利用Nystrom方法进行谱聚类及其在图像分割中的应用
- 格式:ppt
- 大小:377.00 KB
- 文档页数:6
基于肿瘤形状特征与点云方法的PET-CT多模态图像神经母
细胞瘤分割
周维钦;王朝立;孙占全;陈素芸;李超;傅宏亮;刘晓虹
【期刊名称】《软件导刊》
【年(卷),期】2024(23)3
【摘要】通过智能学习方法对PET-CT图像进行肿瘤自动分割,是辅助医生制定诊疗计划的重要研究领域。
PET-CT图像兼具PET和CT两种模态优点,传统方法大多只简单的将两种模态的图像进行配准和融合后提取特征,忽略了神经母细胞瘤具有肿瘤边界轮廓不规则的特点。
为此,提出一种两阶段的自动分割框架结构模型。
首先,利用3D卷积神经网络定位肿瘤位置;然后在分割出的肿瘤区域附近生成多模态点云数据,并提取肿瘤的形状轮廓特征;最后,将两个网络提取的特征进行融合用来预测最终分割结果。
在自有数据集和公共数据集上,将所提模型与其他多模态方法进行比较实验,实验结果验证了所提模型的优越性与有效性。
以期为研究神经母细胞瘤分割的研究人员提供参考与借鉴。
【总页数】6页(P128-133)
【作者】周维钦;王朝立;孙占全;陈素芸;李超;傅宏亮;刘晓虹
【作者单位】上海理工大学光电信息与计算机工程学院;上海交通大学医学院附属新华医院核医学科;上海市第八人民医院放射科
【正文语种】中文
【中图分类】TP183
【相关文献】
1.基于颜色和形状特征的棉花害螨图像分割方法
2.基于SVM模型参数优化的多模态MRI图像肿瘤分割方法
3.基于层次聚类的多模态磁共振脑肿瘤图像的自动分割方法
4.一种基于超像素和改进U-net的多模态脑部肿瘤图像分割方法
5.基于改进U-Net的PET-CT双模态头颈部肿瘤分割
因版权原因,仅展示原文概要,查看原文内容请购买。
SILC超像素分割算法详解(附Python代码)SILC算法详解⼀、原理介绍SLIC算法是simple linear iterative cluster的简称,该算法⽤来⽣成超像素(superpixel)算法步骤:已知⼀副图像⼤⼩M*N,可以从RGB空间转换为LAB空间,LAB颜⾊空间表现的颜⾊更全⾯假如预定义参数K,K为预⽣成的超像素数量,即预计将M*N⼤⼩的图像(像素数⽬即为M*N)分隔为K个超像素块,每个超像素块范围⼤⼩包含[(M*N)/K]个像素假设每个超像素区域长和宽都均匀分布的话,那么每个超像素块的长和宽均可定义为S,S=sqrt(M*N/K)遍历操作,将每个像素块的中⼼点的坐标(x,y)及其lab的值保存起来,加⼊到事先定义好的集合中每个像素块的中⼼点默认是(S/2,S/2)进⾏获取的,有可能落在噪⾳点或者像素边缘(所谓像素边缘,即指像素突变处,⽐如从⿊⾊过渡到⽩⾊的交界处),这⾥,利⽤差分⽅式进⾏梯度计算,调整中⼼点:算法中,使⽤中⼼点的8领域像素点,计算获得最⼩梯度值的像素点,并将其作为新的中⼼点,差分计算梯度的公式:Gradient(x,y)=dx(i,j) + dy(i,j);dx(i,j) = I(i+1,j) - I(i,j);dy(i,j) = I(i,j+1) - I(i,j);遍历现中⼼点的8领域像素点,将其中计算得到最⼩Gradient值的像素点作为新的中⼼点调整完中⼼点后即需要进⾏像素点的聚类操作通过聚类的⽅式迭代计算新的聚类中⼼;⾸先,需要借助K-means聚类算法,将像素点进⾏归类,通过变换的欧⽒聚距离公式进⾏,公式如下(同时参考像素值和坐标值提取相似度):通过两个参数m和S来协调两种距离的⽐例分配。
参数S即是上⾯第③步计算得出的每个像素块的长度值,⽽参数M为LAB空间的距离可能最⼤值,其可取的范围建议为[1,40]为了节省时间,只遍历每个超像素块中⼼点周边的2S*2S区域内的像素点,计算该区域内每个像素点距离哪⼀个超像素块的中⼼点最近,并将其划分到其中;完成⼀次迭代后,重新计算每个超像素块的中⼼点坐标,并重新进⾏迭⼆、代码实现1import math2from skimage import io, color3import numpy as np45class Cluster(object):67 cluster_index = 189def__init__(self, row, col, l=0, a=0, b=0):10 self.update(row, col, l, a, b)11 self.pixels = []12 self.no = self.cluster_index13 Cluster.cluster_index += 11415def update(self, row, col, l, a, b):16 self.row = row17 self.col = col18 self.l = l19 self.a = a20 self.b = b212223class SLICProcessor(object):24 @staticmethod25def open_image(path):26 rgb = io.imread(path)27 lab_arr = color.rgb2lab(rgb)28return lab_arr2930 @staticmethod31def save_lab_image(path, lab_arr):32 rgb_arr = b2rgb(lab_arr)33 io.imsave(path, rgb_arr)3435def make_cluster(self, row, col):36 row=int(row)37 col=int(col)38return Cluster(row, col,39 self.data[row][col][0],40 self.data[row][col][1],41 self.data[row][col][2])4243def__init__(self, filename, K, M):44 self.K = K45 self.M = M4647 self.data = self.open_image(filename)48 self.rows = self.data.shape[0]49 self.cols = self.data.shape[1]50 self.N = self.rows * self.cols51 self.S = int(math.sqrt(self.N / self.K))5253 self.clusters = []54 bel = {}55 self.dis = np.full((self.rows, self.cols), np.inf)5657def init_clusters(self):58 row = self.S / 259 col = self.S / 260while row < self.rows:61while col < self.cols:62 self.clusters.append(self.make_cluster(row, col))63 col+= self.S64 col = self.S / 265 row += self.S6667def get_gradient(self, row, col):68if col + 1 >= self.cols:69 col = self.cols - 270if row + 1 >= self.rows:71 row = self.rows - 27273 gradient = (self.data[row + 1][col][0] +self.data[row][col+1][0]-2*self.data[row][col][0])+ \74 (self.data[row + 1][col][1] +self.data[row][col+1][1]-2*self.data[row][col][1]) + \75 (self.data[row + 1][col][2] +self.data[row][col+1][2]-2*self.data[row][col][2])7677return gradient7879def move_clusters(self):80for cluster in self.clusters:81 cluster_gradient = self.get_gradient(cluster.row, cluster.col)82for dh in range(-1, 2):83for dw in range(-1, 2):84 _row = cluster.row + dh85 _col = cluster.col + dw86 new_gradient = self.get_gradient(_row, _col)87if new_gradient < cluster_gradient:88 cluster.update(_row, _col, self.data[_row][_col][0], self.data[_row][_col][1], self.data[_row][_col][2])89 cluster_gradient = new_gradient9091def assignment(self):92for cluster in self.clusters:93for h in range(cluster.row - 2 * self.S, cluster.row + 2 * self.S):94if h < 0 or h >= self.rows: continue95for w in range(cluster.col - 2 * self.S, cluster.col + 2 * self.S):96if w < 0 or w >= self.cols: continue97 L, A, B = self.data[h][w]98 Dc = math.sqrt(99 math.pow(L - cluster.l, 2) +100 math.pow(A - cluster.a, 2) +101 math.pow(B - cluster.b, 2))102 Ds = math.sqrt(103 math.pow(h - cluster.row, 2) +104 math.pow(w - cluster.col, 2))105 D = math.sqrt(math.pow(Dc / self.M, 2) + math.pow(Ds / self.S, 2))106if D < self.dis[h][w]:107if (h, w) not in bel:108 bel[(h, w)] = cluster109 cluster.pixels.append((h, w))110else:111 bel[(h, w)].pixels.remove((h, w))112 bel[(h, w)] = cluster113 cluster.pixels.append((h, w))114 self.dis[h][w] = D115116def update_cluster(self):117for cluster in self.clusters:118 sum_h = sum_w = number = 0119for p in cluster.pixels:120 sum_h += p[0]121 sum_w += p[1]122 number += 1123 _h =int( sum_h / number)124 _w =int( sum_w / number)125 cluster.update(_h, _w, self.data[_h][_w][0], self.data[_h][_w][1], self.data[_h][_w][2])126127def save_current_image(self, name):128 image_arr = np.copy(self.data)129for cluster in self.clusters:130for p in cluster.pixels:131 image_arr[p[0]][p[1]][0] = cluster.l132 image_arr[p[0]][p[1]][1] = cluster.a133 image_arr[p[0]][p[1]][2] = cluster.b134 image_arr[cluster.row][cluster.col][0] = 0135 image_arr[cluster.row][cluster.col][1] = 0136 image_arr[cluster.row][cluster.col][2] = 0137 self.save_lab_image(name, image_arr)138139def iterates(self):140 self.init_clusters()141 self.move_clusters()142#考虑到效率和效果,折中选择迭代10次143for i in range(10):144 self.assignment()145 self.update_cluster()146 self.save_current_image("output.jpg")147148149if__name__ == '__main__':150 p = SLICProcessor('beauty.jpg', 200, 40)151 p.iterates()三、运⾏效果截图(原图)(效果图)代码参考了https:///laixintao/slic-python-implementation,且做了改进作为⼀枚技术⼩⽩,写这篇笔记的时候参考了很多博客论⽂,在这⾥表⽰感谢,转载请注明出处......。
基于谱聚类的三维⽹格分割算法(SpectralClustering) 谱聚类(Spectral Clustering)是⼀种⼴泛使⽤的数据聚类算法,[Liu et al. 2004]基于谱聚类算法⾸次提出了⼀种三维⽹格分割⽅法。
该⽅法⾸先构建⼀个相似矩阵⽤于记录⽹格上相邻⾯⽚之间的差异性,然后计算相似矩阵的前k个特征向量,这些特征向量将⽹格⾯⽚映射到k维谱空间的单位球上,最后使⽤K-means⽅法对谱空间中的数据点进⾏聚类。
具体算法过程如下:⼀.相似矩阵 ⽹格分割以⾯⽚为基本单元,为了能使算法沿着⼏何模型的凹形区域进⾏分割,⽹格相邻⾯⽚之间的距离采⽤[Katz et al. 2003]中提到的⽅法,具体形式在“”中有所解释,距离由测地距离Geod_Dist和⾓度距离Ang_Dist两部分组成,如下所⽰: 上式中有两个重要的参数δ和η,参数δ通常取值范围为[0.01, 0.05],其⽤于控制测地距离和⾓度距离之间的权重⽐例,参数η通常取值范围为[0.1, 0.2],其使得分割边界更倾向于凹形区域。
计算完相邻⾯⽚之间的距离后,相似矩阵中对应位置的值由距离的⾼斯函数得到:其中:⼆.⽹格谱聚类 谱聚类⽅法在本质上都是类似的,都是利⽤相似矩阵的特征向量将原始空间中的数据映射到谱空间,并在谱空间中进⾏聚类。
⽹格上的谱聚类⽅法如下: 1 由上述定义计算相似矩阵W; 2 计算归⼀化矩阵N:N = D-1/2WD-1/2; 3 计算矩阵N的前k个最⼤特征向量e1, e2, … , e k,以这k个特征向量为列组成矩阵U = [e1, e2, … , e k]; 4 将矩阵U的每⼀⾏单位化后得到矩阵Ȗ; 5 提取出k个初始聚类中⼼⽤于K-means聚类,该过程先计算矩阵Q = ȖȖT,然后查找矩阵Q中的最⼩元素Q rs,那么r和s点就是两个距离最远的点,然后继续查找后续点; 6 以Ȗ的⾏向量为数据样本进⾏K-means聚类。
模糊C均值聚类及其有效性检验与应用研究一、内容概要本研究专注于模糊C均值聚类(Fuzzy Cmeans Clustering),这是一种在数据挖掘和模式识别领域广泛应用的无监督学习方法。
通过结合模糊理论和聚类技术,Fuzzy C均值聚类能够在模糊数据集中发现并提取有价值的信息。
引言: 介绍模糊集理论的基本概念,并阐述模糊C均值聚类算法的起源和基本原理,以及其在各领域的应用前景。
模糊C均值聚类算法: 详尽描述算法的具体步骤,包括初始化、模糊划分、聚类和迭代优化等,以及对初始聚类中心的选择和算法终止条件的设定进行深入探讨。
模糊C均值聚类的有效性检验: 探讨如何准确评估聚类结果的性能。
首先定义了聚类效果的评估指标,如轮廓系数和DaviesBouldin 指数,并提出了基于这些指标的聚类有效性检验方法。
案例分析: 通过实际应用案例,展示模糊C均值聚类算法在处理各类复杂数据集时的表现。
案例涵盖了图像分割、文档聚类和生物信息学等领域的数据分析。
应用研究: 探讨模糊C均值聚类算法在不同领域的应用潜力,如金融风控、智能交通和医疗诊断等。
针对特定应用场景,提出了一系列基于模糊C均值聚类的特征选择和降维策略。
结论: 总结研究成果,强调模糊C均值聚类算法在解决实际问题中的有效性和实用性,并指出未来研究方向,旨在进一步完善算法性能并拓展其应用领域。
本研究通过对模糊C均值聚类算法进行系统性的理论分析和案例验证,不仅揭示了其有效的聚类性能,还在多个实际应用领域展现出巨大的潜力和价值。
1.1 背景及意义随着计算机技术的不断发展,数据量呈现爆炸式增长,使得对数据的处理和分析变得越来越重要。
在众多数据处理方法中,聚类作为一种无监督学习方法,被广泛应用于各种领域,如图像处理、模式识别、文档聚类等。
传统的聚类算法如Kmeans、层次聚类等虽已取得一定的应用成果,但往往存在对初始中心点选择敏感、对噪声敏感、局部最优解等问题。
模糊C均值聚类(Fuzzy Cmeans Clustering,简称FCM)是一种基于模糊集理论和传统C均值聚类的改进算法。
复杂网络中的社区发现算法及其应用复杂网络是由大量节点以及节点之间的连接关系构成的网络,在现实中广泛存在于许多领域,如社交网络、生物网络和互联网等。
社区发现是复杂网络研究的重要内容,目的是将网络中相互紧密连接的节点划分为具有相似特征或功能的社区。
社区发现算法是研究者们为了解复杂网络中的结构、功能和演化过程而提出的重要方法。
本文将介绍几种常见的社区发现算法及其应用。
一、模块度优化算法模块度是衡量网络社区结构好坏的重要指标,模块度优化算法就是通过最大化网络的模块度来寻找合适的社区划分。
常见的模块度优化算法有GN算法、Louvain算法和贪心算法等。
这些算法通过迭代地划分社区和优化社区内的连接关系来寻求最优解。
模块度优化算法在社交网络、组织结构分析、蛋白质相互作用网络等领域有广泛应用。
例如,在社交网络中,通过社区发现算法可以识别出不同的社区群体,有助于理解社交网络中的用户行为和信息传播规律,在推荐系统中起到重要作用。
二、基于节点相似性的算法基于节点相似性的社区发现算法认为在网络中相似的节点更可能属于同一个社区。
这类算法包括谱聚类、K均值算法和PSCAN算法等。
这些算法通过计算节点间的相似度来划分社区。
这类算法在生物网络、交通网络、图像分割等领域应用广泛。
例如,在生物网络中,通过基因的相似性来划分蛋白质相互作用网络的社区,可以帮助研究者理解蛋白质之间的功能和调控关系,从而推测未知蛋白质的功能。
三、基于概率生成模型的算法基于概率生成模型的社区发现算法通过建立模型来描述网络的生成过程,并利用模型参数推断网络的社区结构。
常见的算法有LDA、SBM等。
这些算法将网络看作是由不同社区生成的,根据模型参数的估计结果来划分社区。
这类算法在社交网络、金融网络等领域有广泛应用。
例如,在金融网络中,通过基于概率生成模型的社区发现算法可以划分出潜在的金融市场或子市场,有助于金融市场监管和风险预警。
总结起来,社区发现算法在复杂网络研究中扮演重要角色,有助于理解网络的结构和功能特征,为许多现实问题的解决提供了有力支持。
聚类分割算法聚类分割算法是一类常用于将数据集划分成具有相似特征的子集的方法。
这些算法主要用于无监督学习,即在没有先验标签的情况下,自动发现数据集内在的模式。
以下是一些常见的聚类分割算法:1. K均值聚类(K-Means Clustering):- K均值是最常见的聚类算法之一。
它将数据集分为K个簇,每个簇由其质心表示。
算法的目标是使每个数据点到其所属簇的质心的距离最小化。
2. 层次聚类(Hierarchical Clustering):-层次聚类根据数据点之间的相似性构建树状结构。
可以通过聚合或分割来创建簇。
分为凝聚式层次聚类(自底向上)和分裂式层次聚类(自顶向下)。
3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise):- DBSCAN基于密度的聚类算法,能够发现具有足够密度的区域,并将稀疏区域视为噪声。
它不需要预先指定簇的数量。
4. Mean Shift聚类:- Mean Shift是一种基于梯度上升的聚类算法。
它通过不断迭代调整数据点的位置,使其移向密度最大的区域,从而找到簇的中心。
5. OPTICS(Ordering Points To Identify the Clustering Structure):- OPTICS是一种基于密度的聚类算法,类似于DBSCAN,但允许在数据集中存在不同密度的区域,并通过产生一系列密度相关的点来表示簇。
6. 谱聚类(Spectral Clustering):-谱聚类利用数据集的谱信息,通过将数据投影到低维子空间来执行聚类。
它在处理非凸形状的簇和图分割问题时效果较好。
7. 模糊聚类(Fuzzy Clustering):-模糊聚类考虑了数据点与簇的隶属度,而不是将每个数据点硬性地分配到一个簇。
模糊c均值(FCM)是模糊聚类的一个典型算法。
这只是聚类分割算法的一小部分,每个算法都有其适用的场景和限制。