基于石墨烯透明电极的聚合物太阳能电池光吸收研究
- 格式:pdf
- 大小:925.86 KB
- 文档页数:9
石墨烯材料在能源领域中的应用石墨烯是由碳原子组成的二维材料,拥有优异的力学性质和导电性能。
这使得石墨烯在许多领域具有广泛的应用前景,尤其是在能源领域。
在本文中,我将探讨石墨烯材料在能源领域中的应用,主要包括太阳能电池、储能系统、传感器等方面。
一、太阳能电池太阳能电池是一种能够将太阳能转化为电能的设备。
石墨烯作为一种导电材料,可以用于太阳能电池中的电极材料。
首先,石墨烯的高导电性使其成为一种优秀的电极材料。
石墨烯电极具有高的电子迁移率,可以大大提高电池的能量转换效率。
同时,石墨烯的透明性也使其成为一种优秀的透明电极材料,可以将太阳能有效地吸收并转化为电能。
其次,石墨烯的高比表面积和化学稳定性也使其成为一种优秀的催化剂材料。
通过将石墨烯和其他金属材料复合,可以制备出高效的催化剂材料,提高太阳能电池的能量转换效率。
二、储能系统储能系统是一种能够将电能转化为储能形式,并随后将储能形式重新转化为电能的设备。
石墨烯可以用于储能系统中的电极材料,以提高储能系统的能量密度和循环寿命。
首先,石墨烯的高导电性和化学稳定性使其成为一种优秀的电极材料。
石墨烯电极可以提供高的电子导电性,形成优秀的电极材料。
此外,石墨烯也能够提供高的化学稳定性,保证电极材料的稳定性和循环寿命。
其次,通过将石墨烯和其他材料组成复合材料,可以进一步提高储能系统的性能。
例如,石墨烯和硅材料组成的复合材料能够提供高的比容量和循环寿命,成为一种优秀的锂离子电池材料。
三、传感器传感器是一种能够感知和检测物理、化学和生物等活动,并将其转换为电信号输出的设备。
石墨烯由于其高灵敏度和高选择性,使其成为一种优秀的传感器材料。
首先,石墨烯的高导电性使其成为一种优秀的电极材料。
通过将石墨烯制备成纳米结构或复合材料,可以制备出高灵敏度和高选择性的传感器材料。
例如,石墨烯和金纳米粒子组成的复合材料可以用于制备高灵敏度的气体传感器。
其次,石墨烯的化学稳定性和生物相容性也使其成为一种优秀的生物传感器材料。
石墨烯的研究与应用石墨烯是由单层碳原子组成的一种新型二维材料。
它的独特结构和优异性能使其成为近年来研究的热点之一。
本文将介绍石墨烯的研究进展和应用前景。
石墨烯最早被提出是在2004年,由于其独特的结构和性质,很快引起了科学界的广泛关注。
石墨烯是由连续排列的碳原子单层组成的,形成一个六角蜂窝状的结构。
它具有很高的比表面积、优秀的导电性和导热性,以及极高的机械强度。
石墨烯的研究得到了许多突破性的成果。
首先,石墨烯是迄今为止已知的最薄的材料,单层石墨烯的厚度仅为0.34纳米。
其次,石墨烯的导电性极佳,甚至超过了金属铜。
这使得石墨烯在电子器件领域有着广泛应用的前景。
此外,石墨烯具有优异的热导性能,使其在热电材料制备方面具有重要价值。
最后,由于其高机械强度,石墨烯在纳米机械领域也有着广泛的应用前景。
石墨烯在电子器件方面的应用前景被广泛关注。
由于石墨烯的导电性能优异,可以在微电子领域中用作电极材料。
同时,石墨烯的高机械强度可以避免电子器件的机械破坏,提高器件的稳定性和寿命。
此外,石墨烯的独特结构还使其具有较高的载流子迁移率,有望在高频电子器件中取代传统半导体材料。
另外,石墨烯在热电材料领域也有重要的应用潜力。
石墨烯具有优异的热导性能,可以作为制备高效热电材料的载体。
通过控制石墨烯的掺杂方式和结构,可以调控其热导率和电导率,进而提高材料的热电转换效率。
此外,石墨烯在纳米机械领域也具有广泛的应用前景。
石墨烯的高机械强度使其可以用于制备纳米机械传感器和纳米机械装置。
通过对石墨烯表面的修饰,可以实现对纳米粒子的操控和调控,为纳米机械领域的研究提供了新的思路和方法。
总之,石墨烯作为一种具有独特结构和优异性能的新型二维材料,具有广泛的研究价值和应用前景。
随着石墨烯研究的深入,相信它在电子器件、热电材料和纳米机械领域等方面的应用将会不断扩大,并对相关领域的发展产生重要影响。
另外,石墨烯还具有一些不同于传统材料的特殊性质,如其为零带隙半导体。
石墨烯透明导电薄膜的制备与应用石墨烯是一种全新的材料,具有很多优异的物理和化学特性,如高导电性、高强度、高透明性等,被认为是未来高科技领域的主角。
其中,石墨烯透明导电薄膜的研究和应用,引起了广泛关注。
一、石墨烯透明导电薄膜的制备方法石墨烯透明导电薄膜的制备方法包括化学气相沉积法、机械剥离法、还原氧化石墨烯法等多种方式。
其中,化学气相沉积法是最常用的一种方法。
1.化学气相沉积法化学气相沉积法是利用热分解和气相沉积反应的方法制备石墨烯。
在一个封闭的反应室中,通过可控的加热和对流运动,将石墨烯原料通过汽化的方式输入反应室,通过反应顶部的催化剂,反应生成石墨烯材料,最终在样品基板上沉积出一层石墨烯薄膜。
2.机械剥离法机械剥离法是一种利用玻璃纸或胶带等材料将石墨烯从石墨中剥离的方法。
通过将石墨样品放置在特定的基板上,然后用玻璃纸或胶带等材料将石墨烯层从石墨中拔出,最终形成石墨烯薄膜。
3.还原氧化石墨烯法还原氧化石墨烯法是一种将氧化石墨烯还原为石墨烯的方法。
通过将氧化石墨烯样品放置在还原剂中,对其进行处理,再将其加热处理,即可得到石墨烯薄膜。
二、石墨烯透明导电薄膜的应用领域石墨烯透明导电薄膜具有很多的应用领域,主要涵盖电子、光电、能源、传感等方面。
1.光电领域在光电领域,石墨烯透明导电薄膜主要用于制作晶体管、显示设备、太阳能电池等。
石墨烯透明导电薄膜具有高透明性和高导电性,可以大幅度提高显示装置的亮度和对比度,制成石墨烯透明导电薄膜的太阳能电池,可以将太阳能的转化效率提升。
2.传感领域在传感领域,石墨烯透明导电薄膜主要用于制作生物传感器、气敏传感器等。
石墨烯透明导电薄膜具有很强的化学稳定性和良好的生物相容性,因此可以用来制作生物传感器等相关仪器,在测量生命体征方面有着广泛的应用。
3.电子领域在电子领域,石墨烯透明导电薄膜主要用于制作晶体管、高频谐振器等电子元器件,以及柔性显示器等电子产品。
石墨烯的高导电性和高透明性使得其作为电子元器件的材料能够大幅度提升电子设备的性能。
基于石墨烯薄膜材料的肖特基结光伏器件研究进展贾树明;魏大鹏;焦天鹏;汪岳峰【摘要】Schottky Junction solar cell has attracted more and more attention ,because of its simple structure , easinessof preparation and low cost .Graphene ,with the property of excellent physicalperformance ,abundant natural resources and low preparation cost ,has become a candidate to replace the traditional IT O for the Schott‐ky Junction solar cell .In this paper ,we reviewed the progress of Schottky Junction solar cells based on gra‐phene ,and discuss the problems in the practical applications .It provides a powerful tool to research potential applications of graphene in Schottky Junction solar cells in future .%肖特基结太阳能电池因其结构简单、制备方便、成本低廉而受到广泛关注。
石墨烯材料具有优异的物理性能以及原料来源丰富、制备成本低,可替代传统的IT O 用于制备基于石墨烯的肖特基结太阳能电池。
综述了现阶段基于石墨烯肖特基结太阳能电池的研究进展,探讨和分析了不同类型石墨烯肖特基结太阳能电池的性能以及在应用中存在的问题,为后续开展石墨烯肖特基结太阳能电池的研究与应用提供借鉴。
摘要石墨烯是一种高透光性,强导电性的新型二维材料,可作为透明导电膜用于显示屏领域或者光伏产业。
作为透明导电膜,石墨烯将长期工作在光辐照下,而最新研究表明不同环境下的光照实验对石墨烯导电性能有一定影响。
因此,了解石墨烯在光照下的导电稳定性就至关重要,是决定其能否用于透明导电膜的重要指标。
本文针对石墨烯透明薄膜导电稳定性进行研究,从石墨烯样品参数、辐照光源参数、气氛环境参数出发,探究其导电性能的变化规律以及引起变化的主要机理。
论文工作内容包括:①采用化学气相沉积法制备石墨烯,并将其转移到聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)以及SiO2基底上。
对完成转移的石墨烯样品进行图形化处理,并对其进行表征。
根据测量参数条件,设计并搭建光照下石墨烯导电性能测试系统。
②针对工作波长在可见光范围内的石墨烯透明导电膜,在光辐照下,其导电稳定性实验结果表明:1) PET基底未掺杂样品比SiO2基底未掺杂样品稳定;2)氯化金掺杂能够提升PET基底样品与SiO2基底样品的稳定性;3)蓝光辐照对SiO2基底未掺杂样品导电性能影响最大,红光最小;4)随着样品受照面光功率密度的增加,SiO2基底未掺杂样品稳定性变差;5) SiO2基底未掺杂样品在氮气环境下稳定性最好,真空中最差。
③针对工作波长在近红外范围的石墨烯透明导电膜,在光照下,其导电稳定性结果表明:1)红外辐照下石墨烯样品较为稳定,仅有PET基底掺杂样品表现出了与可见光辐照下相似的规律;2)对于SiO2基底未掺杂样品,随着样品受照面光功率密度的增加,其稳定性变化较小;3)不同气氛环境下,SiO2基底未掺杂样品稳定性并无较大差异。
④通过对系列实验数据分析表明光致吸附作用是导致石墨烯导电性能变化的主要作用机理。
即石墨烯与周围的气体分子或者微粒进行相互作用,导致其内部载流子浓度发生改变,从而改变其导电性能。
因此在不同参数影响下,石墨烯导电稳定性的差异主要源于其自身与外界环境的相互作用强度不同。
石墨烯的研究与应用综述一、石墨烯的结构与特性石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是最薄的二维材料,单层的厚度仅0.335nm。
石墨烯可塑性极大,是构建其他维数碳材料的基本单元,可以包裹成零维的富勒烯结构,卷曲成一维的碳纳米管,以及堆垛成三维的石墨等。
石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨烯晶体,二人因此荣获2010年诺贝尔物理学奖。
石墨烯具有一些奇特的物理特性:导电性极强:石墨烯中的电子没有质量,电子的运动速度能够达到光速的1/300,是世界上电阻率最小的材料。
良好的导热性:石墨烯的导热性能优于碳纳米管和金刚石,单层石墨烯的导热系数可达5300瓦/米水度,远高于金属中导热系数高的银、铜等。
极好的透光性:石墨烯几乎是完全透明的,只吸收2.3%的光,并使所有光谱的光均匀地通过。
超高强度:石墨烯被证明是当代最牢固的材料,硬度比莫氏硬度10级的金刚石还高,却又拥有很好的韧性,可以弯曲。
超大比表面积:石墨烯拥有超大的比表面积(单位质量物料所具有的总面积),这使得石墨烯成为潜力巨大的储能材料。
石墨烯特殊的结构形态,具备目前世界上最硬、最薄的特征,同时具有很强的韧性、导电性和导热性,这些极端特性使其拥有巨大发展空间,应用于电子、航天、光学、储能、生物医药、日常生活等大量领域。
二、石墨烯的制备方法石墨烯的制备方法主要有机械法和化学法2种。
机械法包括微机械分离法、取向附生法和加热碳化硅法;化学法包括外延生长法、化学气相沉积法与氧化石墨还原法。
微机械分离法是直接将石墨烯薄片从较大的晶体上剪裁下来,可获得高品质石墨烯,且成本低,但缺点是石墨烯薄片尺寸不易控制,不适合量产;取向附生法是利用生长基质原子结构“种”出石墨烯,石墨烯性能令人满意,但往往厚度不均匀;加热碳化硅法能可控地制备出单层或多层石墨烯,是一种新颖、对实现石墨烯的实际应用非常重要的制备方法,但制备大面积具有单一厚度的石墨烯比较困难。
石墨烯在能源领域的应用石墨烯是一种由碳原子构成的二维晶体,在材料科学领域被广泛关注。
由于其优异的力学、光学和电学性质,石墨烯在能源领域的应用潜力巨大。
第一,太阳能电池。
石墨烯能够充分改善传统太阳能电池效率低的问题。
石墨烯薄膜具有高度透明性,并且可以实现广谱光吸收。
通过将石墨烯薄膜引入到典型的硅太阳能电池中,发现其效率得到了显著提升,这使得石墨烯成为具有很大潜力的太阳能电池材料。
第二,高性能电池。
石墨烯与传统电池材料相比具有更高的表面积和导电性能,能够大幅度提高电池的储能密度和输出功率。
例如,在锂离子电池中,石墨烯导电网络的应用可以增加电池的有效表面积,并具有更高的离子扩散速率,从而实现更高的储能密度和性能。
第三,新型储能材料。
随着电动汽车市场的不断扩大,石墨烯在储能领域也展示出了强大的潜力。
石墨烯作为一种高效的超级电容器电极材料,具有很高的比表面积和重要的能量和功率密度,因此可以在储能材料和设备方面获得应用。
第四,超导应用。
在能源领域的另一个前沿领域,超导应用也是石墨烯的一个重要应用方向。
石墨烯具有卓越的电子结构和高度可控的超导性能。
目前,石墨烯材料已经在柔性超导体、超导透镜和超导短接器等方面取得了重要进展。
总之,石墨烯在能源领域的应用前景广阔,尤其是能够扩大太阳能电池、高性能电池、新型储能材料和超导应用的范围和领域。
未来,随着石墨烯相关技术和材料的不断改进和完善,我们有理由相信石墨烯将会在能源领域展现出更多的应用和创新。
石墨烯的性质及其在电子器件中的应用石墨烯是近年来材料科学领域中备受关注的一种新型物质。
它是由一层平面的碳原子构成的,具有许多优异的特性,如高导电性、高热导性、高强度和高可伸缩性等。
这些特性使得石墨烯被广泛应用于电子器件方面,包括传感器、晶体管和太阳能电池等。
本文将介绍石墨烯的性质以及其在电子器件中的应用。
石墨烯的性质石墨烯是一种单元素材料,其结构由一个平面的碳原子层组成。
由于碳原子的电子结构,它们在结晶时呈现出六角形的排列方式,形成了独特的六边形网格。
石墨烯只有一个原子层,因此具有极高的表面积,具体而言,每平方厘米上有39万亿个碳原子。
这使得石墨烯具有高度的可伸缩性,可以用于制造柔性电子器件。
另一个石墨烯的显著特性是它的电子性质。
由于石墨烯的晶胞中只有一个碳原子层,因此它是一个二维材料。
石墨烯中的电子可以沿着水平方向自由移动,因此具有非常高的电导率。
此外,石墨烯还具有非常好的热传导性能,可以传导高达13000瓦特/(米·开)的热流。
这些特性使得石墨烯在电子器件方面有广泛的应用前景,特别是在传感器和晶体管等领域。
石墨烯在电子器件中的应用1. 传感器石墨烯作为一种超薄材料,可以用于制造高灵敏度的传感器。
传感器是一种能够转换物理量为电信号的器件。
由于石墨烯非常薄且具有高度的伸缩性,因此可以用于制造超薄的压力传感器。
在石墨烯压力传感器的设计中,将两个电极分别位于石墨烯表面上方和下方,并在两个电极之间施加压力。
当施加压力时,石墨烯会伸缩,导致电极之间的电阻发生变化。
通过检测电阻的变化,可以获得压力传感器的信号输出。
2. 晶体管晶体管是电子器件中非常重要的一类元件,是计算机芯片等电子设备的核心部件。
晶体管的核心是半导体材料,而石墨烯由于其高导电性,可以用来制造高性能的晶体管器件。
目前的研究表明,石墨烯可以制造出高性能、高速度的晶体管,这些晶体管可以在几千兆赫的频率下运行,相比于现有的硅基晶体管,性能有了显著的提升。
石墨烯的性能及应用分析石墨烯被誉为21世纪材料之王,因其诸多独特性能而备受关注。
本文将从石墨烯的结构,物理性质和应用领域三个方面进行分析。
一、石墨烯的结构石墨烯是一种二维的单层碳原子晶体,它由一个平面六角网格构成,每个六角网格的顶点是一个碳原子,相邻碳原子之间通过共价键连接,形成一种类似蜂窝的结构,这种结构也被称为“蜂窝状”。
二、石墨烯的物理性质1. 电子传输性能:石墨烯是一种半金属材料,其电子移动速度非常快,可达到传统硅材料的100倍,使石墨烯在电子传输领域具有广泛的应用前景,如电子元件和光电子设备等。
2. 机械性能:石墨烯具有极高的机械强度和韧性,它的拉伸模量大约为1 TPa,相当于金属铁丝的200倍,使其在高强度纤维复合材料和超级硬材料方面有着无限的潜力。
3. 热导性能:石墨烯的热导率非常高,是铜的两倍甚至更高,所以它在制造散热器等领域有着广泛的应用前景。
4. 光学性能:石墨烯的吸收率很低,只有2.3%,因此它可以用来制造透明电极、薄膜太阳能电池等光学器件。
三、石墨烯的应用领域1. 电子领域:石墨烯可用于制造高性能电子器件,如晶体管、场效应器、传感器等。
2. 机械材料领域:石墨烯可用于制造高强度材料、碳纤维复合材料等,在航空航天、汽车制造等领域有着广泛应用。
3. 能源领域:石墨烯可以制造高效太阳能电池、锂离子电池等,还可以用于制造新型储能材料。
4. 生物医学领域:石墨烯可以用于制造纳米药物、生物传感器等,在生物医学领域有着广泛的应用前景。
总之,石墨烯是一种非常神奇的材料,具有许多独特的性质,对我们的生活和科技发展都具有重要的影响。
而随着石墨烯研究的不断深入,我们相信会有更多更好的石墨烯应用被发明和创造出来,为人类社会带来更多更广泛的福利和发展机遇。
石墨烯材料研究现状及应用前景崔志强(重庆文理学院材料与化工学院,重庆永川402160)摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。
本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。
论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。
关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景中图分类号: TQ323 文献标识码:A 文章编号:Research status and application prospect of graphene materialsCui Zhiqiang(Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development.Keywords: graphene materials; preparation methods; practical significance; development status; application prospect0 引言1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。