3 d ) rdr 0(r 1 2
1 2
D
11
[解法2] 利用Gauss公式
补上底面 S 1:
S : z 1 x y
2
2 2
2
z 0 , x y 1
xdy ^ dz ydz ^ dx zdx ^ dy S
S
1
z
n
y
SS 1
o
n1
D xy
D xy
Z dx ^ dy 0 Z [ x ,y ,z ( x ,y )] dxdy ( 2 )
1
S3
同理可证
Z Zdx ^ dy dV 比较 ( 1 ) 式与 (2 ) 式 ,可以得到 z S
X Xdy ^ dz dV , x S
S3
n
Z [ x ,y ,z ( x ,y )] dxdy ( 1 ) 1
2018/11/16
D xy
9
另一方面,曲面积分
S外
Zdx ^ dy Zdx ^ dy Zdx ^ d Zdx^ dy
S 1 S 2 S 3
[注意] Z [x ,y ,z ( x , y )] dxdy 2
z
n
y
T 2 2 v ( x ,y , z ), dS 1 4 x 4 y d o D xdy ^ dz ydz ^ dx zdx ^ dy
S
2 2 x v ndS (x y 1 ) d
S 2
0
2018/11/16
2若 向 向 曲 量 面 场
定1 理 : 设 为空间有 ,其 界 边 S 是 闭 界 分 域