+4t2]=(a2+b2)(1+t2)2,即a2+b2≥()2=≥.因为g(t)=t-2+,t∈[3,4]是减函数,上式在t=3,a=-,b=-时取等号,故a2+b2的最小值为.类似的题目还有:已知a,b∈R,关于某的方程某4+a某3+2某2+b某+1=0有一个实根,求a2+b2的最小值.此题留给读者思考.一般在处理函数极值问题时,都是先对函数求导,再利用导函数的性质研究其单调性,这是从局部来处理函数极值问题的通性、通法.如果能对问题先进行处理,再利用整体思想和数形结合的思想,使得“图形一见,答案出现”,从函数的图象来整体地把握函数的极值问题,就会达到事半功倍之效.例2ma某{某3+2某+t,某≤1}=.一般性解法:设f(某)=某3+2某+t,某≤1,再对f(某)求导,求出f(某)的极值和端点处的函数值,然后将极值和端点处的函数值取绝对值比较大小后,求出最大值,这要涉及分类讨论,计算过程比较烦琐.另解:注意到y=某3+2某在某≤1上是奇函数,所以,y∈[-3,3],于是,要求ma某{某3+2某+t,某≤1},只要求ma某{y+t,y≤3}即可,由绝对值的几何意义(如图1)即知:ma某{y+t,y≤3}=t+3.评注:此题改编于2022年浙江高考数学(理科)卷第15题:已知ma某{某2-2某-t,0≤某≤3}=2,则t=.同样,此高考题采用整体的思想加以解决的话,口算就可以,根本就不需要动笔.这也体现高考试题考查学生“少算多想”的理念.例3已知e为自然对数的底数,设函数f(某)=(e某-1)(某-1)k(k=1,2),则A.当k=1时,f(某)在某=1处取到极小值B.当k=1时,f(某)在某=1处取到极大值C.当k=2时,f(某)在某=1处取到极小值D.当k=2时,f(某)在某=1处取到极大值一般性解法:学生往往不假思索,先对f(某)求导,然后再画图象,这是一种通性通法.虽然也可以将图象画出来,但这样做有点“小题大做”.另解:可以通过画草图(见图2),此题的关键点就是点(1,0),这是由函数解析式f(某)=(e某-1)(某-1)k(k=1,2)所决定的.评注:上述问题的解决过程能有效地考查学生的数形结合的意识、整体和局部地看问题的意识.笔者通过研究发现,这道试题有一定的背景,即2022年浙江高考数学(理科)卷第22题第1小题:已知a是给定的实常数.设函数f(某)=(某-a)2(某+b)ek,b∈R,某=a是f(某)的一个极大值点.(1)求b的取值范围.(2)略.另一背景即2022年浙江省高中数学竞赛第9题:设函数f(某)=某(某-1)2(某-2)3(某-3)4,则函数y=f(某)的极大值点为()A.某=0B.某=1C.某=2D.某=3上述两个题目都可以采用整体和局部的思想加以解决,同时也体现出数形结合在研究问题中的作用.有关函数的导数问题,我们往往都是直接对函数“强制求导”,这是我们解题屡试不爽的“利器”.但有时我们可以反其道而行之,不求导而对函数求积分,利用积分思想从整体上去把握函数的特征,这能凸现我们的高观点.例4已知a>0,b∈R,函数f(某)=4a某3-2b某-a+b.(1)证明:当0≤某≤1时,①函数f(某)的最大值为2a-b+a;②f(某)+2a-b+a≥0.(2)略.一般性解法:学生碰到此类函数问题,先对函数f(某)=4a某3-2b某-a+b求导,然后分类讨论求极值,再通过与f(0),f(1)比较大小来解决问题.这样做会导致复杂的计算.另解:①证明:由于f"(某)=24a某>0,故由函数的凹凸性知:f (某)ma某=ma某{f(0),f(1)}=+=2a-b+a.②由题意,函数f(某)在[0,1]上与坐标轴围成的面积为:f(某)d某=0.设折线A-C-B对应的函数为g(某),由于函数f(某)在[0,1]上为凹函数,故某∈[0,1]时,g(某)≥f(某).于是,g(某)d某≥f(某)d某=0,即知g(某)在[0,1]上与坐标轴围成的面积为大于等于0,我们有此可以得到:f(某)ma某≥f(某)min.若不然,即f(某)ma某S△BBE,S△DCE>S△AOD,故g(某)在[0,1]上与坐标轴围成的面积:g(某)d某=S△AOD-S△DCE+S△BBE-S△CCE<0+0=0,这与g(某)d某≥f(某)d某=0矛盾.因此,由f(某)ma某≥f(某)min,知f(某)+2a-b+a≥f(某)min+f(某)ma某≥f(某)min+f(某)min≥0.评注:第②题一般采用导函数法,但我们反其道而行之,不用求导,反而用积分的加以解决.事实上,根据高等数学的观点:导数是研究函数局部性质的一个“利器”,但要研究整体的性质非借助于积分不可.所以,我们借助于积分的,能在整体上清楚地看到解决第②题的关键:f(某)ma某≥f(某)min,此题的本质显得非常直观、简单,论证过程自然流畅、一气呵成.我们被这样精美的构思、奇妙的解法、鲜明的本质所深深地震撼,真正由衷地感叹命题者的“观点之高”和命制的意义所在.杜甫“望岳”中有两句诗:会当凌绝顶,一览众山小.这两句诗不仅表达了诗人俯视一切的雄心和气概,同时还很好地刻画了整体地看待事物的意境,更加凸现泰山高大巍峨的气势,使得诗人登高望远,眼前景色一览无余,给人一种心旷神怡的感觉.所以,我们在研究数学问题时,应该首先关注题目的整体结构,这样有助于我们把握解题的大方向,使得我们能“看到”问题的本质.然后,再从局部入手.由此可见,整体的思想方法就像一个“指南针”,它指引着我们解题的方向,使得我们不至于被细节迷失方向.。
初一数学指导数学竞赛型及思路对于初一的学生来说,参与数学竞赛是一项具有挑战性但又充满乐趣和收获的活动。
数学竞赛不仅能够加深对数学知识的理解和掌握,还能培养逻辑思维、创新能力和解决问题的能力。
在这篇文章中,我们将探讨初一数学竞赛的类型以及解题思路。
一、初一数学竞赛的类型1、计算类竞赛题这类题目通常涉及整数、分数、小数的四则运算,以及简便运算、巧算等。
例如,给出一个复杂的式子,要求通过运用运算定律和数学技巧进行快速准确的计算。
2、代数类竞赛题初一的代数主要包括代数式的化简、求值,方程的解法和应用等。
竞赛中可能会出现一些需要灵活运用代数方法解决的问题,比如利用设未知数、列方程来解决实际问题,或者通过代数式的变形来找出规律。
3、几何类竞赛题几何部分会涉及到线段、角的计算和证明,三角形、四边形的性质和判定等。
可能会要求学生通过添加辅助线、运用几何定理来解决复杂的几何图形问题。
4、数论类竞赛题数论在初一数学竞赛中也会有所涉及,如整除、余数、质数和合数等概念。
此类题目往往需要学生对数的性质有深入的理解和灵活的运用。
5、组合数学类竞赛题组合数学包括排列组合、抽屉原理等内容。
例如,计算从给定元素中选取若干个元素的组合数,或者运用抽屉原理来证明某个存在性问题。
二、初一数学竞赛的解题思路1、仔细审题这是解决任何数学问题的第一步。
要弄清楚题目中给出的条件、问题的要求以及隐藏的信息。
有时候,题目中的关键词或关键语句会给我们提供重要的解题线索。
2、选择合适的方法根据题目的类型和特点,选择合适的解题方法。
比如,对于计算类题目,可以尝试运用运算定律进行简便计算;对于代数问题,设未知数建立方程可能是一个有效的方法;对于几何问题,合理添加辅助线往往能使问题迎刃而解。
3、尝试从简单情况入手如果遇到复杂的问题,可以先从简单的情况开始分析,寻找规律或者解题的思路。
例如,在解决排列组合问题时,可以先从较少的元素开始计算,逐步掌握方法后再处理复杂的情况。
1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
数学竞赛骗分技巧在数学竞赛中,骗分是常用的一种策略。
骗分的本质是挖掘题目中蕴含的隐含条件或者特征,通过利用一些巧妙的方法,获得一定的得分。
下面我将就数学竞赛中的骗分技巧进行简单地讲解。
一、数学竞赛中的骗分思路1、套公式套公式是骗分的常用技巧之一,特别是在数学初、中阶段的竞赛中。
在数学的各个知识领域中,都有一定的公式和定理可以用来解决问题。
如果你掌握了这些公式和定理,并且能够灵活运用,那么在比赛中就能够很好地利用这些技巧来骗分。
2、图形转化特别是在初中阶段,通过图形的转化来骗分是比较常见的一种方法。
通过将原问题转化为某些经典图形的特殊情况,得到一些结论。
这种方法的主要思路是通过“多画图,多套形,细心揣摩”的思想,对问题展开分析,尝试从中寻找到可以利用的方法,并运用起来。
3、问题分解将原问题分解为若干小问题,分别分析解决,可以更好地理解问题的本质。
在比赛中,由于时间有限,很多问题难以直接得到解决,但是如果将问题精细化分解,就可以先解决一部分,进而解决问题的全貌。
4、建立方程或等式如果问题中涉及到多种变量和参数,可以考虑建立方程或等式,通过方程或等式,转化为简单的关系求解问题。
二、骗分技巧的应用1、细节的处理在解题时,应该注意题目中的一些细节,这些细节往往是解题的关键所在。
比如,要注意题目中的条件、特殊符号的处理、数据范围、空间限制等,这些都是得分点。
2、利用已知条件在解题过程中,已知条件往往是解决问题的关键。
通过将不定方程、不等式、图形、数列等与已知条件结合起来,可以找到问题求解的方式。
3、逻辑思考逻辑思考在数学竞赛中是非常重要的。
因为逻辑思考可以帮助我们明确问题的解决路径和实现方法。
在解决问题时,不仅需要思考问题的具体意义,还需要在脑海中给出一个清晰的解题计划。
4、注意误解在解题时,经常会因为理解上的误解而在得分上占到不利的地位。
比如,数学中的“等价、等效、等概率、等比例、等角、等腰”等,各有不同的理解方式。
2016年江苏省第⼗三届⾼等数学竞赛试题(本科⼀级)讲解江西省南昌市2015-2016学年度第⼀学期期末试卷(江西师⼤附中使⽤)⾼三理科数学分析⼀、整体解读试卷紧扣教材和考试说明,从考⽣熟悉的基础知识⼊⼿,多⾓度、多层次地考查了学⽣的数学理性思维能⼒及对数学本质的理解能⼒,⽴⾜基础,先易后难,难易适中,强调应⽤,不偏不怪,达到了“考基础、考能⼒、考素质”的⽬标。
试卷所涉及的知识内容都在考试⼤纲的范围内,⼏乎覆盖了⾼中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的⼤部分知识点均有涉及,其中应⽤题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学⽣感受到了数学的育才价值,所有这些题⽬的设计都回归教材和中学教学实际,操作性强。
2.适当设置题⽬难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较⼤,学⽣不仅要有较强的分析问题和解决问题的能⼒,以及扎实深厚的数学基本功,⽽且还要掌握必须的数学思想与⽅法,否则在有限的时间内,很难完成。
3.布局合理,考查全⾯,着重数学⽅法和数学思想的考察在选择题,填空题,解答题和三选⼀问题中,试卷均对⾼中数学中的重点内容进⾏了反复考查。
包括函数,三⾓函数,数列、⽴体⼏何、概率统计、解析⼏何、导数等⼏⼤版块问题。
这些问题都是以知识为载体,⽴意于能⼒,让数学思想⽅法和数学思维⽅式贯穿于整个试题的解答过程之中。
⼆、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满⾜AB AC →→=,则A BA C →→的最⼩值为()A .14- B .12-C .34-D .1-【考查⽅向】本题主要考查了平⾯向量的线性运算及向量的数量积等知识,是向量与三⾓的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确⽤OA ,OB,OC 表⽰其它向量。
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数 当头数一样时,脚的关系:兔子是鸡的2倍 当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法两个量的“鸡兔同笼”问题——变例【例 1】 某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答 【关键词】假设思想方法 【解析】 做错(52079 ) (52)3⨯-÷+= (道),因此,做对的20317-= (道). 【答案】17道【巩固】 数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?例题精讲知识精讲教学目标6-1-9.鸡兔同笼问题(二)【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】假设他将所有题全部做对了,则可得100分,实际上只得了60分,比假设少了40分,做错一题要少得8分,少得的40分中,有多少个8分,就是他做错的题的数量,则知他做对了15道.【答案】15道【巩固】东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】这道题也类似于“鸡兔同笼”问题.假设刘钢20道题全对,可得分520100⨯=(分),但他实际上只得86分,少了1008614-=(分),因此他没做或做错了一些题.由于做对一道题得5分,没做或做错一道题倒扣2分,所以没做或做错一道题比做对一道题要少527+=(分).14分中含有多少个7,就是刘钢没做或做错多少道题.所以,刘钢没做或做错题为1472-=÷=(道),做对题为20218(道).【答案】18道【巩固】某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。
数学竞赛中的立体几何问题立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法.一、求角度这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角.立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90︒︒;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=⋅得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角.例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=⋅.分析:如图,设射线OA 任意一点A ,过A 作AB α⊥于点B ,又作BC OC ⊥于点C ,连接AC .有:cos ,cos ,cos ;OC OB OCOA OA OBαβγ=== 所以,cos cos cos αβγ=⋅.评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立.②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小.例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, F 在棱CD 上,使得:()0AE CFEB FDλλ==<<∞,记()f λλλαβ=+, αOC BAF EDCBAG其中λα表示EF 与AC 所成的角,其中λβ表示EF 与BD 所成的角,则: (A )()f λ在()0,+∞单调增加;(B )()f λ在()0,+∞单调减少; (C )()fλ在()0,1单调增加;在()1,+∞单调减少;(D )()f λ在()0,+∞为常数.` 分析:根据题意可首先找到与,λλαβ对应的角.作EG ∥AC ,交BC 于G ,连FG .显然 FG ∥BD ,∠GEF=λα,∠GFE=λβ.∵AC ⊥BD ,∴EG ⊥FG ∴90λλαβ+=︒例五、(1994年全国联赛一试)已知一个平面与一个正方体的12条棱的夹角都等于α,则sin α= .分析:正方体的12条棱可分为三组,一个平面与12条棱的夹角都 等于α只需该平面与正方体的过同一个顶点的三条棱所成的角都等于α即可.如图所示的平面A BD '就是合乎要求的平面,于是:sin 3α=二、求体积这类题常是求几何体的体积或要求解决与体积有关的问题 解决这类题的关键是 ,根据已知条件选择合适的面作为底面并求出这个底面上的高例十五、(2003年全国联赛一试)在四面体ABCD 中,设1,AB CD ==直线AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于 ()()()(11 ; ; 23A B C D 分析:根据锥体的体积公式我们知道:1V=3S h ⋅⋅.从题目所给条件看,已知长度的两条线段分别位于两条异面直线上,而已知距离是两条异面直线之间的距离而非点线距.显然需要进行转化.作BE ∥CD,且BE=CD ,连接DE 、AE ,显然,三棱锥A —BCD 与三棱锥A —BDE 底面积和高都相等,故它们有相等的体积.于是有:111sin 362A BCD A BDE D ABE BDE V V V S h AB BE ABE h ---∆====⋅⋅∠⋅=例十六、(2002年全国联赛一试)由曲线224,4,4,4x y x y x x ==-==-围成的图形绕y 轴旋转一周所ODCBAD 'C 'B ' A 'EDCBA得旋转体的体积为V 1,满足()()22222216,24,24x y x y x y +≤+-≥++≥的点(),x y 组成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则: (A )V 1=12V 2; (B )V 1=23V 2; (C )V 1=V 2; (D )V 1=2V 2; 分析:我国古代数学家祖暅在对于两个几何体体积的比较方面作出了卓越的贡献,祖暅原理告诉我们: 对于两个底面积相同,高 相等的几何体,任做一个 平行于底面的截面,若每 一个截面的面积相等,则这两个几何体的体积相等.运用祖 原理的思想我们可以将不规则的几何体的体积计算转化为规则几何体的体积计算.如计算球的体积时我们可以将半球转化为圆柱与圆锥的组合体.显然,本题中的两个几何体符合祖暅原理的条件,比较其截面面积如下:取()44y a a =-≤≤,则:()21162164S aa ππππ=-⋅⋅=-当0a <时:()()()22221642164S aa a ππππ=⋅--⋅-+=+ 当0a >时:()()()22221642164S a a a ππππ=⋅--⋅--=-显然,12S S =,于是有:12V V =.例十七、(2000年全国联赛一试)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是 .分析:由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球心,所以每组对棱间的距离即为内切球的直径,于是有:22r a =∴3343424V a a π⎛⎫=⋅⋅= ⎪ ⎪⎝⎭练习:同样可用体积法求出棱长为a 的正四面体的外 接球和内切球的半径.分析可知,正四面体的内切球 与外接球球心相同,将球心与正四面体的个顶点相连,可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度的四分之一,外接球半径即为高度的四分之三.故只要求出正四面体的高度即可.又:3h a ===,所以,,412R a r ==.ROEDC APr例十九、(1998年全国联赛一试)ABC ∆中,90,30,2C B AC ∠=︒∠=︒=,M 是AB 的中点.将ACM ∆沿CM 折起,使A 、B 两点间的距离为22A —BCM 的体积等于 . 分析:关于折叠问题,弄清折叠前后线段之间的变与不变的关系往往是我们解决问题的关键,问题中经常会涉及折叠图形形成二面角,在折叠前作一条直线与折叠线垂直相交,于交点的两侧各取一点形成一个角,于是在折叠过程中,此角始终能代表图形折叠所形成的二面角的大小.此外,通过分析可知解决本例的另一个关键是需要得到棱锥的高,其实只要能找到二面角,高也就能迎刃而解了.如图,作BD ⊥CM 的延长线相交于D ,AF ⊥CM 于F ,并延长到E ,使EF=BD ,连BE . 显然,AF=EF=BD=3EB=DF=2,所以: A E 2=AB 2-EB 2=8-4=4三棱锥A —BCM 的高即点A 到平面BCM 的距离也就是等腰∆AEF 中点A 到边EF 的距离.根据面积相等FF M ME E D D BB C C A A可求得:h ==∴11132V =⋅⋅=例二十、(1995年全国联赛一试)设O 是正三棱锥P —ABC 底面△ABC 的中心,过O 的动平面与P —ABC 的三条侧棱或其延长线的交点分别记为Q 、R 、S ,则和式111PQ PR PS++ (A )有最大值而无最小值; (B )有最小值而无最大值; (C )既有最大值又有最小值,且最大值与最小值不等; (D )是一个与平面QRS 位置无关的常量. 分析:借助于分割思想,将三棱锥P —QRS 划分成三个以O 为顶点,以三个侧面为 底面的三棱锥O —PQR ,O —PRS ,O —PSQ . 显然三个三棱锥的高相等,设为h ,又设QPR ∠=RPS SPQ α∠=∠=,于是有:()13P QRS O PQR O PRS O PSQ PQR PRS PSQ V V V V S S S h ----∆∆∆=++=++⋅ ()1sin 6PQ PR PR PS PS PQ h α=⋅+⋅+⋅⋅⋅ 又:1sin sin 6P QRS Q PRS V V PQ PR PS αθ--==⋅⋅⋅⋅,其中θ为PQ 与平面PRS 所成的角.()sin sin sin PQ PR PR PS PS PQ h PQ PR PS ααθ∴⋅+⋅+⋅⋅⋅=⋅⋅⋅⋅于是得:111PQ PR PS ++sin hθ= 例二十一、(1993年全国联赛一试)三棱锥S —ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 中点,作与SC 平行的直线DP . 证明:(1)DP 与SM 相交;OSRQCBAP(2)设DP 与SM 的交点为D ',则D 为三棱锥S —ABC 的外接球的球心. 分析:根据题中三棱锥的特点,可将三棱锥补形成为一个如图所示的长方体,因为 C 、M 、D 三点共线,显然,点C 、S 、D 、M 在同一平面内.于是有DP 与SM 相交. 又因为:12DD DM SC MC '==,而点D 为长 方体的底面SAEB 的中心,故必有点D '为 对角线SF 的中点,即为长方体的也是三棱 锥的外接球的球心.例二十二、(1992年全国联赛一试)从正方体的棱和各个面的面对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是 . 分析:本题可以采用构造法求解.考查图中的 四条线段:A 1D 、AC 、BC 1、B 1D 1,显然其中任意 两条都是异面直线.另一方面,如果满足题目 要求的线段多于4条,若有5条线段满足要求, 因为5条线段中任意两条均为异面直线,所以其中任意两条没有公共点,于是产生这些线段的端点几何体的顶点的个数必定大于或等于10个,这与题中的正方体相矛盾.故:4k =.例二十三、(1991年全国联赛一试)设正三棱锥P —ABC 的高为PO ,M 为PO 的中点,过AM 作与棱BC 平行的平面,将三棱锥截为上、下两个部分,试求此两部分的体积比. 分析:取BC 的中点D ,连接PD 交AM 于G ,设 所作的平行于BC 的平面交平面PBC 于EF ,由 直线与平面平行的性质定理得:EF ∥BC ,连接AE ,AF ,则平面AEF 为合乎要求的截面.GFMED 'DCBA SH A 1DCBA D 1C 1B 1F E OM D CBAPHG作OH ∥PG ,交AG 于点H ,则:OH=PG .51112BCPD PG GDGD GD AD EF PG PG PG OH AO +===+=+=+=; 故:2425A PEF PEF A PBC PBC V S EF V S BC -∆-∆⎛⎫=== ⎪⎝⎭;于是:421A PEF A EFBC V V --=. 三、求面积这类题常设计为求几何体中某一特殊位置的截面面积 解决这类题的关键是 ,封断出截面的形状及截面和已知中相关图形的关系四、求距离这类题常是以几何体为依托 ,求其中的某些点 、线 、面之间的距离 解决这类题的关键在于 ,根据已知条件判断出或作出符合题意的线段 ,其长度就是符合题意的距离4、(1996年全国联赛一试)已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a ,侧棱为b .取CD 中点G ,则AG ⊥CD ,EG ⊥CD ,故∠AGE 是二面角A —CD —E 的平面角.由BD ⊥AC ,作平面BDF ⊥棱AC 交AC 于F ,则∠BFD 为二面角B —AC —D 的平面角.AG=EG=b 2-a 2,BF=DF=2a b 2-a 2b,AE=2b 2-(233a )2=2b 2-43a 2.由cos ∠AGE=cos ∠BFD ,得2AG 2-AE 22AG 2=2BF 2-BD 22BF 2.∴ 4(b 2-432a 2)b 2-a 2=4a 2b 24a 2(b 2-a 2)⇒9b2=16a 2,⇒b=43a ,从而b=2,2a=3.AE=2.即最远的两个顶点距离为3. 分析:设正三棱锥的底面边长为a ,侧棱长为b ,则:2222223244a a b a aa b b -=⋅--即:2223b a b =-化简得: 32ba =所以,3,2a b ==.于是可求得线段PP '的长:2432pp '=-=.于是有最远距离为底边长3.2ababbGEFBCDAACBD EFOP 'P五、求元素个数这类题常以长方体或三棱锥等几何体为背景,通过计算符合题意的元素个数,来考查学生对计数问题的理解程度解决这类题的关键是计数时要有规律的数,作到不重复、不遗漏8、如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条 解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D .9、给定平面上的5个点A 、B 、C 、D 、E ,任意三点不共线. 由这些点连成4条线,每点至少是一条线段的端点,不同的连结方式有 种.解:图中,4种连结方式都满足题目要求.(图中仅表示点、线间连结形式,不考虑点的位置) .情况(1),根据中心点的选择,有5种其连结方式;情况(2),可视为5个点A 、B 、C 、D 、E 的排列,但一种排列与其逆序排列是同一的,且两者是一一对应的,则有连结方式5!602=种;情况(3),首先是分歧点的选择有5种,其次是分叉的两点的选择有246C =种,最后是余下并连两点的顺序有别,有2!种,共计56260⨯⨯=种;情况(4),选择3点构造三角形,有3510C =种. 共有5606010135+++=种连结方式.B‘C’D’A‘CDASQ PR acb(1) (2) (3) (4)3. 设四棱锥P ABCD -的底面不是平行四边形, 用平面α去截此四棱锥, 使得截面四边形是平行四边形, 则这样的平面 α( )(A) 不存在 (B)只有1个 (C) 恰有4个 (D)有无数多个例一、(1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数为 (A )4; (B )8; (C )12; (D )24.分析:一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边必须是正方体的面对角线.考虑正方体的12条面对角线,从中任取一条可与其他面对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有边共出现112224C =次,而每一个三角形由三边构成,故一共可构成的等边三角形个数为2483=个. 例二、(1995年全国联赛一试)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是 .分析:就四棱锥P —ABCD 而言,显然顶点P 的颜色必定不同于A 、B 、C 、D 四点,于是分三种情况考虑:① 若使用三种颜色,底面对角线上的两点可同色,其染色种数为:3560A =(种) ② 若使用四种颜色,底面有一对对角线同色,其染色种数为:1425240C A ⋅=(种)③ 若使用五种颜色,则各顶点的颜色各不相同,其染色种数为:55120A =(种)故不同染色方法种数是:420种.六、特殊四面体1.四面体 由于四面体是三角形在空间中的推广,因此三角形的许多性质也可以推广到四面体: (1)连接四面体的棱中点的线段交于一点,且在这里平分这些线段;(2)连接四面体任一顶点与它对面重心的线段交于一点,且这点将线段分成的比为3:1,G 称为四面体的重心.(3)每个四面体都有外接球,球心是各条棱的中垂面的交点.(4)每个四面体都有内切球,球心是四面体的各个二面角的平分面的交点. 例10(1983年全国)在六条棱长分别为2、3、3、4、5、5的所有四面体中,最大的体积是多少?证明你的结论.2.特殊四面体(i )等腰四面体:三组对棱分别相等的四面体.性质(1)等腰四面体各面积相等,且为全等的锐角三角形;(2)体积是伴随长方体的13.(ii )直角四面体 从一个顶点出发的三条棱相互垂直的四面体.性质(1)直角四面体中,不含直角的面是锐角三角形(称该面为底面);(2)任一侧面面积是它在底面投影的面积和地面面积的比例中项,且侧面面积的平方和是底面面积的平方;(3)三个侧面与底面所成三个二面角的余弦的平方和是1.3.正四面体 每个面都是全等的等边三角形的四面体.性质(1)若正四面体的棱长为a ,则四面体的全面积S =3a 2,体积V =212a 3;(2)正四面体对棱中点的连线长d =22a ;(3)正四面体外接球的半径64a ,内切球的半径为612a .七、“ 多球” 问 题在解决立体几何问题时, 常会遇到若干个球按照一定的法则“ 叠加” 的问题, 我们将 这类问题简称为“ 多球” 问题. 对于“ 多球” 问 题, 我们往往可以从多球中提炼出球心所组成的立体图形, 将问题简化, 然后通过解决这简化的问题, 获得原问题的待求结论,这是 解决“ 多球” 问题的一个常用方法.5、将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45 而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.6、底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形.所以注水高为1+22.故应注水π(1+22)-4×43π(12)3=(13+22)π. 例 1在桌面上放着四个两两相切、 半 径均为r 的球, 试确定其顶端离桌面的高度;并求夹在这四个球所组成图形空隙中与四个 球均相切的小球的半径.例 2 制作一个底圆直径为4 c m的圆柱形容器,要内装直径为2 c m的钢珠2 6 只,那么这容器至少要多高?( 上海市1 9 8 6 年竞赛试题)例 3 在正四面体内装入半径相同的球,使相邻的球彼此相切,且外层的球又和正四面体的面都相切,如此装法,当球的个数无穷大时,求所装球的体积与正四面体体积之比的极限.( 第八届希望杯高二数学培训题)八、体积法及其应用体积法是处理立体几何问题的重要方法.在高中数学竞赛中,利用体积法解题形式简洁、构思容易,内涵深刻,应用广泛,备受青睐.几何体的体积包括基本几何体的体积计算、等积变换等方法,同时有以下常用方法和技巧:( 1 ) 转移法:利用祖咂原理或等积变换,把所求几何体转化为与它等底、等高的几何体的体积.( 2 ) 分割求和法:把所求几何体分割成基本几何体的体积.( 3 ) 补形求差法:通过补形化归为基本几何体的体积.( 4 ) 四面体体积变换法.( 5 ) 算两次法:对同一几何体的体积,从两种方法计算,建立出未知元素的等量关系,从而使问题求解.利用这种方法求点到平面的距离,可以回避作出表示距离的垂线段.另外,体积法中对四面体的体积变换涉及较多应用广泛.关于四面体的体积有如下常用性质:( 1 ) 底面积相同的两个三棱锥体积之比等于对应高之比;( 2 ) 高相同的两个三棱锥的体积比等于其底面积之比;( 3 ) 用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方;九、立体几何中的截面问题截面问题涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形的性质及截面图形的最值.本文介绍此类问题的求解方法.1 判断截面图形的形状2 截面面积和周长的计算3 计算截面图形的个数4 确定截面图形的性质5 求截面图形的最值九、综合问题7、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且P A=4,C 为P A 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为A .53 B .253 C .63 D .263解:AB ⊥OB ,⇒PB ⊥AB ,⇒AB ⊥面POB ,⇒面P AB ⊥面POB .OH ⊥PB ,⇒OH ⊥面P AB ,⇒OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,⇒PC ⊥面OCH .⇒PC 是三棱锥P -OCH 的高.PC=OC=2.而∆OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30︒,OB=PO tan30︒=263.解2:连线如图,由C 为P A 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PHPB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=α,则V P —AOB =16R 3sin αcos α=112R 3sin2α,A BP OH CV B -PCO =124R 3sin2α.PO 2PB 2=R 2R 2+R 2cos 2α=11+cos 2α=23+cos2α.⇒V O -PHC=sin2α3+cos2α⨯112R 3.∴ 令y=sin2α3+cos2α,y '=2cos2α(3+cos2α)-(-2sin2α)sin2α(3+cos2α)2=0,得cos2α=-13,⇒cos α=33,∴ OB=263,选D .例19把一个长方体切割成k 个四面体,则k 的最小值是 .例20已知l αβ--是大小为45的二面角,C 为二面角内一定点,且到半平面α和β和6,A ,B 分别是半平面α,β内的动点,则ABC ∆周长的最小值为_____.例21如图所示,等腰ABC △的底边AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值? (3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.例六、设锐角,,αβγ满足:222cos cos cos 1αβγ++=.求证:tan tan tan αβγ⋅⋅≥分析:构造长方体模型.构造如图所示的长方体 ABCD —A 1B 1C 1D 1,连接AC 1、A 1C 1、BC 1、DC 1. 过同一个顶点的三条棱AD 、AB 、AA 1与对角线AC 1所成的角为锐角,,αβγ,满足:222cos cos cos 1αβγ++=不妨设长方体过同一个顶点的三条棱AD 、AB 、AA 1的长分别为,,a bc .则:tan tan tan aa b b c cαβγ=≥=≥=≥ 以上三式相乘即可.证明二:因为,,αβγ为锐角,故:2222sin 1cos cos cos 2cos cos ααβγβγ=-=+≥⋅,sin α∴≥同理:sin βγP ED F BCAD 1C 1B 1 A 1DC BA例22已知三棱锥ABC P -的三条侧棱PA 、PB 、PC 两两垂直,侧面PAB 、PBC 、PCA 与底面ABC 所成的二面角的平面角的大小分别为1θ、2θ、3θ,底面ABC 的面积为34. (1)证明:22tan tan tan 321≥⋅⋅θθθ;(2)若23tan tan tan 321=++θθθ,求该三棱锥的体积ABC P V -. 练 习 题例七、(1994年全国联赛一试)在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 (A ) 2,n n ππ-⎛⎫⎪⎝⎭; (B ) 1,n n ππ-⎛⎫ ⎪⎝⎭; (C ) 0,2π⎛⎫ ⎪⎝⎭; (D ) 21,n n n n ππ--⎛⎫⎪⎝⎭.分析:根据正n 棱锥的结构特征,相邻两侧面所成的二面角应大于底面正n 边形的内角,同时小于π,于是得到(A ).例八、(1992年全国联赛一试)设四面体四个面的面积分别为S 1、S 2、S 3、S 4,它们的最大值为S ,记1234S S S S Sλ+++=,则λ一定满足(A ) 24λ<≤; (B ) 34λ<<; (C ) 2.5 4.5λ<≤; (D ) 3.5 5.5λ<<. 分析:因为 i S S ≤ ()1,2,3,4i =所以12344S S S SS+++≤.特别的,当四面体为正四面体时取等号.另一方面,构造一个侧面与底面所成角均为45︒的三棱锥,设底面面积为S 4,则:()()1231231234123cos 451 2.5cos 45S S S S S S S S S S S S S S λ+++++⋅︒+++===+++⋅︒,若从极端情形加以考虑,当三棱锥的顶点落在底面上时,一方面不能构成三棱锥,另外此时有1234S S S S ++=,也就是2λ=,于是必须2λ>.故选(A ).。
2010年全国研究生数学建模竞赛D 题解题基本思路及其数学模型D 题命题者2010.11.5 于广州一.本题背景本题是从一个科研项目中提炼而成,该项目是一个工程项目,为加工我国独立自主研制的新型地空导弹的天线罩,需要研制一台大型精密内外圆数控磨床,由某航天科研院与善长于磨床研究生产的上海机床厂合作研制。
这项工程包括研制一台能磨削天线罩这样工件的磨床,并调试机床数字控制系统。
该工程的研制成功,不仅解决了当时国内加工导弹天线罩这类特殊工件采用靠模式机床无法保证精度的问题,也提供了加工大型旋转体工件的设备(这是该工程的一个副产品),同时为当时国产机床的计算机控制积累了经验。
数控机床加工曲线的常规方法是插补,这对于车床、铣床等都是可以实现的,但对磨床来-插补技术有不可逾越的障碍,那就是砂轮外形对曲线说,由于切削工具是砂轮,直接套用x y-插补技术。
为此,该机床的总体设计放弃两个的“干涉”!所以,曲线磨床无法直接采用x y-插补实现曲线加工的传统结构方式,有创意地加入第三个工作台,这个相互垂直的工作台x y工作台就是本题中的上工作台,它在前两个工作台运动的基础上(即跟随下台和中台提供的-向运动),再做旋转运动,构成有3个自由度的复合运动。
这样就可以与砂轮的外形配合,x y加工出(理论上)复杂曲线来。
该机床的控制系统也有不少值得称道的国内首创的技术突破。
应该说,这是可以编入机械专业教科书的精彩内容(不知道现有的机床教课书有没有编进?)。
有了机床,就要编制出计算机控制程序,其前提是如何根据要加工的曲线(实际上是旋转体的母线)方程,确定三个工作台相互配合的运动。
这是适合于研究生数学建模竞赛的适当素材,本题就是围绕对这一素材,去除许多工程处理的细节,集中于数学建模及其求解提炼出来的。
二.D 题命题的指导思想研究生数学建模竞赛是国内研究生中较为优秀的一部分学生的竞赛,在朱道元先生为代表的一批有识之士长期坚持和努力下,已经成为国内有重要影响的数学奥林匹克。
国家集训队数学竞赛题解析一、题目近年来,国家集训队数学竞赛题备受关注,这些题目不仅难度高,而且具有很强的代表性。
本文将针对国家集训队数学竞赛题进行解析,帮助读者更好地理解题目背后的解题思路和方法。
二、题目解析1. 题目一:求一个函数f(x)的解析式和最值【题目描述】:已知函数f(x)满足f(x)=x^3+ax^2+bx+c在区间[-1,1]上的最大值为3,求a、b、c的值。
【解析】:首先,我们可以将函数f(x)进行求导,得到f'(x)=3x^2+2ax+b。
当f'(x)=0时,函数f(x)在区间[-1,1]上取得极值点x=-b/3和x=a-b/3。
根据题目条件,函数f(x)在区间[-1,1]上的最大值为3,因此我们可以得到以下方程组:f(-1)=-1+a-b+c=3 (1)f(1)=1+a+b+c=0 (2)f(a-b/3)=a^3-ab/3+b(a-b/3)+c=3 (3)由方程组解得:a=2,b=-6,c=-5。
【总结】:本题主要考察导数和极值的应用,需要熟练掌握导数的求法以及极值点的判断方法。
解题的关键在于根据题目条件列出方程组,并逐步求解。
2. 题目二:求解一个方程组的解集【题目描述】:给定三个方程:x^2+y^2=4,z^2+y^2=5,x^2+z^2=6,求满足这些方程的点集。
【解析】:首先,我们可以将三个方程相加得到:x^2+y^2+z^2=7。
因此,我们只需要找到满足该方程的点集即可。
根据题目条件,我们可以得到以下三个方程组:x=y (4)y=z (5)z=y (6)将方程(4)代入方程(5)和(6),得到y=z=√(7-x^2)。
因此,满足这些方程的点集为{(x,y,z)|x≥0且z≥0}。
【总结】:本题主要考察方程组的解法,需要熟练掌握线性代数的基础知识。
通过将方程进行变换和简化,我们可以找到问题的解决方案。
三、总结通过对国家集训队数学竞赛题的解析,我们可以发现这些题目具有很强的代表性和综合性。
一、基本概念①周长:封闭图形一周的长度就是这个图形的周长.②面积:物体的表面或封闭图形的大小,叫做它们的面积.二、基本公式:①长方形的周长2=⨯(长+宽),面积=长⨯宽.②正方形的周长4=⨯边长,正方形的面积=边长⨯边长.三、常用方法:(1)对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.(2)转化是一种重要的数学思想方法,在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形.(3)寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.(4)在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段.四、几个重要的解题思想 (1)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.(2)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.知识点拨4-2-2.巧求周长(3)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.(4)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.(5)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.小结:本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.例题精讲模块一、图形的周长和面积——割补法【例 1】求图中所有线段的总长(单位:厘米)【例 2】如图所示,点B是线段AD的中点,由A、B、C、D四个点所构成的所有线段的长度均为整数,若这些线段的长度之积为10500,则线段AB的长度是。
第十三讲数论中的代数思想模块一、数论方程(一):例1.已知248abc abc ⨯=,则三位数abc =。
解:设abc =x ,则2×(4000+x )=10x +8,解得x =abc =999.例2.已知1787abcd abc ab a ---=,则四位数abcd =或。
解:由题意知(1000a +100b +10c +d )−(100a +10b +c )−(10a +b )−a =1787,得889a +89b +9c +d =1787,比较得a =2或a =1,当a =1时,有89b +9c +d =898,b 只能得9,有9c +d =97,此时即使c =9,得d =16,矛盾,舍去; 当a =2时,有89b +9c +d =9,b 只能得0,有9c +d =9,得c =0,d =9,所以abcd =2009.或c =1,d =0,此时abcd =2010.模块二、数论方程(二):例3.已知A <B ,A 、B 的最大公因数为8,最小公倍数为64,即(A ,B )=8,[A ,B ]=64,则A +B =。
解:设A =8m ,B =8n ,m 、n 互质,则8mn =64,解得mn =8,8=1×8=2×4,所以m =1,n =8, 得A =8,B =64,所以A +B =8+64=72.例4.已知自然数x ,y 满足:x <y ,x +y =70,[x ,y ]+(x ,y )=98,则x =,y =.解:设x =am ,y =an ,(m 、n 互质),所以[x ,y ]=amn ,(x ,y )=a ,有amn +a =a (mn +1)=98,98=1×98=2×49=7×14,当a =1时,则m +n =70,mn +1=98,mn =97,只能是m =1,n =97,无整数解;当a =2时,2m +2n =70,所以m +n =35,mn +1=49,mn =48,无整数解;当a =7时,7m +7n =70,m +n =10,mn +1=14,无整数解,当a =14时,14m +14n =70,m +n =5,mn +1=7,mn =6,所以m =2,n =3,得到x =2×14=28,y =3×14=42.模块三、数论方程综合:例5.已知A 4=75600×B ,其中A 、B 为正整数,那么B 的最小值是。
一道数学竞赛题的解法中蕴涵的数学思想方法
发表时间:
2014-07-08T15:56:15.280Z 来源:《素质教育》2014年4月总第150期供稿 作者: 曾宪波
[导读] 数学思想方法是人们对数学内容的本质认识,是对数学知识和数学问题的进一步抽象和概括,属于对数学规律性的认识范畴。
曾宪波
江西省赣州市南康区新世纪中英文学校 341400
数学思想方法是人们对数学内容的本质认识,是对数学知识和数学问题的进一步抽象和概括,属于对数学规律性的认识范畴。数学思
想方法是数学的灵魂,数学思想指导着数学问题的解决,并具体地体现在解决问题的不同方法中。
“数学思想”比一般的“数学概念”具有更高
的概括抽象水平,后者比前者更具体、更丰富,而前者比后者更本质、更深刻。
数学中渗透基本数学思想,如果能使它们落实到我们学习和应用数学中去,那么我们得到的是很多的。下面就全国初中数学竞赛初赛
试题中的几种解法中,谈谈数学思想的重要性。
解法一:“特殊”思想。
“
特殊”思想就是将一般问题特殊化,从事物的特殊性中去探求它的一般的普遍规律是一种重要的数学方法。由于事物的特殊性中包含
着事物的普遍性,所以在研究某些有关一般值的数学问题而直接解答有困难时,我们可以不考虑一般值,而直接利用特殊值去研究解决,
从而促使原问题获解。
此题由于四边形AEPH和四边形CFPG是任意四边形,这对问题的解决带来困难,由题意可知,四边形CFPG的面积大小只与四边形
AEPH
的面积大小有关,而与它们的形状无关,因此我们可以采用“特殊”思想来解答。
解法二:“转化”思想。
“
转化”思想就是将复杂的、陌生的问题迁移为简单的、熟悉的问题进行求解,这是学习新知识,研究新问题的一种基本方法。此题由
于四边形
AEPH和四边形CFPG是任意四边形,这对问题的解决带来困难,我们就想能否把一般的四
边形转化为我们熟悉的图形来解决。有题意可知,
HE∥GF,所以可以利用同底等高的三角形面积相等,把四边形AEPH的面积转化为直角
三角形
AEM的面积来解决(如图)。
解法三:“整体”思想。
整体思想就是研究某些问题时,往往不是以问题的某个组成部分为着眼点,而是有意识放大考察问题的视角,将要解决的问题看作一
个整体,通过研究问题的整体形式、整体结构或作整体处理以后,达到顺利而又简捷地解决问题的目的。它是一种重要的数学观念,一些
数学问题,若拘泥常规,从局部着手,则举步维艰,若整体考虑,则畅通无阻。
教师要有意识地渗透整体思想方法的首要条件,是教师要从数学思维方法的角度对教材进行分析、研究,要善于发现和挖掘教材内容中
所隐含的整体思想,做到胸中有数
,由此再进一步考虑如何设计教学过程,使学生逐步领悟、理解、掌握、运用所学的整体思想。
解法四:“建模”思想。
数学建模思想是指从实际问题中,发现、提出、抽象、简化、解决、处理问题的思维过程,它包括对实际问题进行抽象、简化,建立
数学模型,求解数学模型,解释验证等步骤。
此题由于四边形
AEPH和四边形CFPG是任意四边形,这对问题的解决带来困难,那么我们就想能否构建一个我们熟悉的数学模型来解决,
由题意可知四边形
EFGH是平行四边形,所以我们可以构建平行四边形模型来解决。
基本模型如图,平行四边形内任意一点与两组对边所组成的两个三角形的面积和等于平行四边形面积的一半。
总之,数学思想方法是中学数学教学的重要内容之一。任何数学问题的解决无不以数学思想为指导,以数学方法为手段。数学思想是
教材体系的灵魂,是教学设计的指导,是课堂教学的统帅,是解题思想指南。把数学知识的精髓
——数学思想方法纳入基础知识范畴是加
强数学素质教育的一个重要举措。随着对数学思想方法教学研究的深入,在教学中渗透数学思想方法的实施,必将进一步提高数学教学质
量。