当前位置:文档之家› 免疫标记:四大免疫标记原理介绍

免疫标记:四大免疫标记原理介绍

免疫标记:四大免疫标记原理介绍
免疫标记:四大免疫标记原理介绍

免疫标记:四大免疫标记原理介绍!

为提高抗原和抗体检测的敏感性,将已知抗体或抗原标记上易显示的物质,通过检测标记物,反映有无抗原抗体反应,从而间接测出微量的抗原或抗体。常用的标记物有酶、荧光素、放射性同位素、胶体金及电子致密物质等。这种抗原或抗体标记上显示物所进行的特异性反应称为免疫标记技术(immunolabelling technique)。

免疫标记不仅大大提高了试验敏感性,若与光镜或电镜技术相结合,能对组织或细胞内的待测物质作精确定位,从而为基础与临床医学研究及诊断提供方便。免疫标记技术大致分为两大类:一类属于免疫组织化学技术(immunohistochemical technique),用于组织切片或其他标本中抗原的定位。另一类称为免疫测定(immunoassay),用于液体标本中抗原或抗体的测定。

一,免疫酶技术(immunoenzymatic technique)

最早应用的免疫酶技术是免疫酶组织化学染色,即用标记的抗体与标本中的抗原发生特异性结合,当加入酶的底物时,在酶的作用下经一系列生化反应产生有色物质,借助光镜作出定位判断。目前,应用最广泛的是酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)。该法特异性强,敏感性高,既可检测抗体,又能测定可溶性抗原。主要方法及操作要领见图18.5,除了图示的两种方法外,还有抗原竞争法,现较少应用。ELISA常采用的酶为辣根过氧化物酶(hosradish peroxidase,HRP),其底物是二氨基苯胺(DAB),

底物被分解则呈棕褐色,可目测或借助酶标仪比色。ELISA为非均相免疫测定,另外还有均相法,在此不作介绍。

由于酶免疫测定无需特殊仪器和试剂,且操作简便,利于普及。因此,在免疫标记技术中,该法应用最为广泛,并在原有方法基础上加以改良,使得众多新的,更敏感的方法应运而生。

①生物素-亲和素放大系统(biotin-avidin system,BAS),建立于70年代后期,通过将酶标记在生物素或亲和素上,借助生物素与亲和素的高度亲力和生物素能与抗体结合的特点应用于ELISA,显著提高了检测的敏感性。

②双表位ELISA(two-site ELISA),其方法同双抗体夹心法,只是将包被的抗体和酶标抗体换成针对两个不同抗原决定簇的单抗,用于检测单抗的亲和性及表位特异性,亦可用于标本中抗原的快速检测,即在试验时可将待测抗原与酶标单抗同时加入反应体系,减少检测步骤。

③斑点免疫渗滤试验(dot immunofiltration assay,DIFA),其原理与ELISA相同,但以微孔膜(如硝酸纤维素膜、尼龙膜等)代替聚苯乙烯板作载体。试验时,将包被有抗原或抗体的微孔滤膜贴置于吸水材料上,依次滴加的标本、酶结合物、底物,分别进行洗涤,多余的标本和酶标抗体及洗涤液等可渗滤入吸水材料中,最后阳性标本在膜上呈现着色斑点。

④酶联免疫电转移印渍法(enzyme linked immunoelectrotransferblot,ELIB),该法将免疫转印技术与酶标技术相结合,有利于分析和检测更加复杂的抗原成分。ELIB分三阶段进行。第一阶段为SDS-聚丙烯酰胺凝胶电泳,先将抗原分成不同的区带(肉眼不可见);第二阶段为转移电泳,即将凝胶上的电泳

区带经电泳转移至硝酸纤维素膜上;第三阶段为酶免疫定位,用特异性抗体和酶标抗抗体作间接ELISA,结果阳性区带呈显色反应。

二,免疫荧光技术(immunofluorescence techniques)

该法是以荧光素,如异硫氰酸荧光素(fluorescence isothiocyanate,FITC)、罗丹明等标记抗体或抗原,以检测标本中抗原或抗体的方法。免疫荧光技术也包括两种基本类型,即荧光抗体染色(fluorescentantiboby technique)和荧光免疫测定(fluorescein immunoassay)。①荧光抗体染色:是用荧光抗体浸染可能含有抗原的细胞或组织切片,若有相应抗原存在,则抗原与荧光抗体结合而使荧光素不被洗脱,在荧光显微镜下可见发光的物体,从而达到定位检测目的,在基础与临床医学的研究及疾病的诊断等方面有着广泛用途。根据荧光抗体的不同可分直接法和间接法,前者即用荧光标记的第一抗体直接检测标本片上的抗原,如病毒及某些蛋白质成分等;后者则在未标记的相应抗体(第一抗体)处理标本片后,覆以荧光标记的抗球蛋白抗体(第二抗体),借此可检测多种抗原与抗体。与直接法相比,间接法仅需标记一种第二抗体即可适应多种抗原抗体系统的检测,且敏感性较高。②荧光免疫测定:本法与酶免疫测定一样,可分均相和非均相法。均相法常利用荧光的某些特性,如荧光的激发、吸收、猝灭等设计试验,无需作结合的与游离的标记物分离。双标记法即为均相荧光免疫测定的一种类型,检测试剂为FITC标记的抗原和罗丹明标记的抗体,当两种标记物标记的抗原和抗体特异性结合后使两种荧光素靠近,由于FITC 的发射光谱能被罗丹明吸收,从而使FITC的荧光明显减弱。试验时将可能含有抗原的标本与两种标记物一起反应,则能与FITC标记的抗原竞争结合罗丹

明标记的抗体,从而减少罗丹明对FITC发射光谱的吸收。通过FITC荧光测定可推算出标本中抗原的量,其与荧光强度成正比。非均相法限于实验室条件、试剂和容器或载体的非特异性荧光干扰等,应用不及ELISA广泛。近年建立的时间分辨荧光免疫测定(time resoloved fluorescence immunoassay,TR-FIA)有很大改进,该法利用稀土金属(铕、铽等)的螯合物具有特长的荧光寿命,将其标记抗体并延长测定时间,以使短命的非特异性荧光衰退,从而测得均一的长寿命稀土螯合物荧光。此外稀土螯合物的激发光吸收峰(340nm)与荧光发射峰(613nm)之间的差别显著,也利于排除非特异荧光的干扰。目前已用于IgE 等微量血清成分及激素和某些药物水平的测定。

三,放射免疫测定(radioimmunoassay,RIA)

RIA是最敏感的免疫标记技术,精确度高且易规格化和自动化。但由于放射性同位素有一定的危害性,使其临床应用受到一定限制。目前主要应用于激素(如HCG、胰岛素)和药物浓度的检测。①液相放射免疫分析:为经典的放射性同位素标记技术(radio-isotypelabeliingtechnique),简称放射免疫分析。其原理是用已知的标记抗原与标本中可能存在的抗原竞争一定量的已知抗体,分别形成标记的和无标记的抗原抗体结合物。再经某些途径分离结合的(B)与游离的(F)标记物,并根据测得的放射性强度,算出结合率[B/B+F],此与标本中抗原的量成反New Roman'; mso-hansi-font-family: 'Times New Roman'">],此与标本中抗原的量成反比。试验时除作标本检测外,还要以不同浓度的已知抗原参与反应得到的数据绘制出竞争抑制曲线,作为定量分析的依据。液相放射免疫测定的另一类型是免疫放射测定

(immunoradionmetricassay,IRMA),试验时受检抗原与过量的标记抗体反应,然后加入固相的抗原免疫吸附剂,以结合游离的标记抗体,经离心后测定上清液中放射性强度,从而推算出标本中抗原的含量。②固相放射免疫测定(solidphase radioimmunoassay,SPRIA):其原理、方法和应用与ELISA基本相同,区别在于标记物和检测仪。SPRIA的敏感性略高于ELISA。与RIA相比,该法既可用已知的标记抗原测抗体,也可用已知的标记抗体测抗原。主要应用于特异性IgE的检测。

四,免疫胶体金标记技术(immunologic colloidal gold signature,ICS) 胶体金是分散相粒子的金溶液,经凝聚法制成的金溶胶颗粒表面带有较多电荷,能吸附抗体形成金标记的抗体。用这种金标记抗体与组织或细胞标本中的抗原反应,借助显微镜观察颜色分布即可定位、定性测定组织或细胞中的抗原。该法最早用于免疫胶体金标记电镜技术,利用胶体金颗粒高电子密度,经衬染后对超微切片中的抗原作定量或定位研究。继后又应用于光镜并根据金催化还原银离子的原理,结合摄影技术以银增强金标抗体的可见性,建立了免疫金银法(IGSS)。此外,若将荧光素吸附于胶体金,在荧光显微镜下作定向性分布及定位观察荧光染色标本,可增强荧光效果。胶体金标记技术发展较快,如胶体金斑点渗滤试验和胶体金斑点免疫层析试验,尤其是后者检测敏感度高,操作简单,时间短,1~2分钟即可出现结果,已应用于HCG和HBV和两对半的检测。方法简述如下(图18.6),试验用的均为干试剂,多个试剂被组合在一狭长的试剂条上,条上端(A)和下端(B)分别为吸水性材料,胶体金标记的特异性抗体干片粘贴在B的近D处,紧接着为硝酸纤维膜,其上有两个反应区

域,测试区(T)包被有与待检抗原相应的特异性抗体,对照区(C)包被有对应的抗IgG抗体(二抗)。测试时将试纸下端浸入液体标本中,通过吸水材料虹吸作用吸引标本液向上移动,经过D处时如标本中有与金标抗体相应的抗原,两者即结合,胶体金颗粒发生聚集变为红色。反之则不发生变化。过剩胶体金标记的抗体继续向前,与对照区的二抗结合,出现红色质控条带。

免疫组化技术(原理、分类、步骤及主要试剂、设备准备)

免疫组化技术 原理 抗原抗体反应,即抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂 (荧光素、酶、金属离子、同位素) 显色来确定组织细胞内抗原(多肽和蛋白质),对其进行定位、定性及定量的研究。 众所周知,抗体与抗原之间的结合具有高度的特异性。免疫组化正是利用这一特性,即先将组织或细胞中的某些化学物质提取出来,以其作为抗原或半抗原去免疫实验动物,制备特异性抗体,再用这种抗体(第一抗体)作为抗原去免疫动物制备第二抗体,并用某种酶(常用辣根过氧化物酶)或生物素等处理后再与前述抗原成分结合,形成抗原 - 一抗 - 二抗复合物,将抗原放大,由于抗体与抗原结合后形成的免疫复合物是无色的,因此,还必须借助于组织化学方法将抗原抗体反应部位显示出来(常用显色剂DAB显示为棕黄色颗粒)。通过抗原抗体反应及呈色反应,显示细胞或组织中的化学成分,在显微镜下可清晰看见细胞内发生的抗原抗体反应产物,从而能够在细胞或组织原位确定某些化学成分的分布、含量。组织或细胞中凡是能作抗原或半抗原的物质,如蛋白质、多肽、氨基酸、多糖、磷脂、受体、酶、激素、核酸及病原体等都可用相应的特异性抗体进行检测。 分类(常用) 1、免疫荧光方法 最早建立的免疫组织化学技术。它利用抗原抗体特异性结合的原理,先将已知抗体标上荧光素,以此作为探针检查细胞或组织内的相应抗原,在荧光显微镜下观察。当抗原抗体复合物中的荧光素受激发光的照射后即会发出一定波长的荧光,从而可确定组织中某种抗原的定位,进而还可进行定量分析。由于免疫荧光技术特异性强、灵敏度高、快速简便,所以在临床病理诊断、检验中应用比较广。 2、免疫酶标方法 免疫酶标方法是继免疫荧光后,于60年代发展起来的技术。基本原理是先以酶标记的抗体与组织或细胞作用,然后加入酶的底物,生成有色的不溶性产物或具有一定电子密度的颗粒,通过光镜或电镜,对细胞表面和细胞内的各种抗原成分进行定位研究。免疫酶标技术是目前定位准确、对比度好、染色标本可长期保存,适合于光、电镜研究等。免疫酶标方法的发展非常迅速,已经衍生出了多种标记方法,目前在病理诊断中广为使用的当属PAP法(过氧化物酶-抗过氧化物酶)、ABC法(卵白素-生物素-过氧化物酶复合物)、SP 法(链霉菌抗生物素蛋白-过氧化物酶)、即用型二步法(聚合物链接)等。 3、免疫胶体金技术 免疫胶体金技术是以胶体金这样一种特殊的金属颗粒作为标记物。胶体金是指金的水溶胶,它能迅速而稳定地吸附蛋白,对蛋白的生物学活性则没有明显的影响。因此,用胶体金标记一抗、二抗或其他能特异性结合免疫球蛋白的分子(如葡萄球菌A蛋白)等作为探针,就能对组织或细胞内的抗原进行定性、定位,甚至定量研究。由于胶体金有不同大小的颗粒,且胶体金的电子密度高,所以免疫胶体金技术特别适合于免疫电镜的单标记或多标记定位研究。由于胶体金本身呈淡至深红色,因此也适合进行光镜观察。如应用银加强的免疫金银法则更便于光镜观察。 4、免疫铁蛋白法 5、放射免疫自显影法 标本 1、组织标本:石蜡切片(病理切片和组织芯片)、冰冻切片 2、细胞标本:组织印片、细胞爬片、细胞涂片

话语标记ppt文本

主要内容 一.话语标记语的界泄及识别 二、话语标记语的名称 三、话语标记语的研究角度 四、研究派别及国内外部分研究 五、总结 1.话语标记语的左义及特征 1.1话语标记语的定义 话语标记语是说话人为了引导和制约听话人正确理解话语而选择的语言标记。它是一种常见的话语现象,是一些在交际中具有一定语用功能的词语或结构。 话语标记语这一说法是由Schiffrin提出的,即“标记话语单元序列关系的独立的语言成分“。 冉永平(2003):英语中well, oh, you know, you see, I mean, that is to say, in other words, as I said 等和汉语中“你知道”、“大家知道"、“我的意思是“、“也就是说"等是言语交际中常见的话语表达形式,我们统称为"话语标记语"(discourse markers) 1.2话语标记语的特征 从形式上看,话语标记语主要由以下三种语言单位充当:①词,如:now, well, like, anyway, so 等;②短语,如:in other words, in addition to? in short, after all 等;③句子,如:you know, I think > you see> that is to say 等。 从词尾变化上看,像介词、冠词一样,它是固立的语言形式,没有性、数、格的变化。如:like 不会被说成likes> liked等;that is to say不会变成复数形式those are to say。 从位麗上看,大多数话语标记语位于它们所连接的两个句子之间,即位于第二个分句的句首, 有时也会夹在一句话中间。 (1)Jolm can't go. And Maiy can t go either. (2)We were late in getting up. Anyway, we attended the lecture on time? (3)A: Susan s not coniuig today. B: After all, Tom's in town. (4)A: I hope you manage to do some work today. B: Oh. I ha\-e been workuig. Fm workuig on Sandy's talk. I mean, my talk in Sandy's class. (5)Rose: You like this woman? You used her several times? Jack: Well, she had beautiful hands, you see? Rose: I tliiiik you must have had a love afiair with her... 从功能上看,话语标记语本身不添加任何话语内容.对话语表达的命题不产生影响,但能衔接句子结构,从整体或者局部上对话语的理解产生制约性,体现说话者意图,表明对信息、观点的认识状态。

分子标记技术的种类

分子标记技术的种类-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性; ②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速; ⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们 均具有各自的优点和不足。其特点比较见表一。 1限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP)1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝胶电泳将 DNA片段按各自的长度分开,通过Southern印迹法,将这些大小不同的DNA片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,即检出限制性片段长度多态性。进行 RFLP时,酶切要彻底,注意内切酶的选择,对于亲缘关系很近的物种,可增加内切酶的使用种类。目前RFLP的使用领域很广泛,其具有以下优点:①RFLP标记源于基因组DNA的自身变异,理论上可覆盖整个基因组,能提供丰富的遗传信息;②标记不受组织、环境和发育阶段的影响;③呈共显性,即杂交时等位DNA片段均呈现带,能区分纯合基因型和杂合基因型,F2表现出 1∶2∶1的孟德尔分离定律[3],提供标记座位完全的遗传信息;④由于限制性内切酶的专一性使结果稳定可靠,重复性好。其缺点是:①操作繁琐,费时;②酶切后的DNA质量要求高;③使用放射性同位素进行分子杂交,有危险性等。 2随机扩增多态性DNA标记 (Random Amplified Polymorphic DNA,RAPD) 20世纪80年代,基于PCR技术的第二代分子标记技术诞生并迅速发展起来。1990年,Williams 等发表了一种不需预先知道DNA序列信息的检测核苷酸序列多态性的方法,即随机扩增多态性DNA标记(RAPD)。其原理是以碱基顺序随机排列的寡核苷酸单链(8-10bp)为引物,以组织中分离出来的基因组DNA为模板进行扩增。随机引物在基因组DNA序列上有其特定结合位点,一旦基因组在这些区域发生DNA片段插入、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物的数量和大小发生改变,表现出多态性。用琼脂糖凝胶电泳分离扩增产物,溴化乙锭染色后可在紫外光下显现出基因组相应区域DNA的多态性。与RFLP相比,RAPD方便易行,DNA用量少,设备要求简单,不需DNA探针,设计引物也不需要预先进行序列分析,不依赖于种属特异性和基因组的结构;合成一套引物可以用于不同生物基因组分析,用一个引物就可扩增出许多片段,并且不需使用同位素,安全性好。但因为引物较短导致退火温度较低,易产生错配,故实验的稳定性和重复性差,且为显性标记,不能区分纯合子和杂合子。 RAPD 标记技术利用单引物扩增多个基因位点使其在一定程度上对反应条件敏感,这会限制其应用。将RAPD-PCR变成经典的PCR可克服此限制,即设计更长的引物。1993年,Paran提出的序列特征化扩增区域标记(Sequenced Characterized Amplified Region,SCAR)即为以经典PCR为基础的分子标记技术[1]。SCAR标记技术通过对产生的RAPD片段克隆和测序,设计一对互补于原

免疫组化操作方法原理步骤以及常见问题处理大总结

免疫组化操作方法、原理、步骤以及常见问题处理大总结 1、方法操作不难,最大的难处是出现异常结果时如何解决?这就需要掌握免疫组化实验原理,每一步知道为什么这样做,这样你才敢大胆地改革先前的不对的方法步骤。如抗体孵育条件主要是抗体浓度、温度、时间,这三者一般是相互成反比的(相对),其中浓度是最重要的先决条件,温度决定反应的速度、时间决定反应的量。就拿温度来说,可以有4度、室温、37度,我推荐4度最佳,反应最温和,背景较浅;而37度反应速度较快,时间较短;室温我不太提倡,除非你每次都把环境温度控制在一定的范围,否则,尽量选择前两者。 2、免疫组化最大的优势是定位和定性。相比于其他蛋白检测方法,免疫组化具有定性灵敏度高、定位较直接准确,是定位检测分析首选方法。尤其对于有些因子的转位研究十分有用。 3、免疫组化结果定量分析的前提是高质量的染色切片。免疫组化结果也能定量分析,但必须是背景染色浅而特异性染色较深的情况下,分析最为准确,这种原则可能也是我们日常审稿时判定研究结果的必备条件。 4、免疫组化实验一定要设置阳性对照和阴性对照。阳性对照一般是用肯定表达这种抗原的切片来做;阴性对照一般是用PBS或非一抗替代一抗来进行反应,其余步骤均一致。前者是排除方法和实验系统有无问题;后者是排除有无一抗外的非特异性染色。 5、免疫组化的应用广泛,是当前实验研究的最重要方法之一。如今发SCI论文时,明显感觉仅靠量化的数据来发文章很难,加一些形态学数据或图片,老外十分欢迎,可能是怕你学术造假吧。当然也不能做假阳性或假阴性结果。 6、免疫组化技术掌握与否的鉴定标准是同一切片或不同切片中不同抗原均从摸索浓度或条件而做出优良的染色切片。我在平时带教中就发现许多研究生把我已经摸索很成熟的反应条件、浓度、方法步骤,重复运用于同一性质的切片和同一种抗体,做出来后就觉得自己已经掌握了免疫组化方法,更换一种抗体后,居然连二抗的种属来源都拿错了。失败往往促进你去思考试验原理和过程,成功有时也加快你自傲。 7、实验方法需要动手+动脑。如今我还不敢说我在免疫组化什么都知道。我只所以今天敢在这里说这说那,这是因为我经过了反复的动手+动脑,把理论原理运用于实践,在把实践中发现的问题带到理论知识中去解决,最终把理论与实践融会贯通。 一、概念和常用方法介绍 1、定义用标记的特异性抗体对组织切片或细胞标本中某些化学成分的分布和含量进行组织和细胞原位定性、定位或定量研究,这种技术称为免疫组织化学(immunohistochemistry)技术或免疫细胞化学(immunocytochemistry)技术。 2、原理根据抗原抗体反应和化学显色原理,组织切片或细胞标本中的抗原先和一抗结合,再利用一抗与标记生物素、荧光素等的二抗进行反应,前者再用标记辣根过氧化物酶(HRP)或碱性磷酸酶(AKP)等的抗生物素(如链霉亲和素等)结合,最后通过呈色反应或荧光来显示细胞或组织中化学成分,在光学显微镜或荧光显微镜下可清晰看见细胞内发生的抗原抗体反应产物,从而能够在细胞爬片或组织切片上原位确定某些化学成分的分布和含量。 3、分类 1)按标记物质的种类,如荧光染料、放射性同位素、酶(主要有辣根过氧化物酶和碱性磷酸酶)、铁蛋白、胶体金等,可分为免疫荧光法、放射免疫法、免疫酶标法和免疫金银法等。2)按染色步骤可分为直接法(又称一步法)和间接法(二步、三步或多步法)。与直接法相比,间接法的灵敏度提高了许多。3)按结合方式可分为抗原-抗体结合,如过氧化物酶-抗过氧化物酶(PAP)法;亲和连接,如卵白素-生物素-过氧化物酶复合物(ABC)法、链霉菌抗生物素蛋白-过氧化物酶连结(SP)法等,其中SP法是比较

分子标记技术综述

分子标记技术及其在植物药材亲缘关系鉴定中的应用 分子标记技术 分子标记(Molecular Markers)是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接反映[1]。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有极大的优越性:大多数分子标记为共显性,对隐性性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速[2]。 技术种类及原理 分子标记技术自诞生起已研究出数十种,尽管方法差异显著,但都具有一个共同点,即用到了分子杂交、聚合酶链式反应(PCR)、电泳等检测手段。应用较为广泛的技术有以下几种: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphisms,RFLP) RFLP是最早开发的分子标记技术,指基因型间限制性内切酶位点上的碱基插入、缺失、重排或突变引起的,是由Grodzicker等于1974年创立的以DNA-DNA杂交为基础的遗传标记。基本原理是利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况[3]。通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行Southern 杂交和放射显影,即获得反映个体特异性的RFLP图谱。它所代表的是基因组DNA在限制性内切酶消化后产生片段在长度上差异。由于不同个体的等位基因之间碱基的替换、重排、缺失等变化导致限制内切酶识别和酶切发生改变从而造成基因型间限制性片段长度的差异。 RFLP的等位基因其有共显性特点,可靠性高,不受环境、发育阶段或植物器官的影响。RFLP标记位点数量不受限制,通常可检测到的基因座位数为1—4个,标记结果稳定,重复性好。RFLP技术也存在一些缺陷,主要是克隆可表现基因组DNA多态性的探针较为困难;另外,RFLP分析工作量大,成本高,使用DNA量大,使用放射性同位素和核酸杂交技术,不易自动化,尽管结合PCR技术,RFLP仍在应用,但已不再是主流分子标记。 2.随机扩增多态性DNA(Random Amplification Polymorphism,RAPD) RAPD技术是1990年由William和Welsh等人利用PCR技术发展的检测DNA多态性的方法,其基本原理是利用随机引物(一般为8—10bp)通过PCR反应非定点扩增DNA片段,然后用凝胶电泳分析扩增产物DNA片段的多态性。扩增片段多态性便反映了基因组相应区域的DNA多态性。RAPD所使用的引物各不相同,但对任一特定引物,它在基因组DNA序列上有其特定的结合位点,一旦基因组在这些区域发生DNA片段插人、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物数量和大小发生改变,表现出多态性[4]。就单一引物而言,其只能检测基因组特定区域DNA多态性,但利用一系列引物则可使检测区域扩大到整个基因组,因此,RAPD可用于对整个基因组DNA进行多态性检测,也可用于构建基因组指纹图谱。 与RFLP技术相比,RAPD技术操作简便快速,省时省力,DNA用量少,同时无需设计特定的引物,扩增产物具有丰富的多态性。但RAPD也存在一些缺点:(1)RAPD标记是一个显

保险学四大基本原则及案例

可保利益原则 案例一: 雷松与王丽在大学相识,因为志趣相投而结成好友,并且两人的恋爱关系也得到了各自家长的首肯。毕业后,两人虽然没有分在同一个地方,但仍然书信往返,不改初衷。雷松的生日快到了,为了给他一个惊喜,王丽悄悄为他投保了一份人寿保险,准备作为生日礼物送给他。谁知当雷松从外地匆匆赶到王丽所在的城市时,却遇到了翻车事故,雷松当即死亡。得知这个消息后,王丽伤心欲绝,随后想到半个月前曾为雷松投保的人寿保险,于是她便携带着有关的证明及资料,到了保险公司要求支付约定的保险金2万元。保险公司在核保时,得知雷松这份人寿保险是在他本人不知情的情况下,由王丽擅自买的,于是便以王丽违反了保险利益原则为由发出了拒赔通知书。王丽想不通了:保单签了,保费也交了,我该履行的义务都履行完毕,轮到保险公司履行义务时,却推三阻四找这么个违反保险利益的理由来搪塞人。一气之下,她走上了法院将保险公司给告了,谁知判决结果却让她失望了,法院支持了保险公司的主张。 案例二:所有权转移是否即丧失保险利益 1998年4月24日,某县水力发电公司作为投保人向某保险公司投保建筑、安装工程险。投保的工程为一所水电站,保险金额3000万元,免赔率为10%;保险期限自保险单签发之日起两年。1998年6月20日,投保人作为甲方将建设中的电站资产所有权转移给了乙方——另一家水电开发公司,但甲方仍然是电站的施工承包单位,甲乙双方约定共同承担水电站的风险。后来乙方向另外一家保险公司投了财产保险,并已经生效。这时,工程险的投保人即水利发电公司将保险标的转让的事实通知了承保保险公司。在达成续保协议前,1998年7月6日下午,该县发生罕见洪水,以高于设计水位4米的水头袭击了水电站。水电站受损严重。根据受损情况,发电公司向承保工程险的保险公司提出了1000万元的保险索赔要求,保险公司拒绝赔偿。发电公司不服,向法院起诉,要求保险公司承担赔付保险金的责任。 分析: 1、《保险法》第十一条规定:“保险利益是指投保人对保险标的具有法律上承认的利益”。该条规定所称的保险利益是指法律上认可、客观上存在、经济上可以确定的利益。因此,具有保险利益的不仅仅是所有权人,其他与保险标的有合法经济利益关系的主体都可能具有保险利益。除所有权外,还应包括:基于物权而产生的合法利益;基于合同而产生的合法利益;依法应当承担的民事赔偿责任;法人及其他组织基于劳动关系、雇用关系或其它法律关系而产生的对其职工的人身利益;其他可以用金钱计算的合法利益。本案中,根据投保人与另一家水电开发公司签订的转让协议,投保人依然是该电站的施工承包单位,一般情况下施工单位对其承建的建筑安装工程应当具有保险利益。《建筑安装工程险条款》也未禁止施工单位投保,而且实践中相当一部分建筑安装工程险也正是由施工单位投保的。 2、《建筑安装工程保险条款》规定:“保险期限至工程竣工并经建设单位验收或安装工程在机器设备试运行开始时终止。最晚终止期应不超过保险单所列明的终止日期”。本案中,该电站出险时尚未进行竣工验收,保险期限未终止,因此保险责任也未终止。 3、双方签订的转让协议,已办理土地使用权及地上附着物(水电站)变更登记手续。因此,根据有关法律规定,该转让协议合法有效。虽然乙方已向另外一家保险公司投了企财险,发生保险事故时,乙方可以向这家保险公司索赔,但这并不能免除甲方所投保的建筑、安装工程险保险人所承担的保险责任。 启示: 随着社会经济的发展,对保险利益的理解不应仅限于所有权,而应作较为宽泛的解释。因此,保险理赔人员应当开拓视野,转变观念,全面、准确地掌握保险利益这一基本概念。 最大诚信原则

免疫组化原理、步骤及要注意的事项

免疫组化原理、步骤及要注意的事 项 免疫组化 ,免疫组织化学简介免疫组织化学又称免疫细胞化学,是指带显色剂标记的特异性抗体在组织细胞原位通过抗原抗体反应和组织化学的呈色反应,对相应炕原进行定性、定位、定量测定的一项新技术。它把免疫反应的特异性、组织化学的可见性巧妙地结合起来,借助显微镜(包括荧光显微镜、电子显微镜)的显像和放大作用,在细胞、亚细胞水平检测各种抗原物质(如蛋白质、多肽、酶、激素、病原体以及受体等)。 二,免疫组化技术的基本原理 免疫组化技术是一种综合定性、定位和定量;形态、机能和代谢密切结合为一体的研究和检测技术。在原位检测出病原的同时,还能观察到组织病变与该病原的关系,确认受染细胞类型,从而有助于了解疾病的发病机理和病理过程。 免疫酶组化技术是通过共价键将酶连接在抗体上,制成酶标抗体,再借酶对底物的特异催化作用,生成有色的不溶性产物或具有一定电子密度的颗粒,于普通显微镜或电镜下进行细胞表面及细胞内各种抗原成分的定位,根据酶标记的部位可将其分为直接法(一步法)、间接法(二步法)、桥联法(多步法)等, 用于标记的抗体可以是用免疫动物制备的多克隆抗体或特异性单克隆抗体,最好是特异性强的高效价的单克隆抗体。直接法是将酶直接标记在第一抗体上,间接法是将酶标记在第二抗体上,检测组织细胞内的特定抗原物质。目前通常选用免疫酶组化间接染色法。 ,免疫组化步骤 1, 切片,烤片60C, 1h;

2, 脱蜡及复水 二甲苯10min,100%乙醇5min,95%乙醇5min,90%乙醇5min,85%乙醇5min,80%乙醇5min,75 %乙醇5min,60%乙醇5min,50%乙醇5min,30%乙醇5min,自来水1min,双氧水1min ; 3,1份30%H2O加10份蒸馏水,室温10min,蒸馏水洗3次,每次3min; 4, 微波修复 将切片浸入0.01M枸橼酸缓冲液,微波中最大火力(98E -100C)加热至沸腾,冷却(约5-10min),反复两次; 5, 将切片自然冷却至室温,PBS洗涤3次,每次5min; 6, 封闭,5%BSA室温20min,甩去多余液体; 7, 滴加一抗,37C, 1h,或者4C过夜; 8, PBS洗涤3次,每次3min; 9, 滴加二抗,37°C, 15-30min ; 10, PBS洗涤3次,每次3min; 11, 滴加SABC 37C, 30min ; 12, PBS洗涤3次,每次5min; 13, 1ml蒸馏水中分别滴加显色剂,混匀; 14, DAB显色剂配置好后,滴加于切片,室温,镜下检测反应时间(约5min); 15, 自来水冲洗干净,过蒸馏水; 16, 苏木素复染2min,自来水冲洗; 17, 脱水 30%乙醇3min, 50%乙醇3min, 70%乙醇3min, 80%乙醇3min, 90%乙醇3min, 95%乙醇3min, 100%乙醇3min,二甲苯20min ; 18, 树胶封片,镜检。

保险的四大基本原则及案例分析

1.最大诚信原则是指保险合同的双方当事人在签订和履行保险合同时,必须保持最大限度的诚意,双方都应遵守信用,互不欺骗和隐瞒,投保人应向保险人如实申报保险标的的主要风险情况,否则保险合同无效。 2000年12月,某保险公司承保了某纺织品公司企业财产险,保险金额10亿元。保险期限一年。2001年2月,纺织品公司告知保险公司其存放成品的仓库未安装消防自动喷淋设备,但纺织品公司强调,根据产品特性其仓库不能安装该设备,按照惯例也不需要安装。同时声称,已经采取了其他有效的消防措施,足以保证仓库安全,请求保险人按原保险条件承保。保险公司接到该申请后,随即以批单的形式同意按原保单条件继续承保。2001年9月,该纺织品公司发生火灾,其存放成品的仓库损失严重。纺织品公司向保险公司提出索赔请求,要求保险公司赔偿人民币4000万元。保险公司经调查发现:2001年,消防部门多次书面要求其整改,并特别指出其成品仓库按照惯例应该安装消防自动喷淋设施,其现有条件根本不具备保证成品仓库安全的条件。经火灾专家鉴定,如果安装了消防自动喷淋设施就足以及时扑灭大火。因此,保险公司认为,纺织品公司在签订合同时未履行如实告知义务。在保险合同期间内,虽然补充告知了未安装消防自动喷淋设施的情况,但其声称按照惯例不应安装,且有其他消防措施足以保证安全。这与消防部门整改通知中所认定的情况不符。所以,保险公司有权解除保险合同、不承担赔偿责任。纺织品公司向法院起诉,请求法院判决保险公司赔偿其损失4000万元。法院经审理后作出判决:纺织品公司败诉,保险公司不承担保险责任。 2.可保利益原则是指投保人或被保险人对保险标的因具有各种利害关系而享有的法律上承认的经济利益。投保人或被保险人对保险标的具有可保利益是保险合同生效的依据。在寿险中,一般以下几种情况投保人有可保利益:(1)投保人对本人;(2)配偶、子女、父母等;(3)具有收养、赡养等法定义务;(4)对有合同关系或其他债务关系的人;(5)对其他与之有合法经济关系的人。另外我国《保险法》还规定,被保险人同意投保人为其订立保险合同的,视为投保人对被保险人具有可保利益。 雷松与王丽在大学相识,因为志趣相投而结成好友,并且两人的恋爱关系也得到了各自家长的首肯。毕业后,两人虽然没有分在同一个地方,但仍然书信往返,不改初衷。雷松的生日快到了,为了给他一个惊喜,王丽悄悄为他投保了一份人寿保险,准备作为生日礼物送给他。谁知当雷松从外地匆匆赶到王丽所在的城市时,却遇到了翻车事故,雷松当即死亡。得知这个消息后,王丽伤心欲绝,随后想到半个月前曾为雷松投保的人寿保险,于是她便携带着有关的证明及资料,到了保险公司要求支付约定的保险金2万元。保险公司在核保时,得知雷松这份人寿保险是在他本人不知情的情况下,由王丽擅自买的,于是便以王丽违反了保险利益原则为由发出了拒赔通知书。王丽想不通了:保单签了,保费也交了,我该履行的义务都履行完毕,轮到保险公司履行义务时,却推三阻四找这么个违反保险利益的理由来搪塞人。一气之下,她走上了法院将保险公司给告了,谁知判决结果却让她失望了,法院支持了保险公司的主张。 3.补偿原则是指保险标的发生保险事故时,保险人无论以何种方式赔偿被保险人的损失,也只能使被保险人在经济上恢复到受损前的同等状态,被保险人不能获得额外收益。因此,保险人在理赔时一般按以下三个标准确定赔偿额度:以实际损失为限,以保险金额为限,以被保险人对保险标的的可保利益为限。在这三个标准中,以最低的为限。 按照房子价值100万投保,后遭受火灾全损,损失时房子的市场价值为80万元,赔偿多少元?赔偿80万元,以实际损失为限。 上例中,遭受火灾全损时,房子市场价值为120万元,赔偿多少元?赔偿100万元,以保险金额为限。 某人贷款购房,以60万元的房子抵押贷款40万元,银行将抵押品投保财产险,房屋后遭受全损,银行获得赔偿多少元?赔偿40 万元,以保险利益为限。

免疫组化原理、步骤及要注意的事项

免疫组化 一,免疫组织化学简介 免疫组织化学又称免疫细胞化学,是指带显色剂标记的特异性抗体在组织细胞原位通过抗原抗体反应和组织化学的呈色反应,对相应炕原进行定性、定位、定量测定的一项新技术。它把免疫反应的特异性、组织化学的可见性巧妙地结合起来,借助显微镜(包括荧光显微镜、电子显微镜)的显像和放大作用,在细胞、亚细胞水平检测各种抗原物质(如蛋白质、多肽、酶、激素、病原体以及受体等)。 二,免疫组化技术的基本原理 免疫组化技术是一种综合定性、定位和定量;形态、机能和代谢密切结合为一体的研究和检测技术。在原位检测出病原的同时,还能观察到组织病变与该病原的关系,确认受染细胞类型,从而有助于了解疾病的发病机理和病理过程。 免疫酶组化技术是通过共价键将酶连接在抗体上,制成酶标抗体,再借酶对底物的特异催化作用,生成有色的不溶性产物或具有一定电子密度的颗粒,于普通显微镜或电镜下进行细胞表面及细胞内各种抗原成分的定位,根据酶标记的部位可将其分为直接法(一步法)、间接法(二步法)、桥联法(多步法)等,用于标记的抗体可以是用免疫动物制备的多克隆抗体或特异性单克隆抗体,最好是特异性强的高效价的单克隆抗体。直接法是将酶直接标记在第一抗体上,间接法是将酶标记在第二抗体上,检测组织细胞内的特定抗原物质。目前通常选用免疫酶组化间接染色法。 三,免疫组化步骤 1,切片,烤片60℃,1h; 2,脱蜡及复水 二甲苯10min,100%乙醇5min,95%乙醇5min,90%乙醇5min,85%乙醇5min,80%乙醇5min, 75%乙醇5min,60%乙醇5min,50%乙醇5min,30%乙醇5min,自来水1min,双氧水1min; 3,1份30%H2O2加10份蒸馏水,室温10min,蒸馏水洗3次,每次3min; 4,微波修复 将切片浸入0.01M枸橼酸缓冲液,微波中最大火力(98℃-100℃)加热至沸腾,冷却(约5-10min),反复两次; 5,将切片自然冷却至室温,PBS洗涤3次,每次5min;

分子标记技术

分子标记技术 摘要:分子标记技术就是利用现代分子生物学基础分析DNA分子特性,并借助 一些统计工具,将不同物种或同一物种的不同类群区分开来,或者将生物体的某些性状与DNA分子特性建立起来的关联关系,已广泛应用于植物遗传与育种研究的众多领域,包括遗传图谱的构建、遗传多样性分析、物种起源与进化、品种资源与纯度鉴定、分子辅助育种等多个方面,具有重大作用。 关键词:分子标记技术原理RFLP RAPD SSR AFLP EST SNP TRAP 分子标记技术应用 引言 分子标记是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA 水平遗传多态性的直接的反映。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有的优越性有:大多数分子标记为共显性,对隐性的性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速。随着分子生物学技术的发展,DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。 一.常用分子标记原理 分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR 技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA 或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性;②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速;⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们均具有各自的优点和不足。其特点比较见表一。 1.限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP) 1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA 分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝

分子标记技术的类型原理及应用

分子标记 1.分子标记技术及其定义 1974年,Grozdicker等人在鉴定温度敏感表型的腺病毒DNA突变体时, 利用限制性内切酶酶解后得到的DNA片段的差异, 首创了DNA分子标记。所谓分子标记是根据基因组DNA存在丰富的多态性而发展起来的可直接反映生物个体在DNA水平上的差异的一类新型的遗传标记,它是继形态学标记、细胞学标记、生化标记之后最为可靠的遗传标记技术。广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质分子。通常所说的分子标记是指以DNA多态性为基础的遗传标记。分子标记技术本质上都是以检测生物个体在基因或基因型上所产生的变异来反映基因组之间差异。 2.分子标记技术的类型 分子标记从它诞生之日起, 就引起了生物科学家极大的兴趣,在经历了短短几十年的迅猛发展后, 分子标记技术日趋成熟, 现已出现的分子标记技术有几十种, 部分分子标记技术所属类型如下。 2.1 建立在Southern杂交基础上的分子标记技术 (1) RFLP ( Rest rict ion Fragment Length Polymorphism)限制性内切酶片段长度多态性标记; (2) CISH ( Chromosome In Situ Hybridization) 染色体原位杂交。 2.2 以重复序列为基础的分子标记技术 (1) ( Satellite DNA ) 卫星DNA; (2) ( Minisatellite DNA ) 小卫星DNA; (3) SSR( Simple Sequence Repeat ) 简单序列重复, 即微卫星DNA。 2.3 以PCR为基础的分子标记技术 (1) RAPD ( Randomly Amplif ied Polymorphic DNA ) 随机扩增多态性DNA; (2) AFLP( Amplif ied Fragment Length Polymorphism) 扩增片段长度多态性; (3) SSCP( Single Strand Conformation Polymorphism) 单链构象多态性; (4) cDNA-AFLP( cDNA- AmplifiedFragment Length Polymorphism) cDNA -扩增片段长度多态性; (5) TRAP( Target Region Amplified Polymorphism) 靶位区域扩增多态性; (6) SCAR ( Sequence Char acterized Amplified Region) 序列特征化扩增区域; (7) SRAP ( Sequencerelated Amplified Polymorphism) 相关序列扩增多态性。 2.4以mRNA为基础的分子标记技术

免疫组化原理和步骤

免疫组化原理及步骤 免疫组化操作规程 一、实验原理与意义 免疫组织化学又称免疫细胞化学,是指带显色剂标记的特异性抗体在组织细胞原位通过抗原抗体反应和组织化学的呈色反应,对相应抗原进行定性、定位、定量测定的一项新技术。它把免疫反应的特异性、组织化学的可见性巧妙地结合起来,借助显微镜(包括荧光显微镜、电子显微镜)的显像和放大作用,在细胞、亚细胞水平检测各种抗原物质(如蛋白质、多肽、酶、激素、病原体以及受体等)。 二、实验器材 微波炉、吹风机、组化笔、湿盒、烤箱、振荡器、染缸、光学显微镜、纯木浆卫生纸、计时器和通风橱等。 三、试剂配制

1. 0.01 M PBS(pH 7.34 ):9.0 g NaCl + 50 ml 0.2 M PB 加双蒸水至1000 ml; 1000 ml 0.2M PB (pH 7.4)=5.93 g NaH 2 PO 4 ·2H 2 O+58.02 g Na 2 HPO 4 ·12H 2 O in 1000 ml 双蒸 水或=190 ml A + 810 ml B(A. 0.2 M NaH 2 PO 4 ·2H 2 O:15.6 g in 500 ml ddH 2 O;B. 0.2 M Na 2 HPO 4 ·12H 2 O:71.632 g in 1000 ml dH 2 O)。 2. Citrate Buffered Saline(0.01 M 柠檬酸缓冲液,PH6.0):28 ml A + 72 ml B + 200 ml ddH 2 O(A.Citrate acid (柠檬酸):10.5 g 加双蒸水至1000 ml;B.Citrate sodium(柠檬酸钠):29.41 g 加双蒸水至1000 ml)。 3. 细胞通透液:由终浓度分别为 0.3%双氧水和0.3%Triton X-100 混合而成。配制方法是先用微波加热的36 ml PBS,再接着加120 ul TritonX-100,

话语标记论文:话语标记语用分析语用功能

话语标记论文:话语标记语用分析语用功能 【中文摘要】随着语用学的发展,话语标记语的研究已经成了语言研究中发展十分迅速的—个领域。经研究发现,即使把话语标记语从其所依附的话语中删除也不影响该话语的语法正确性及其命题内容,但却影响其语用得体性和社会层面上的人际关系。这一事实表明,话语标记语的使用不是出于句法或语义上的需要,而是出于语用方面的需要。言语交际成功与否,效果好坏,在很大程度上取决于能否恰当地运用话语标记语。因此本文主要研究了话语标记语的语用功能。本文主要借鉴了国内外相关的研究结果,并以PETS口语测试的考生为 研究对象,首先是讨论了话语标记语的特点及定义,在理论研究的基 础上,继续探讨了学习者在公共英语口试测试中为什么频繁地使用话语标记语,以及分析了考生们在公共英语测试中进行口语交际时话语标记语的语用功能,并在现有的口语交际中,通过理论分析和大量的 实例让学习者们深刻地理解了话语标记的语用功能,并提出了改善的途径和方法。 【英文摘要】With the development of pragmatics, language study of discourse markers has become a rapidly developing field. Discourse marker is a kind of common phenomena in spoken language, which usually does not constitute the truth value of the semantic content of discourse. But it mainly provides the clues with discourse expression and comprehension, and

免疫组化的原理和步骤

免疫组织化学的概念: 免疫组化是利用抗原与特异性结合的原理,通过化学反应使标记的显色剂(荧光素、酶、金属离子、同位素) 显色来确定组织细胞内抗原(多肽和蛋白质),对其进行定位、定性及定量的研究,称为免疫组织化学。 免疫组化实验所用的有哪些? 免疫组化实验中常用的抗体为单抗体和多抗体。单抗体是一个B淋巴细胞分泌的抗体,应用细胞融合杂交瘤技术免疫动物制备。多克隆抗体是将纯化后的抗原直接免疫动物后,从动物血中所获得的免疫血清,是多个B淋巴细胞克隆所产生的抗体混合物。 免疫组化实验所用的组织和细胞标本有哪些? 实验所用主要为组织标本和细胞标本两大类,前者包括石蜡切片(病理大片和组织芯片)和冰冻切片,后者包括组织印片、细胞爬片和细胞涂片。 其中石蜡切片是制作组织标本最常用、最基本的方法,对于组织形态保存好,且能作连续切片,有利于各种染色对照观察;还能长期存档,供回顾性研究;石蜡切片制作过程对组织内抗原暴露有一定的影响,但可进行抗原修复,是免疫组化中首选的组织标本制作方法。石蜡切片为什么要做抗原修复?有哪些方法? 石蜡切片标本均用甲醛固定,使得细胞内抗原形成醛键、羧甲键而被封闭了部分抗原决定簇,同时蛋白之间发生交联而使抗原决定簇隐蔽。所以要求在进行IHC染色时,需要先进行抗原修复或暴露,即将固定时分子之间所形成的交联破坏,而恢复抗原的原有空间形态。 常用的抗原修复方法有微波修复法,高压加热法,酶消化法,水煮加热法等,常用的修复液是pH6.0的0.01 mol/L的柠檬酸盐缓冲液。 免疫组化常用的染色方法有哪些? 根据标记物的不同分为免疫荧光法,免疫酶标法,亲和组织化学法,后者是以一种物质对某种组织成分具有高度亲合力为基础的检测方法。这种方法敏感性更高,有利于微量抗原(抗体)在细胞或亚细胞水平的定位,其中生物素——抗生物素染色法最常用。 抗体交叉反应的原因: 指抗体除与其相应的抗原发生特异性反应外还与其它抗原发生反应。产生的原因有以下几个方面: 1. 抗原特异性指用于免疫动物的抗原性物质中含有多种抗原分子,它引起动物产生针对多种抗原分子特异性的相应抗体。任何其它物质只要含有一种或多种与上述物质相同的抗原分子,必将与上述多特异性的抗血清发生交叉反应。 2. 共同决定簇即两种抗原分子中都含有相同的抗原决定簇。 3. 决定簇相似,两种不同的抗原决定簇,如果结构大致相同,由于空间构象关系,某一决定簇的相应抗体可以与大致相同的决定簇发生交叉反应。当然抗原一抗体之间构象相似时的结合力小于吻合时的结合力。 免疫细胞化学技术 一、免疫细胞化学技术的概述 *免疫细胞化学(immunocytochemistry, ICC) -是利用抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素) 显色来确定细胞内抗原的成分(主要是多肽和蛋白质),对其进行定位、

免疫组化的原理和步骤

免疫组织化学的概念: 免疫组化就是利用抗原与特异性结合的原理,通过化学反应使标记的显色剂(荧光素、酶、金属离子、同位素) 显色来确定组织细胞内抗原(多肽与蛋白质),对其进行定位、定性及定量的研究,称为免疫组织化学。 免疫组化实验所用的有哪些? 免疫组化实验中常用的抗体为单抗体与多抗体。单抗体就是一个B淋巴细胞分泌的抗体,应用细胞融合杂交瘤技术免疫动物制备。多克隆抗体就是将纯化后的抗原直接免疫动物后,从动物血中所获得的免疫血清,就是多个B淋巴细胞克隆所产生的抗体混合物。 免疫组化实验所用的组织与细胞标本有哪些? 实验所用主要为组织标本与细胞标本两大类,前者包括石蜡切片(病理大片与组织芯片)与冰冻切片,后者包括组织印片、细胞爬片与细胞涂片。 其中石蜡切片就是制作组织标本最常用、最基本的方法,对于组织形态保存好,且能作连续切片,有利于各种染色对照观察;还能长期存档,供回顾性研究;石蜡切片制作过程对组织内抗原暴露有一定的影响,但可进行抗原修复,就是免疫组化中首选的组织标本制作方法。 石蜡切片为什么要做抗原修复?有哪些方法? 石蜡切片标本均用甲醛固定,使得细胞内抗原形成醛键、羧甲键而被封闭了部分抗原决定簇,同时蛋白之间发生交联而使抗原决定簇隐蔽。所以要求在进行IHC染色时,需要先进行抗原修复或暴露,即将固定时分子之间所形成的交联破坏,而恢复抗原的原有空间形态。 常用的抗原修复方法有微波修复法,高压加热法,酶消化法,水煮加热法等,常用的修复液就是pH6、0的0、01 mol/L的柠檬酸盐缓冲液。 免疫组化常用的染色方法有哪些? 根据标记物的不同分为免疫荧光法,免疫酶标法,亲与组织化学法,后者就是以一种物质对 某种组织成分具有高度亲合力为基础的检测方法。这种方法敏感性更高,有利于微量抗原(抗体)在细胞或亚细胞水平的定位,其中生物素——抗生物素染色法最常用。 抗体交叉反应的原因: 指抗体除与其相应的抗原发生特异性反应外还与其它抗原发生反应。产生的原因有以下几个方面: 1、抗原特异性指用于免疫动物的抗原性物质中含有多种抗原分子,它引起动物产生针对多种抗原分子特异性的相应抗体。任何其它物质只要含有一种或多种与上述物质相同的抗原分子,必将与上述多特异性的抗血清发生交叉反应。 2、共同决定簇即两种抗原分子中都含有相同的抗原决定簇。 3、决定簇相似,两种不同的抗原决定簇,如果结构大致相同,由于空间构象关系,某一决定簇的相应抗体可以与大致相同的决定簇发生交叉反应。当然抗原一抗体之间构象相似时的结合力小于吻合时的结合力。 免疫细胞化学技术 一、免疫细胞化学技术的概述 *免疫细胞化学(immunocytochemistry, ICC) -就是利用抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素) 显色来确定细胞内抗原的成分(主要就是多肽与蛋白质),对其进行定位、定性及定量的研究,称为~。

相关主题
文本预览
相关文档 最新文档