当前位置:文档之家› SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量(精)

SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量(精)

SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量(精)
SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量(精)

SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量

一. 实验目的

1.学习SDS-PAGE测定蛋白质分子量的原理。

2.掌握垂直板电泳的操作方法。

3.运用SDS-PAGE测定蛋白质分子量及染色鉴定。

二.实验原理

带电质点在电场中向带有异相电荷的电极移动,这种现象称为电泳。

聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr)单体和少量交联剂甲叉双丙烯酰胺(简称Bis)通过化学催化剂(过硫酸铵),四甲基乙二胺(TEMED)作为加速剂或光催化聚合作用形成的三维空间的高聚物。聚合后的聚丙烯酰胺凝胶形成网状结构。具有浓缩效应、电荷效应、分子筛效应。血清蛋白在聚丙烯酰胺凝胶电泳一般可分成12~25个组分。因此适用于不同相对分子质量物质的分离,且分离效果好。

SDS是一种阴离子去垢剂,SO32-带负电荷。在含有强还原剂的SDS溶液中可形成SDS-蛋白质复合物。由于结合大量带负电荷的SDS,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖了。从而起到消除各蛋白质分子之间自身的电荷差异的作用。

人工合成聚丙烯酰胺凝胶的化学体系的组成及功能:

Acr:丙烯酰胺

Bis:甲叉双丙烯酰胺

AP:过硫酸铵——化学催化剂

TEMED:四甲基乙二胺——加速剂

SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠),SDS 能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X 为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。

SDS电泳的成功关键之一是电泳过程中,特别是样品制备过程中蛋白质与SDS的结合程度。影响它们结合的因素主要有三个:

1溶液中SDS单体的浓度,当单体浓度大于1mmol/L时大多数蛋白质与SDS结合的重量比为1:1.4,如果单休浓度降到0.5 mmol/L以下时,两者的结合比仅为1: 0.4这样就不能消除蛋白质原有的电荷差别,为保证蛋白质与SDS的充分结合,它们的重量比应该为1:4或1:3 2样品缓冲液的离子强度。SDS电泳的样品缓冲液离子强度较低,通常是10~100mmol/L 3二硫键是否完全被还原

采用SDS-聚丙烯酰胺凝胶电泳法测蛋白质分子量时,只有完全打开二硫键,蛋白质分子才能被解聚,SDS才能定量地结合到亚基上而给出相对迁移率和分子量对数的线性关系。因此在用SDS处理样品同时往往用巯基乙醇处理,巯基乙醇是一种强还原剂,它使被还原的二硫键不易再氧化,从而使很多不溶性蛋白质溶解而与SDS定量结合。

有许多蛋白质是由亚基(如血红蛋白)或两条以上肽链(如胰凝乳蛋白酶)组成的,它们在SDS和巯基乙醇作用下,解离成亚基或单条肽链,因此这一类蛋白质,测定时只是它们的

亚基或单条肽链的MW。

已发现有些蛋白质不能用SDS-PAGE测定分子量。如电荷异常或构象异常的蛋白质,带有较大辅基的蛋白质(某些糖蛋白)以及一些结构蛋白,如胶原蛋白等。

一般至少采用两种方法测定未知样品的分子量,互相验证。

PAGE电泳中各种成分及其作用

过硫酸铵:凝胶聚合的催化剂(过量会使离子强度升高。),

四甲基乙二胺:加速剂。(碱性条件下容易聚合)

丙烯酰胺与双丙烯酰胺(P133)二者总浓度及相对比例决定凝胶的孔径、交联度,硬度及弹性。

浓缩胶与分离胶

浓缩胶:胶浓度低,交联度低,pH=6.7,蛋白带负电荷少,大孔胶。pH=6.7时,电极缓冲液中甘氨酸负离子解离较少(慢离子),氯离子是快离子,蛋白迁移速率介于两者中间,局部电位梯度大,(快离子移动快,形成局部低电导区,产生高电位,使移动加快)从而产生浓缩效应。

分离胶:胶浓度高,交联度高,pH=8,蛋白带负电荷多,小孔胶,pH=8.0时,电极缓冲液中甘氨酸负离子解离较多,与氯离子一样,迁移速度加快,蛋白迁移速率最慢,部电位梯度小。

不连续性:孔径大小不连续,离子成分不一样,移动速度不一样

三. 实验试剂和器材

2.实验试剂

) ( 30%丙烯酰胺(Acr):称Acr30g,甲叉双丙烯酰胺(Bis)0.8g,加蒸馏水至100ml,过滤后置棕色瓶中,4℃贮存可用1-2月。(2)10%SDS(十二烷基磺酸钠)(约0.28M) (3)1.5mol/L pH8.9 Tris-HCl缓冲液:称取Tris18.2g,加入50ml水,用1mol/L盐酸调pH8.8,最后用蒸馏水定容至100ml。(分离胶缓冲液,含0.4%SDS)(4)0.5mol/LpH6.8Tris-HCl缓冲液:称取Tris12.1g,加入50ml水,用1mol/L盐酸调pH6.8,最后用蒸馏水定容至100ml。(浓缩胶缓冲液)(5)

(7)10%过硫酸铵(AP)

(8)TEMED(四甲基乙二胺)

(9)样品缓冲液液:SDS(100mg)+巯基乙醇(0.1ml)+

溴酚蓝(2mg)+甘油(2g)+0.05mol/L pH8.0Tris-

HCl(2ml),最后定容至10ml。

(10)固定液:取50%甲醇454ml,冰乙酸46ml混匀。

(11)染色液:称取考马斯亮蓝R250 0.125g,加上述固定液

250ml,过滤后备用。

(12)脱色液:冰乙酸75ml,甲醇50ml,加蒸馏水定容至1000ml。

(13)SDS 电极缓冲液(内含0.1%SDS,0.025mol/LTris- 0.192mol/L甘氨酸缓冲液pH8.3):称Tris6.0g,甘氨酸28.8g,加入SDS1g,加蒸馏水使其溶解后定容至2000ml。

3. 实验器材

垂直板电泳装置直流稳压电源移液管滤纸微量注射器大培养皿

四. 实验过程

各部分凝胶配制

分离胶12.5% 浓缩胶5%

分离胶缓冲液: 3.0毫升浓缩胶缓冲液:3.0ML

丙烯酰胺贮备液:5.0ML 丙烯酰胺贮备液:1.0ML

10%过硫酸胺:120 微升 10%过硫酸胺:60微升

水 4.0ML 2ML

TEMED: 12微升 6微升

混匀后灌胶,水封

1.将玻璃板用蒸馏水洗净晾干, 准备2个干净的锥形瓶.

2.把玻璃板在灌胶支架上固定好. .

3.按比例配好分离胶,用移液管快速加入,大约5厘米左右,之后加少许蒸馏水,静置40分钟.

4.倒出水并用滤纸把剩余的水分吸干,按比例配好浓缩胶,连续平稳加入浓缩胶至离边缘5mm 处,迅速插入样梳,静置40分钟.

5. 在上槽内加入缓冲液后,拔出样梳。6、加样(1)取10μl标准蛋白溶解液于EP管内,再加入10μl 2倍样品缓冲液,上样量为10μl。(2)取10μl样品溶液,再加入10μl 2倍样品缓冲液,上样量分别为5μl和3μl。7.用微量注射器距槽底三分之一处进样,加样前,样品

在沸水中加热3分钟,去掉亚稳态聚合。沉时会发生扩散.

8.电泳槽中加入缓冲液,接通电源,进行电泳,开始电流恒定在10mA,当进入分离胶后改为20mA,溴酚蓝距凝胶边缘约5mm时,停止电泳。9.凝胶板剥离与染色:电泳结束后,撬开玻璃板,将凝胶板做好标记后放在大培养皿内,加入染色液,染色1小时左右。10.脱色:染色后的凝胶板用蒸馏水漂洗数次,再用脱色液脱色,直到蛋白质区带清晰。11.实验结果分析。

绘制标准曲线:

按公式计算相对迁移率:

以每个蛋白标准的分子量对数对它的相对迁移率作图得标准曲线,量出未知蛋白的迁移率即可测出其分于量,这样的标难曲线只对同一块凝胶上的样品的分子量测定才具有可靠性。

五.分析计算

绘制标准曲线:

SDS是一种阴离子去垢剂,SO32-带负电荷。在含有强还原剂的SDS溶液中可形成SDS-蛋白质复合物。由于结合大量带负电荷的SDS,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖了。从而起到消除各蛋白质分子之间自身的电荷差异的作用。

实验结果好应按公式计算相对迁移率:

以每个蛋白标准的分子量对数对它的相对迁移率作图得标准曲线,量出未知蛋白的迁移率即可测出其分于量,这样的标难曲线只对同一块凝胶上的样品的分子量测定才具有可靠性。

从图中选取第三泳道的条带来作为未知蛋白,求其分子量大小。

由以上数据求得标准曲线,由标准曲线知相对迁移率为0.53时, lgMW =4.51 求得X的相对分子质量MW=31622

六.思考题

1.在不连续体系SDS-PAGE中,当分离胶加完后,需在其上加一层水,为什么?

2.样品溶解液中各种试剂的作用是什么?

3.在不连续体系SDS-PAGE中,分离胶与浓缩胶中均含有TEMED和AP,试述其作用?

答:1.水封的目的是为了使分离胶上延平直,并隔绝空气,凝胶聚合好的标志是胶与水层之间形成清晰的界面.

2:(1)SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异;

(2)溴酚蓝作位蛋白质的染色剂,指示电泳的进行;

(3)Tris作为缓冲液,为电泳提供良好的缓冲体系;

(4)四甲基乙二胺:作为加速剂,加快电泳的进行。

3. 答:sds-page预混液里加入TEMED和AP ,可以使丙烯酰胺凝;,过硫酸铵(AP)的作用主要是提供自由基,TEMED是催化剂,催化自由基引起的聚合反应进行,然后在促凝剂TEMED的作用下使丙烯酰胺及甲叉丙烯酰胺聚合。

1.丙烯酰胺具有中等毒性。常人每天允许的最大暴露量不超过0.5μg/kg,皮肤接触可致中毒,症状为红斑、脱皮、眩晕、动作机能失调、四肢无力等。

2.丙烯酰胺是神经毒剂,可以透过皮肤,不要接触皮肤,戴手套、口罩操作

3.固定玻璃板时,两边用力一定要均匀,防止夹坏玻璃板,凝胶配制过程要迅速, 催化剂TEMED要在注胶前再加入,否则凝结无法注胶.注胶过程最好一次性完成,避免产生气泡.

4.没有聚合的丙烯酰胺不要倾倒到水源附近,一定要催化充分,使之完全聚合

5.集中处理,实验中全部的胶由专门受过训练的人收集到一起,在一个特殊标明的容器中保存,并进一步催化使之反应完全,最后送交学校危险品仓库,统一处理。聚丙烯酰胺通常认为无毒,但是也要小心操作,因为其中可能留下少量没有聚合的单体。保护实验仪器,不得损坏。

6.要使锯齿孔内的气泡全部排出,否则会影响加样效果,样梳需一次平稳插入,梳口处不得有气泡,梳底需水平。注射器不可过低,以防刺破胶体,也不可过高,在样下

7.剥胶时要小心,保持胶完好无损,染色要充分.

蛋白质的提取与检测

蛋白质的提取与检测

蛋白质的提取与检测 第一节细胞总蛋白的提取及含量测定 【基本原理】 蛋白质含量测定法是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种经典的方法,即定氮法、双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有两种近年普遍使用起来的测定法,即考马斯亮蓝法(Bradford法)与二辛可宁酸法(BCA法)。值得注意的是,上述方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这几种方法测定有可能得出不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 Lowry法:蛋白质与碱性铜溶液中的二价铜离子络和使得肽键伸展,从而使暴露出的酪氨酸和色氨酸在碱性铜条件下与磷钼钨酸反应并产生深蓝色,在750nm有最大光吸收值。在一定浓度范围内,反应液颜色的深浅与蛋白质中的酪氨酸和色氨酸的含量成正比,由于各种蛋白质中的酪氨酸和色氨酸的含量各不相同,因此在测定时需使用同种蛋白质作标准。 Bradford法:蛋白质与染料考马斯亮蓝G-250结合,使得染料最大吸收峰从465nm变为595nm,溶液的颜色由棕黑色变为蓝色。在一定的线性范围内,反应液595nm处吸光度的变化量与反应蛋白量成正比,测定595nm处吸光度的增加即可进行蛋白定量。

BCA (Bicinchoninic acid)法:二价 铜离子在碱性 的条件下,可以 被蛋白质还原 成一价铜离子 (Biuret reaction)并与 BCA相互作用 产生敏感的颜 色反应。两分子 的BCA螯合一 个铜离子,形成 紫色的反应复 合物。该水溶性 的复合物在 562nm处显示 强烈的吸光性, 吸光度和蛋白 浓度在广泛范 围内有良好的 线性关 0.118 0.05 0.154 0.1 0.213 0.2 0.283 0.3 0.329 0.4 0.404 0.5 第二节SDS-PAGE电泳 【基本原理】

电泳常见问题及解决方法

3. 1 滑橇底部油泥污染导致电泳缩孔及其解决办法在车身经手工预清理完后,进行洪流冲洗前,需要将车身承载在滑橇上并锁紧,再装挂在自行葫芦系统的吊架上,然后依次通过电泳涂装各工艺槽。当滑橇第一次通过电泳槽时,滑橇表面会泳涂上一层电泳漆膜,形成绝缘层。而当滑橇承载车身再一次通过电泳槽时,滑橇表面因有绝缘层的存在而不会泳涂上新的电泳漆膜,但会一次次附上一层新的电泳浮漆。由于电泳后的水洗工艺主要是针对车身,而位于车身底部的滑橇不可能被冲洗干净。因此,当附有电泳浮漆的滑橇在电泳后工位(如电泳烤房、电泳烤后存放)的输送链上前行时,滑橇底部的电泳浮漆和已泳涂上的电泳漆膜与输送链上的滚子不断接触、摩擦,就会粘附滚子上的润滑油,形成油泥。由于这些油泥位于滑橇底部,并且有很强的粘附性,即使在通过脱脂和水洗等工艺槽时,也不能完全被清除干净,从而污染磷化槽液、电泳槽液及电泳烤房。油泥污染引起的直接后果就是造成电泳漆膜缩孔。经观察发现,在每次对电泳滑橇通过的输送链加油润滑后,电泳漆膜缩孔明显增加。电泳漆膜缩孔不仅加大了电泳底漆打磨的工作量,也明显影响整车涂膜的质量和抗腐蚀性能。 人工擦除滑橇底部油泥,以避免电泳漆膜缩孔是一种解决办法,但费时费力;在预脱脂槽里增加喷嘴,利用高压脱脂液对滑橇底部油泥进行冲洗也是一种办法,但这样做需要对预脱脂槽进行较大的改造,并且还会加快预脱脂槽液的更新周期,从而造成成本上升;第3 种办法是在车身吊装进槽前的滚床间安装油泥清洗机。清洗机带有一对呈滚轮状的毛刷,通过电机减速驱动毛刷对滑橇底部油泥进行刷洗。该方法简便可行。为加强对油泥的清洗效果,利用该方法并采用3 套清洗机,通过其6 个呈滚轮状、用以粘附滚轮下面清洗液的毛刷对在清洗机上面通过的滑橇底部的油泥进行连续滚刷。清洗机安装调试完毕,经过2 周的试运行后发现,清洗机工作稳定可靠,清洗效果明显提高。 滑橇底部油泥在经过3 次连续的滚刷后基本被清除,再经过后续的洪流冲洗、脱脂、水洗等流程,油泥被清除得更为彻底,不再对磷化槽液、电泳槽液形成污染,从而避免了因油泥而造成的车身电泳漆膜缩孔的问题。虽然,滑橇通过电泳槽时,滑橇表面仍然会粘附新的电泳浮漆,而且滑橇底部的电泳浮漆在接触电泳烤房输送链上的润滑油后,也会形成油泥,但由于烤房输送链使用的是高温润滑油,不易挥发,故在烤房里形成的油泥,不会导致车身电泳漆膜缩孔。这样车身电泳漆膜缩孔问题便得到有效的控制。 3. 2 车身顶篷吸顶及其消除 在车身所有的部位中,车身顶篷的强度和刚性都是最弱的。笔者所在公司生产的车型为轻型越野车,尽管在顶篷内设计了加强筋,但比起车身其它部位,其强度和刚性还是稍差。于是,在电泳涂装过程中,当车身从浸入的各工艺槽中上升出槽时,受槽液压力影响,会在顶篷处造成局部凹陷,这就是通常所说的吸顶。轻微的吸顶经修复后,对车身质量不会造成太大的影响;如果吸顶严重,则会造成顶篷报废。在所生产的两款车型中,有一款是PAJERO 系列车型(CK 车),车身外形长4 650 mm、宽1 780 mm、高1 450 mm,其顶篷长、宽尺寸也分别为2 400 mm 和1 200 mm。由于车身顶篷面积大,导致CK 车车身在电泳涂装线上试生产时,每台车都发生吸顶现象,而未开天窗的车身发生吸顶的情况尤为严重。因此,吸顶现象成为该车型生产亟待解决的问题。 起初,解决的措施是加大车身后仰出槽的倾斜角度,同时在不影响生产节拍的情况下,适当降低车身上升出槽时的速度,以减轻槽液对车顶的压力。采取上述措施后,取得了初步的成效,即:开有天窗的CK车在通过前处理电泳生产线的各工艺槽后,只有很少比例的车发生轻微的吸顶,而且稍加修复即可消除,对车身质量不会造成影响;但未开天窗的CK 车在通过前处理电泳生产线的各工艺槽后,仍然发生一定程度的吸顶。 研究发现,未开天窗的CK 车车身顶篷面积大,强度和刚性差,因此容易发生吸顶。此时,若继续加大车

电泳涂装常见问题汇总

电泳涂装常见问题及解决方法一现象可能产生的原因对策 膜厚不足固体份低提高固体份 溶剂量少补加溶剂 电压低提高电压 温度低提高温度 水迹纯水不干净换纯水 温度过高降低湿度 固体份过低加漆 溶剂含量高适量超滤降低溶剂量起泡工作表所不洁净充分水洗 漆膜外观不丰满颜基比过高减少颜料补加,增加树脂含量 溶剂量少补加溶剂 槽液有泡沫进气漏气检查管道和泵是否泄漏 溢流槽液体过低提出高液体高度 固体份过高,槽液粘度太大降低固体份 涂膜粗糙颜料份高减少色浆,增加树脂 电导率高超滤,降低电导率针孔槽液温度低升高槽液温度 电导率过高超滤降低电导率 漆膜不均匀,破裂槽液温度高降低温度 电压高降低电压 电导率高超滤降低电导率 斑纹地图斑痕基材表面污染检查金属表面 漆迹清洗不够增加清洗 凹孔,缩孔杂质污染清除工件上杂质 颜料份低补加色浆 硬度烘烤时间延长烘烤时间 烘烤温度低升高温度 不够流平加溶剂 麻点液温低升温 溶剂少加溶剂 浓度低加漆 条纹表面外观不佳电压升高快 溶剂含量低槽液固含量低

电泳漆膜常见故障及其纠正方法 故障产生原因纠正方法 桔皮或表面粗糙电压过高降低电压 溶液温度高降低温度 固体分过高加水稀释槽液 极距太近加大极距 烘烤加温太快压缩空气吹干后再烘烤 PH 值过高用醋酸或乳酸调整 针孔或麻点固体分过低调整至工艺范围 PH 值过低降低溶液酸度 清洗水不干净换清洗水 溶液电导率太高超滤去掉杂质离子 膜厚太薄增加电泳电压或时间 电镀表面针孔压缩空气吹干后再烘烤 火山口或油点工件上附有油加强除油工序 槽液面有油渍防止槽液被油污染 颗粒污染加强循环过滤和超滤 电压高膜层厚降低电泳电压和时间彩虹膜层太薄增加电泳电压提高膜厚颜色不符膜层太厚或太薄选择合适的工作电压和时间 调配涂料时,颜色比例错严格按工艺配方配制电泳漆 溶剂太多,渗透能力差,膜层厚薄不 均 调整溶剂含量,使其符合工艺规范不规则图形前处理不彻底加强前处理工序 硬度不够烤烘时间短或温度低严格按工艺规范进行 涂装面点状或片状颜色差 异零件有针孔或砂眼杜绝不合格工件下槽色料乳化搅拌不匀加强电泳漆搅拌 表面有水液用压缩空气吹干 水滴未干即烘烤用压缩空气吹干 电泳前水洗不彻底加强入槽产零件的清洗 工件漆膜局部堆积PH太高用冰醋酸或乳酸调整然后超滤工件表面带碱性增加中和槽处理 工件油污未除尽加强除油工艺 漆膜附着力差工件表面带碱性增加中和槽处理 工件油污未除尽加强除油工艺 烘烤温度不够或时间太短提高烘烤温度,增加烘烤时间

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量 一、前言 聚丙烯酰胺凝胶电泳 聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。催化聚合的常用方法有两种:化学聚合法和光聚合法。化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。 PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。不连续体系由电极缓冲液、浓缩胶及分离胶所组成。浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。而强还原剂如巯基乙醇,二硫糖醇能使半胱氨酸残基间的二硫键断裂。在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。 SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。 浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。当样品液和浓缩胶选TRIS/HCl缓冲液,电极液选TRIS/甘氨酸。电泳开始后,HCl解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成一稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。 此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。 聚丙烯酰胺凝胶电泳作用原理 聚丙烯酰胺凝胶为网状结构,具有分子筛效应。它有两种形式:

蛋白质提取及纯化

蛋白质提取及纯化 提取蛋白质的当天早晨去后把高速离心机和超高速离心机都打开冷却 1、前一天晚上用Resuspension Buffer重悬4L菌体,然后离心于4C保存,第 二天使用。 2、用少量预冷的Resuspension Buffer重悬细菌,1 protease inhibitor tablets(EDTA Free),1mM PMSF, 然后用玻璃Homogenizer做均一化处理,将总体积调至80ml; 3、High Pressure Homogenizer破壁,特别注意样品一定要在不加压力的情况 下运行一个循环(2min);然后1200bar,6min三个循环,整个过程冰水冷却; 4、DNaseI处理:加入2.5mg DNaseI,10mM MgCl2, 室温处理30min; 5、 11.000rpm,4℃,15min; then 11.000rpm,4℃,15min; 6、 1mM PMSF, 45.000rpm,4℃,90min; 7、用Resuspension Buffer洗两次以除去可溶性的蛋白质,然后预热分光光度 计; 8、用3-4ml Binding Buffer重悬Membrane pellets,动作一定要轻缓,重悬 后的总体积不超过8ml,取出300ul测定OD800和OD850(以OD850为准),测定时候是逐步稀释,每次吸光值小于1; 9、调整OD850≤30-50,在缓慢搅拌(速度一定要慢)的情况下逐滴加入30%的 LDAO使其终浓度达到0.5%,1mM PMSF,26℃黑暗条件下重悬1h,期间注意观察颜色变化; 10、45.000rpm, 4℃, 30min,注意观察颜色的变化以及沉淀是否发生明显的变化。 Charge and Equilibrate Resin (1)用蒸馏水冲洗柱子以除去20%酒精,注意不要用buffer,1ml/min,至紫外 吸收和电导稳定; (2)用0.1M NiSO4 Charge Resin,1ml/min,10倍柱体积,尽量使得紫外吸收 和电导稳定; (3)用蒸馏水冲洗,1ml/min,至紫外吸收和电导稳定;

电泳常见问题及解决方法

阴极电泳常见问题及解决方法 一、颗粒 (1)现象 在烘干后的电泳涂膜表面上有手感粗糙的、较硬的粒子,或肉眼可见的细小痱子,往往被涂物的水平面较垂直面严重,这种漆膜病态称为颗粒。 (2)产生原因 ①CED槽液PH值偏高,碱性物质混入,造成槽液不稳定,树脂析出或凝聚。 ②槽内有沉淀“死角”和裸露金属处。 ③电泳后清洗液脏、含漆量过高,过滤不良。 ④进入的被涂物面及吊具不洁,磷化后水洗不良。 ⑤在烘干过程中落上颗粒状污物。 ⑥涂装环境脏。 ⑦补给涂料或树脂溶解不良,有颗粒。 (3)防治方法 ①将CED槽液的PH值控制在下限,严禁带入碱性物质,加强过滤,加速槽液的更新。 ②消除易沉淀的“死角”和产生沉积涂膜的裸露金属件。 ③加强过滤,推荐采用精度为25μm的过滤元件,养活泡沫。 ④确保被涂面清洁,不应有磷化沉渣,防止二次污染。 ⑤清理烘干室和空气过滤器。 ⑥保持涂装环境清洁,检查并消除空气的尘埃源。 ⑦确保新补涂料溶解良好,色浆细度在标准范围内。 二、缩孔(陷穴) (1)现象 在湿的电泳涂膜上看不见,当烘干后漆膜表面出现火山口状的凹坑,直径通常为0.5~3.0mm,不露底的称为陷穴、凹洼、露底的称为缩孔,中间有颗粒的称为“鱼眼”。产生这一弊病的主要原因是电泳湿涂膜中或表面有尘埃,油污与电泳涂料不相溶的粒子,成为陷穴中心,使烘干初期的湿漆膜流展能力不均衡,而产生涂膜缺陷。 (2)产生原因 ①被涂物前处理脱脂不良或清洗后又落上油污、尘埃。 ②槽液中混入油污,漂浮在液面或乳化在槽液中。 ③电泳后冲洗液混入油污。 ④烘干室内不净,循环风内含油分。 ⑤槽液的颜基比失调,颜料含量低的易产生缩孔。 ⑥涂装环境脏、空气可能含有油雾、漆雾,含有机硅物质等污染被涂物或湿涂膜。 ⑦补给涂料有缩孔或其中树脂溶解不良,中和不好。 (3)防治方法 ①加强被涂物的脱脂工序,确保磷化膜不被二次污染。

蛋白质含量测定方法及其比较资料2

蛋白质含量测定法(一) 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 五种蛋白质测定方法比较

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。 一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4——2CO2+3SO2+4H2O+NH3 (1) 2NH3+H2SO4——(NH4)2SO4 (2) (NH4)2SO4+2NaOH——2H2O+Na2SO4+2NH3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(Biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

蛋白质提取综合性实验

生物化学综合性实验 蛋白质的提取(沉淀法)和定量分析之 鸡蛋中卵清蛋白的提取和定量测定 一、实验目的 研究盐析沉淀和等电点沉淀法的基本原理和技术。 一、二、实验原理 1、沉淀法粗分离蛋白质[1][2] 沉淀法是分离纯化生物大分子物质常用的一种经典方法,可分盐析法、等电点沉淀法和有机溶剂沉淀法等。 蛋白质分子表面含有带电荷的基团,这些基团与水分子有较大的亲和力,故蛋白质在水溶液中能形成水化膜,增加了蛋白质水溶液和稳定性。如果在蛋白质溶液中加入大量中性盐,导致蛋白质分子表面电荷被中和,水化膜被破坏,最终引起蛋白质分子间相互聚集并从溶液中析出,这就是盐析作用。 由于各种蛋白质分子表面的极性基团所带电荷数目不同,它们在蛋白质表面上的分布情况也不一样,因此,将不同蛋白质盐析出来所需要的盐浓度也各异,盐析法就是通过控制盐的浓度,使蛋白质混合液中的各个成分分步盐析出来,达到粗分离蛋白质的目的。 盐析法是1878年Hammarster首次使用的,可用作盐析的中性盐有过硫酸钠、氯化钠、磷酸钠、硫酸铵等,其中应用最广的是硫酸铵,硫酸铵在水中溶解度大,25℃可达4.1mol/L的浓度,化学性质稳定,溶解度的温度系数变化较小,价廉易得;分段效果较其他盐好,性质温和,即使浓度很高时也不会影响蛋白质的生物学活性。 鸡蛋清的主要成分是球蛋白和白蛋白(卵清蛋白),球蛋白可在半饱和硫酸铵溶液中析出,而清蛋白则在饱和硫酸铵溶液中才能析出。 蛋白质的盐析作用是可逆过程,由盐析获得的蛋白质沉淀,当降低其盐类浓度时,又能再溶解,因而可初步纯化蛋白质。 等电点沉淀法是利用蛋白质在其等电点时溶解度最小来分离具有不同等电点蛋白质的方法。蛋白质是两性电解质,蛋白质分子的电荷性质和数量因PH不同而变化,蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀,因此,在其他条件相同时,它的溶解度达到最低点。 卵清蛋白的等电点为4.6-4.8,而球蛋的等电点是5.1。 2、蛋白质的测定 根据蛋白质的物理化学性质,测定蛋白质的方法有凯氏定氮法、紫外吸收法、Folin-酚法、考马斯亮蓝G-250染色法等。 由于蛋白质分子中酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外线的性质,吸收高峰在280nm波长处。在此波长范围内,蛋白质溶液的光吸收值(A280)与其含量呈正比关系,可用作定量测定。 由于核酸在280波长处也有光吸收,对蛋白质的测定有干扰作用,但核酸的最大吸收峰在260nm处,如同时测定260nm的光吸收,通过计算可能消除其对蛋白质测定的影响,因此溶液中存在核酸时必须同时测定280nm及260nm之光密度,方可通过计算测得

蛋白质分子量测定:凝胶过滤层析法

蛋白质分子量测定:凝胶过滤层析法 一、目的: (1)初步掌握利用凝胶层析法测定蛋白质分子量的原理。 (2)学习用标准蛋白质混合液制作Ve,Kav对1gMr的“选择曲线”以及测定未知蛋白质样品分子量的方法。 二、原理: 凝胶层析法(即凝胶过滤法,gel filtration)是利用凝胶把分子大小不同的物质分离开的一种方法,又叫做分子筛层析法(molecular sieve chromatography),排阻层析法(exclusion chromatography)。凝胶本身是一种分子筛,它可以把分子按大小不同进行分离,好象过筛可以把大颗粒与小颗粒分开一样。但这种“过筛”与普通的过筛不一样。将凝胶颗粒在适宜溶剂中浸泡,使充分吸液膨胀,然后装入层析柱中,加入欲分离的混合物后,再以同一溶剂洗脱,在洗脱过程中,大分子不能进入凝胶内部而沿凝胶颗粒间的空隙最先流出柱外,而小分子可以进入凝胶内部,流速缓慢,以致最后流出柱外,从而使样品中分子大小不同的物质得到分离。分离过程中的示意见图17-1。 凝胶是由胶体溶液凝结而成的固体物质,不论是天然凝胶还是人工合成凝胶,它们的内部都具有很微细的多孔网状结构。凝胶层析法常用的天然凝胶是琼脂糖凝胶(agarose gel,商品名Sepharose),人工合成凝胶是聚丙烯酰胺凝胶(商品名为Bio-gel-P)和葡聚糖(dextran)凝胶,后者的商品名称为Sephadex型的各种交联葡聚糖凝胶,它是个有不同孔隙度的立体网状结构的凝胶,不溶于水,其化学结构式如图17-2所示。 这种聚合物的立体网状结构,其孔隙大小与被分离物质分子的大小有相应的数量级。在凝胶充分溶胀后,交联度高的,孔隙小,只有相应的小分子可以通过,适于分离小分子物质。相反,交联度低的孔隙大,适于分离大分子物质。利用这种性质可分离不同分子量的物质。 为了说明凝胶层析的原理,将凝胶装柱后,柱床体积称为“总体积”,以Vt(total volume)表示。实际上Vt是由Vo,Vi与Vg三部分组成,即: Vt=Vo+Vi+Vg Vo称为“孔隙体积”或“外体积”(outer volume)又称“外水体积”,即存在于柱床内凝胶颗粒外面空隙之间的水相体积,相应于一般层析法中柱内流动相的体积;Vi为内体 积(inner volume),又称“内水体积”,即凝胶颗粒内部所含水相的体积,相应于一般层析法中的固定相的体积,它可从干凝胶颗粒重量和吸水后的重量求得;Vg为凝胶本身的体积,因此Vt—Vo等于Vi+Vg 。它们之间的关系可用图17-3表示。洗脱体积(Ve,elution Volume)与Vo及Vi之间的关系可用下式表示: Ve=Vo+KdVi 式中Ve为洗脱体积,自加入样品时算起,到组分最大浓度(峰)出现时所流出的体积;Kd为样品组分在二相间的分配系数,也可以说Kd是分子量不同的溶质在凝胶内部和外部的分配系数。 它只与被分离物质分子的大小和凝胶颗粒孔隙的大小分布有关,而与柱的长短粗细无关,也就是说它对每一物质为常数,与柱的物理条件无关。Kd可通过实验求得,上式可改写成: 上式中Ve为实际测得的洗脱体积;Vo可用不被凝胶滞留的大分子物质的溶液(最好有颜色以便于观察,如血红蛋白,印度黑墨水,分子量约200万的蓝色葡聚糖-2000等)通过实际测量求出;Vi可由g·WR求得(g为干凝胶重,单位为克;WR为凝胶的“吸水量”,以毫升/克表示)。因此,对一层析柱凝胶床来说,只要通过实验得知某一物质的洗脱体积Ve,就可算出它的

SDS-PAGE电泳常见问题

SDS-PAGE电泳问题总结 蛋白质条带为什么走到下面逐渐变宽发散? 回答:多数情况是因为小分子在胶里的运动不规律,这种情况常发生在高浓度胶或凝固不一致的胶里,你可以加大阴极的缓冲液浓度,可能会有点改善 胶凝的快慢不在于TEMED多少,在于APS的量,APS提供自由基,TEMED帮助自由基作用, 是催化剂,对凝固速度影响不是太大,可以试试加大APS的量 丙烯酰胺在凝胶中的百分比分离胶的分辨范围 15 % 15~45 kDa 12.5% 15~60 kDa 10 % 18~75 kDa 7.5% 30~120kDa 5 % 60~212kDa 来源于《蛋白质技术手册》汪家政 每种浓度的变性胶的分离范围不是指能跑出哪个范围分子量的蛋白质,而是指在这个区 间内,蛋白质迁移率基本和分子量成正比,也就是线性关系,为了数据的可靠性,大家 尽量根据这个来选择自己配胶的浓度。 下层也就是阳极缓冲液的作用当然是导电,用普通TRIS缓冲液做阳极缓冲液,一样跑得好,阴极就不一样了,需要提供离子强度和SDS环境,而在电泳过程中,阴极缓冲液的一些离子损失,而且与样品接触,不适合再次使用
至于有些时候跑太大浓度的胶,因 为药品,BUFFER配制过程的一些问题,导致会出现蛋白带无法电泳到分离胶的最下方,胶跑得难看情况比较多,一般来说,15%的胶已经能够跑出大约15KDa左右的蛋白,对于普通 SDS-PAGE已经几乎到了极限,还跑不出来的MARK带,就不必去追究商品的问题了 SDS-PAGE胶的凝结速度受温度影响很大,随着温度的升高,凝结速度越来越快,温度降低则反之。所以,夏天时胶凝结的比较快,而冬天脚的凝结速度则变慢,甚至不能凝结,解决此类问题较可行的方法是:冬天在原配方的基础上加倍过硫酸铵和TEMED的使用量,可很好的解决胶凝结速度过慢的问题。 做SDS-PAGE的时候,除了蛋白量上样一致,最好体积也一致,这样跑出来的胶各个泳道之间的band能做到一样宽,方便后面的比较,特别是WB。做法就是拿1X的上样缓冲补全要加的样做到体积一致,否则跑出来会有的宽有的窄,特别是上样体积相差较大的 加入染色液后,先放入微波炉里加热5-10秒,使染色液微热即可(千万不要加热太久, 否则冰醋酸就挥发了)。然后放水平摇床上摇20分钟,最多半小时就染好了。脱色也很 简单,不用脱色液,直接用去离子水,放微波炉里煮沸5分钟左右,然后将水倒掉,再换上新的去离子水煮,这样反复几次,就可以了。效果可能比正常的脱色稍差一点点,不 如那样清楚,只要电泳时比平时多上1/5的样品就可以了,关键是这样省时省材料(用不

【1】生物样本中蛋白质的提取及测定(分子医学实验)

《分子生物学实验》 实验报告 实验名称:生物样本中蛋白质的提取及测定 姓名:杰 学号:3140104666 组别: 同组同学:唐曦

带教教师:伟俞萍 实验日期:2015年9月15日 目录 1.原理: (3) 1.1生物样本中蛋白质的提取 (3) 1.2生物样本中蛋白质的测定 (3) 1.2.1 Lowry法 (3) 1.2.2 考马斯亮蓝法 (4) 1.2.3 紫外吸收法 (4) 2.操作步骤 (4) 2.1生物样本中蛋白质的提取 (4) 2.2生物样本中蛋白质的测定 (5) 2.2.1 Lowry法 (5) 2.2.2 考马斯亮蓝法 (5) 2.2.3紫外吸收法 (5) 3、实验结果 (6) 3.1 原始数据 (6) 3.1.1 Lowry法 (6) 3.1.2 考马斯亮蓝法 (7) 3.1.3 紫外吸收法 (7)

3.2 数据处理 (8) 3.2.1 Lowry法 (8) 3.2.2 考马斯亮蓝法 (9) 3.2.3 紫外吸收法 (10) 4.讨论: (11) 1.原理: 1.1生物样本中蛋白质的提取 离体不久的组织,在适宜的温度及pH等条件下,可以进行一定程度的物质代谢。因此,在生物化学实验中,常利用离体组织来研究各种物质代谢的途径与酶系作用,也可以从组织中提取各种代谢物质或酶进行研究。但生物组织离体过久,其所含物质的含量和生物活性都将发生变化。例如,组织中的某些酶在久置后会发生变性而失活;有些组织成分如糖原、ATP等,甚至在动物死亡数分钟至十几分钟,其含量即有明显的降低。因此,利用离体组织作代谢研究或作为提取材料时,都必须迅速将它取出,并尽快地进行提取或测定。一般采用断头法处死动物,放出血液,立即取出实验所需的脏器或组织,除去外层的脂肪及结缔组织后,用冰冷的生理盐水洗去血液(必要时可用冰冷的生理盐水灌注脏器以洗去血液),再用滤纸吸干,即可用于实验。取出的脏器或组织,可根据不同的方法制成不同的组织样品。包括组织糜、组织匀浆、组织浸出液。由于动物肝脏细胞比较脆弱,易于破碎,故本实验选用小鼠肝脏细胞作为实验材料,采用匀浆法法将其破碎,然后加入样品提取液使蛋白质溶解,用高速离心法弃去细胞碎片。收集上清液后可进行蛋白质定量分析。 1.2生物样本中蛋白质的测定 1.2.1 Lowry法 1921年,Folin发明了Folin-酚试剂法测定蛋白质的浓度,反应原理是利用蛋白质分子中的酪氨酸和色氨酸残基还原酚试剂(磷钨酸-磷泪酸)生成蓝色

电泳常见问题及处理方法

电泳常见问题及处理方法 1.缩孔 这类缺陷在湿的漆膜上看不见,当烘干后漆膜表面出现直径通常为0.5-3.0mm漏底微孔、不漏底的火山口状的凹陷,称为陷穴、凹洼,露底者为缩孔,中间有颗粒但不刮手的称为“鱼眼”。由于电泳漆湿膜中或表面有尘埃、油渍或与电泳涂料不相容的粒子,成为陷穴中心,因而产生涂膜缺陷。很多情况下这类缺陷还与被涂物的材质有关,如金属底材上存在微裂纹和微孔等。 原因1:外来油污污染电泳漆膜,油污附着在工件表面,使电泳漆成膜受到影响。这种原因引起缩孔的几率较大。 解决方法:可检查输送机构、挂具,防止油滴污染漆膜。从电泳设备制造安装开始就要避免上述物质污染,每一种新零件投入电泳前最好进行相关检验,防止受油、硅油、蜡、脂性碳化物、胶水等污染物对工件,电泳设备及电泳槽液的污染。 原因2:前处理除油不干净,造成润湿性不良,使电泳漆烘干后漆膜有缩孔。 解决方法:加强前处理清洗。 原因3:槽液有油污、异物混入,影响电泳漆膜外观。 解决方法:用吸油纸吸去油污,清除槽液内异物,同时避免异物混入,保持电泳槽液清洁 原因4:加漆时有电泳漆没搅拌均匀,使槽液无完全熟化,引起漆膜不良。 解决方法:确保加入的电泳漆搅拌均匀,加强槽液循环,使槽液完全熟化 原因5:电泳后水洗中含油分或烘干室内不洁净,循环风含油分,使油分附著在漆膜上面烘干后有缩孔。 解决方法:水洗经常更换,烤箱经常清理.烤箱链轨用油可选用耐高温,不会高温挥发为最佳 2.针孔 工件上有露底针状小孔,称为针孔,它与缩孔的区别是孔径小,中心无异物,且四周无漆膜堆积凹起。由漆膜再溶解而引起的针孔,称为再溶解针孔;由电泳过程中产生的气体、湿膜脱泡不良而产生的针孔,称为气体针孔; (1)湿膜针孔:工件未进行烘烤,在空气中凉干,可看到的针孔 原因1: 电泳电压过高,电流冲击反应过剧,产生气泡过多,或升压速度过快。 解决方法:适当降低电压,加长软启动时间 原因2:溶剂含量偏低。 解决方法:添加溶剂,每次添加不能超过1%

蛋白质相对分子质量的测定(SDS法)

蛋白质相对分子质量的测定 (SDS-聚丙烯酰胺凝胶电泳法) 一、实验原理 蛋白质在十二烷基硫酸钠(SDS)和巯基乙醇的作用下,分子中的二硫键还原,氢键等打开,形成按1.4gSDS/1g蛋白质比例的SDS-蛋白质多肽复合物,该复合物带负电,故可在聚丙烯酰胺凝胶电泳中向正极迁移,且主要由于凝胶的分子筛作用,迁移速率与蛋白质的分子量大小有关,因此可以浓缩和分离蛋白质多肽。 聚丙烯酰凝胶电泳分离蛋白质多数采用一种不连续的缓冲系统,主要分为较低浓度的成层胶和较高浓度的分离胶,配制凝胶的缓冲液,其pH值和离子强度也相应不同,故电泳时,样品中的SDS-多肽复合物沿移动的界面移动,在分离胶表面形成了一个极薄的层面,大大浓缩了样品的体积,即SDS-聚丙烯酰胺凝胶电泳的浓缩效应。 二、仪器及器材 垂直电泳槽及附件、直流稳压稳流电泳仪、移液器等。 三、试剂 1、凝胶贮备液:称取30g 丙烯酰胺(Acr)和0.8g 甲叉-双丙烯酰胺(Bis),蒸馏水溶解后定容至100mL,滤纸过滤贮存。 2、10% SDS:称取SDS 10g 加蒸馏水至100ml。 3、10%过硫酸胺(AP),用时现配。 4、N,N,N’,N’四甲基乙二胺(TEMED)。 5、电极缓冲液:3.03g Tris、14.14g甘氨酸、1.0g SDS溶于水,混匀后用HCL调节pH至8.3,加蒸馏水至1 000ml。 6、样品溶解(缓冲)液:0.6gTris、5mL甘油(丙三醇)1.0g SDS溶于水,混匀后用HCL调节pH至8.0,再加0.1g溴酚蓝、2.5mL巯基乙醇,定容至100mL。 7、下层胶(分离胶)缓冲液:18.17g Tris、0.4gSDS溶于水,混匀后用1mol/L HCL 调节pH至8.8,加蒸馏水至100ml。 8、上层胶(浓缩胶)缓冲液:6.06g Tris、0.4gSDS溶于水,混匀后用1mol/L HCL 调节pH至6.8,加蒸馏水至100ml。 9、固定液:25%异丙醇,10%乙酸。 10、染色液:0.125g考马斯亮蓝R-250加固定液250ml。 11、脱色液:冰乙酸75ml、甲醇50ml,加水定容至1000ml。

蛋白含量测定及western步骤

蛋白的提取和定量 肺组织用预冷1×TBS洗净后,加入含PMSF的RIPA buffer(冰上操作,310ul,决定未来的蛋白浓度和蛋白液体积),50-60mg肺组织砸碎放入1.5ml离心管,冰上孵育1h,10000转4℃离心10min,转上清至新管。裂解液分装后保存于-70℃ 蛋白质定量:BCA蛋白测定法 ①根据样品数量,按50体积BCA试剂A加1体积BCA试剂B(50:1)配制适量BCA工作液,充分混匀。BCA工作液室温24小时内稳定。 ②完全溶解蛋白标准品(BCA试剂盒中,BSA原浓度2mg/mL),稀释到1mg/mL。 ③将标准品按0,2,5,10,15,20,25 ul标准品孔中,加蒸馏水稀释标准品的 ④加样品2uL加到96孔板的样品孔中,加蒸馏水23微升。 ⑤各孔加入200微升BCA工作液,37o C放置30分钟。同时打开酶标仪预热。 注:也可以室温放置2小时,或60o C放置30分钟。BCA法测定蛋白浓度时,吸光度会随着时间的延长不断加深。并且显色反应会因温度升高而加快。如果浓度较低,适量在较高温度孵育,或延长孵育时间。 ⑥测定A570的波长,根据标准曲线计算出蛋白浓度。 ⑦计算调蛋白时所需TBS和RSB的体积(调所有样品浓度至3-5ug/ul): 总体积=蛋白体积*蛋白浓度/3(ul) RSB=1/5*总体积(ul) TBS=总体积-RSB-蛋白体积(ul) 先加RSB(对蛋白有保护作用),后加TBS。最后放于-70℃保存。 Western Blot SDS-PAGE 1. 玻璃板:注意对齐、夹紧,防止漏出,短板朝前。 灌至距绿线1cm左右,用dd水封顶,放置30-40min。状况好时往往能观察到

琼脂糖凝胶电泳常见问题分析

琼脂糖凝胶电泳常见问题分析

DNA凝胶电泳简介 一、实验原理 DNA电泳是基因工程中最基本的技术,DNA制备及浓度测定、目的DNA片段的分离,重组子的酶切鉴定等均需要电泳完成。根据分离的DNA大小及类型的不同,DNA电泳主要分两类:

1、聚丙烯酰胺凝胶电泳适合分离1kb以下的片段,最高分辨率可达1bp,也用于分离寡核苷酸,在引物的纯化中也常用此中凝胶进行纯化,也称PAGE纯化。 2、琼脂糖凝胶电泳可分离的DNA片段大小因胶浓度的不同而异,胶浓度为0.5~0.6%的凝胶可以分离的DNA片段范围为20bp~50kb。电泳结果用溴化乙锭(EB)染色后可直接在紫外下观察,并且可观察的DNA条带浓度为纳克级,而且整个过程一般1小时即可完成。由于该方法操作的简便和快速,在基因工程中较常用。 二、琼脂糖凝胶 琼脂糖是从琼脂中分离得到,由1,3连接的吡喃型b-D-半乳糖和1,4连接的3,6脱水吡喃型阿a-L-半乳糖组成,形成相对分子量为104~105的长链。琼脂糖加热溶解后分子呈随机线团状分布,当温度降低时链间糖分子上的羟基通过氢键作用相连接,形成孔径结构,而随着琼脂糖浓度不同形成不同大小的孔径。表1给出了不同浓度凝胶对DNA片段的线性分离范围。 表1不同类型琼脂糖分离DNA片段大小的范围 由于琼脂糖凝胶是通过氢键的作用,因此过酸或过碱等破坏氢键形成的方法常用于凝胶的再溶化,象NaClO4能用于凝胶的裂解,一般的凝胶回收试剂盒利用的也是这一原理。 随着实验技术的发展,也针对不同用途开发了各种类型的琼脂糖凝胶:(1)低熔点琼脂糖凝胶,用于DNA片段的回收,且由于该种凝胶中无抑制酶,可在胶中进行酶切、连接等;(2)高熔点凝胶,可分离小于1kb的DNA片段,专用于PCR产物的分析;(3)快速凝胶,电泳速度比普通凝胶中快一倍,可节省实验时间;(4)适用于DNA大片段的分离。(5)其它类型。各生产商还开发很多类型的凝胶,可根据实验要求选择不同类型的,选择原则是考虑合适的机械强度和熔点。

SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量

实验六报告: SDS- 聚丙烯酰胺凝胶电泳法测定蛋白质分子量 1.研究背景及目的 根据自然界中普遍存在的电泳现象,以及实践应用的需求,科学家不断完善了电泳技术,从移界电泳法、垂直管型盘状电泳、垂直板型电泳、垂直柱型盘状电泳到水平板型电泳。电泳技术广泛地应用于样品的分析鉴定。蛋白质分子量的测定在理论和实践中具有很重要的意义,比如临床中对于尿液中蛋白质分子量的测定可以监测人体内的某些疾病(肾小管损坏、多发性骨髓瘤等)。这种需要促进了相关技术的发明。具体过程见原理。蛋白质在聚丙烯酰胺凝胶中电泳时,它的迁移率取决于它所带净电荷以及分子的大小和形状等因素。从活性电泳到变性电泳经过了很多思考。从活性如果加入一种试剂使电荷因素及分子的形状消除,那电泳迁移率就取决于分子的大小,就可以用电泳技术测定蛋白质的分子量。 1967年,Shapiro等发现阴离子去污剂十二烷基硫酸钠(SDS)具有这种作用[1] 。 通过向样品中添加入巯基乙醇和过量SDS,使蛋白质变性解聚,并让SDS与蛋白质结合成 带强负电荷的复合物,掩盖了蛋白质之间原有电荷的差异。SDS与蛋白质分子结合,不仅 使蛋白质分子带上大量的负电荷,而且使蛋白质分子的形状都变成短棒状,从而消除了蛋白质分子之间原有的电荷差异和分子形状的差异。因此蛋白质在SDS-PAGE中的时迁移率 主要取于其分子大小。由于SDS与蛋白质的结合,电泳迁移率在外界条件固定的情况下,只取决于蛋白质分子量大小这一因素,使得SDS-聚丙烯酰胺凝胶电泳具有分辨率高、重复性好等特性,因此广泛应用于未知蛋白质分子量测定。通过本次实验,学习和掌握垂直板型聚丙烯酰胺凝胶电泳的原理和方法,进一步学习和应用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量。 2.原理 由于技术的发展,理论上可以通过测序测出蛋白质分子量的真值,但是实际操作过于繁琐,且生物大分子的数量级是KDa,实际中往往不需要特别精确。所以转向寻求其它方法,如果两种性质具有相关性,就会有相关理论基础和技术,发现分子量与迁移速率有关,于是寻找相关方面的技术。通过沉降平衡法测定分子量,但是需要很大的转速,且要考虑安全性和造价,于是舍弃;分子筛层析主要以分子量差异进行分离,可以用来测定分子量,但是需要很长的分离柱,分离速度较慢,还要测定OD值,操作麻烦,浪费时间,而且带 来的经济效益也不是很大;与此同时,电泳技术也发展起来,电泳相对时间较短,造价低,可操作性强。电泳与分子量、分子形状以及所带电荷量有关,其中含有分子量,理论上就可行了,于是用电泳测定分子量。首要矛盾是消除电荷差异和分子形状差异,从数学上彻底消除电荷效应是不可能的,使带电量相同也不可能实现,只有使分子带上非常大的电荷量从而使分子间的电荷差异可以忽略。想到通过引入外来物形成复合物,定量引入,定量结合,且结合后分子间差异并未发生改变。关于引入负电还是引入正电的问题,蛋白大多为球状,若结合后仍未球状,静电结合不稳定;双亲性物质彻底结合后破坏空间结构,所以引入负电,结合稳定。于是开始筛选阴离子去污剂,在众多的物质试验中,发现十二烷基硫酸钠(SDS)具有很好的效果。SDS通常与蛋白质以1.4:1的重量比结合,所引入净电 荷量约为蛋白质本身静电荷 10倍的静电荷,从而形成具有均一电荷密度和相同荷质比的SDS-蛋白质复合物,该复合物所带的电荷远远超过蛋白质原有的净电荷,从而消除或大大降低不同蛋白质之间所带净电荷

可溶性蛋白质含量的测定

植物体内可溶性蛋白质含量的测定 植物体内的可溶性蛋白质含量是一个重要的生理生化指标,如在研究每一种酶的作用时常以比活(酶活力单位/毫克蛋白质,unIT/Mg ProTeIn)表示酶活力大小及酶制剂纯度,这就需要测定蛋白质含量。常用的测定方法有LoWry法和考马斯亮蓝G-250染色法,本实验将分别介绍这两种方法。 方法一:LoWry法(劳里法) 【原理】 LoWry法是双缩脲法(BIureT)和福林酚法(FolIn-酚)的结合与发展。其原理是蛋白质溶液用碱性铜溶液处理后,碱性铜试剂与蛋白质中的肽键作用产生双缩脲反应,形成铜—蛋白质的络合盐。再加入酚试剂后,在碱性条件下,这种被作用的蛋白质上的酚类基团极不稳定,很容易还原酚试剂中的磷钨酸和磷钼酸(PHosPHoMolyBdATe &PHosPHoTungsTATe),使之生成磷钨蓝和磷钼蓝的混合物。这种溶液蓝色的深浅与蛋白的含量成正相关,所以可以用于蛋白质含量的测定。LoWry法除使肽链中酪氨酸、色氨酸和半胱氨酸等显色外,还使双缩脲法中肽键的显色效果更强烈,其显色效果比单独使用酚试剂强3~15倍,约是双缩脲法的100倍。由于肽键显色效果增强,从而减少了因蛋白质种类不同引起的偏差。LoWry法适于微量蛋白的测定,对多个样品同时测定较为方便。但对不溶性蛋白和膜结合蛋白必须进行预处理(如加入少量的SDS)。

1.双缩脲法的原理双缩脲(NH2-CO-NH-CO-NH2)在碱性溶液中可与铜离子产生紫红色的络合物,这一反应称为双缩脲反应。因为蛋白质中有多个肽键,也能与铜离子发生双缩脲反应,且颜色深浅与蛋白质的含量的关系在一定范围内符合比尔定律,而与蛋白质的氨基酸组成及分子量无关,所以可用双缩脲法测定蛋白质的含量。 双缩脲反应主要涉及肽键,因此受蛋白质特异性影响较小。且使用试剂价廉易得,操作简便,可测定的范围为1~10Mg蛋白质,适于精度要求不太高的蛋白质含量的测定,能测出的蛋白质含量须在约05Mg以上。双缩脲法的缺点是灵敏度差、所需样品量大。干扰此测定的物质包括在性质上是氨基酸或肽的缓冲液,如TrIs缓冲液,因为它们产生阳性呈色反应,铜离子也容易被还原,有时出现红色沉淀。 2.福林-酚法的原理该方法是双缩脲法的发展,包括两步反应: (1)在碱性条件下,蛋白质与铜作用生成蛋白质—铜络合物。 (2)此络合物将试剂磷钼酸—磷钨酸(FolIn试剂)还原,混合物深蓝色(磷钼蓝和磷钨蓝混合物),颜色深浅与蛋白质含量成正比。此方法操作简便,灵敏度比双缩脲法高100倍,定量范围为5~100μg蛋白质。FolIn试剂显色反应由酪氨酸、色氨酸、半胱氨酸引起,因此样品中若含有酚类、柠檬酸和巯基化合物,均有干扰作用。此方法的缺点是有蛋白质的特异性影响,即不同蛋白质因络氨酸、色氨酸含量的不同而使显色强度稍有不同,标准曲线也不是严格的直线形式。

相关主题
文本预览
相关文档 最新文档