谱聚类算法
- 格式:pptx
- 大小:571.45 KB
- 文档页数:21
复杂网络中的社团发现算法对比和性能评估在复杂网络的研究中,社团发现算法对于揭示网络中隐含的组织结构和功能模块具有重要意义。
社团发现算法目的是将网络的节点划分为不同的社团或群集,使得同一个社团内的节点之间具有紧密的连接,而不同社团之间的连接则相对较弱。
本文将对几种常见的复杂网络社团发现算法进行对比和性能评估。
1. 强连通性算法强连通性算法主要关注网络中的强连通分量,即其中的节点之间互相可达。
常见的强连通性算法有Tarjan算法和Kosaraju算法。
这些算法适用于有向图和无向图,并且能够有效地识别网络中的全部强连通分量。
2. 谱聚类算法谱聚类算法是一种基于图谱理论的社团发现算法,通过将网络表示为拉普拉斯矩阵,使用特征值分解或近似方法提取主要特征向量,从而实现节点的划分。
常见的谱聚类算法包括拉普拉斯特征映射(LE)和归一化谱聚类(Ncut)。
谱聚类算法在复杂网络中表现出色,尤其在分割不规则形状的社团时效果较好。
3. 模块度优化算法模块度优化算法通过最大化网络的模块度指标,寻找网络中最优的社团划分。
常见的模块度优化算法有GN算法(Girvan-Newman)和Louvain算法。
这些算法通过迭代删除网络中的边或合并社团,以最大化模块度指标。
模块度优化算法具有较高的计算效率和准确性,广泛应用于实际网络的社团发现中。
4. 层次聚类算法层次聚类算法通过基于节点之间的相似度或距离构建层次化的社团结构。
常见的层次聚类算法有分裂和合并(Spectral Clustering,SC)和非重叠连通(Non-overlapping Connector,NC)算法。
这些算法通过自顶向下或自底向上的方式逐步划分或合并社团。
层次聚类算法能够全面地刻画网络中的社团结构,但在大规模网络上的计算复杂度较高。
5. 基于物理模型的算法基于物理模型的算法通过模拟物理过程来发现网络中的社团结构。
常见的基于物理模型的社团发现算法有模拟退火算法(Simulated Annealing,SA)和蚁群算法(Ant Colony Algorithm,ACA)。
常用的聚类算法
1聚类算法概述
聚类算法是一种无监督学习算法,它可以根据样本的内在特征将它们分组到不同的簇中,而不需要人工的参与。
它的实质是把同类的对象划分到同一个簇,把不同类的对象分到不同的簇,以达到将类似的物体进行自动分组的目的。
聚类的结果要求能将类似的对象划分到同一簇,而将不同的对象划分到不同簇,相邻簇中可以有极少数据点的相异。
2常用聚类算法
1.K-Means
K-means是最流行的聚类算法,它简单、速度快,可以根据数据特征把数据点分成K个不同簇,是一种基于划分的聚类算法。
2.层次聚类算法
层次聚类算法是一种树形聚类算法,将数据按照层级结构编码成树结构,采用分支和合并的方法,将给出的数据逐步聚合。
3.谱聚类算法
谱聚类算法对密集网络数据具有很好的分类能力,将相似性LR矩阵作为分析基础,使用其提取节点之间的相似程度,将节点分为多个簇。
4.EM聚类算法
EM聚类算法是一种高效的聚类算法,主要利用期望最大算法,利用概率模型对数据进行聚类,通过计算数据的对应度和估计模型参数,将数据划分到若干个类中。
总的来说,聚类算法最终的目的都是将一些数据表示的对象,根据某种特征的相似性,划分到不同的组中,以构建一种新的结构,使具有相似特征的样本分为一组,从而帮助更好地理解数据并协助作出正确的决策。
谱聚类算法 python谱聚类是一种基于图论的聚类算法,它通过构建数据的相似度矩阵和拉普拉斯矩阵来实现数据的聚类。
下面是谱聚类算法的Python实现参考内容。
1. 导入所需库和数据模块:```pythonimport numpy as npfrom sklearn.cluster import KMeansfrom sklearn.metrics import pairwise_distancesfrom sklearn.datasets import make_blobs```2. 定义谱聚类函数:```pythondef spectral_clustering(data, n_clusters, sigma=1):# 构建相似度矩阵similarity_matrix = pairwise_distances(data, metric='rbf', gamma=1.0/(2*sigma**2))# 构建拉普拉斯矩阵row_sums = np.sum(similarity_matrix, axis=1)laplacian_matrix = np.diag(row_sums) - similarity_matrix# 计算拉普拉斯矩阵的特征值和特征向量eigvals, eigvecs = np.linalg.eig(laplacian_matrix)# 根据特征值进行排序indices = np.argsort(eigvals)[:n_clusters]# 提取特征向量的前n_clusters个列向量eigvecs_selected = eigvecs[:, indices]# 使用K-means算法对特征向量进行聚类kmeans = KMeans(n_clusters=n_clusters)kmeans.fit(eigvecs_selected)labels = bels_return labels```3. 生成示例数据并调用谱聚类函数进行聚类:```pythondata, ground_truth = make_blobs(n_samples=100, centers=3, random_state=0)labels = spectral_clustering(data, n_clusters=3, sigma=1)print("聚类结果:", labels)```以上就是谱聚类算法的Python实现参考内容。
1 / 1
谱聚类算法计算公式
谱聚类(Spectral Clustering )算法的计算公式如下:
1. 构建相似度矩阵W ,一般选择高斯核函数计算样本点之间的相似度,公式如下:
22,i j x x i j W e σ−−=
其中,i x 和j x 分别表示第i 个和第j 个样本点,σ为高斯核函数
的参数。
2. 构建拉普拉斯矩阵L ,一般有两种方式:
(1) 随机游走型拉普拉斯矩阵,公式如下:
1
1
22
L D WD −−= 其中,D 为度矩阵,其对角线元素为每个样本点的度。
(2) 对称型拉普拉斯矩阵,公式如下:
L D W =−
其中,D 和W 分别为度矩阵和相似度矩阵。
3. 对拉普拉斯矩阵L 进行特征分解,得到L 的特征向量矩阵U 。
4. 对特征向量矩阵U 进行k-means 聚类或者谱聚类,将样本点划分到k 个簇中。
谱聚类算法的主要思想是将原始数据映射到低维空间中,从而实现聚类。
该算法具有较好的性能,并且可以处理非球形簇和噪声数据。
谱聚类(Spectral Clustering)是一种常用的机器学习非监督学习算法,它可以将数据集进行非均匀划分,自动检测出数据集之间的联系,形成聚类,来支持分类和聚类任务。
谱聚类算法利用图分割技术进行数据集划分,其前提是,一个具有相似关系的数据集可以被抽象成一个图结构,它由节点(node)和边(edge)组成。
这种图将相似的节点连接起来,形成相关性的网络,这就是谱聚类的基本原理。
在谱聚类算法中,我们首先需要将数据集抽象为图结构,有了图后,会根据一些度量(局部密度、连接强度、等等)将其划分为一些小子集,再根据邻域性确定子集的内部结构和边界,从而将图分成若干聚类。
谱聚类的优势在于它可以实现非均匀的聚类,可以根据数据集的特征自动聚类,它不仅可以将数据集划分成几个大的聚类,还可以自动检测出数据集之间更复杂的联系,从而形成聚类。
此外,谱聚类算法还可以处理高维数据,它能够捕捉数据集中所有数据之间的复杂关系,从而实现更好的聚类。
综上所述,谱聚类算法是一种有效的机器学习非监督学习算法,它可以自动检测出数据之间的关系,进行非均匀的聚类,为聚类和分类任务提供有力的支持,是机器学习算法领域的重要研究成果。
谱聚类算法综述一、本文概述谱聚类算法是一种基于图理论的机器学习技术,它在数据分析和模式识别中发挥着重要作用。
本文旨在对谱聚类算法进行全面的综述,从理论基础、算法流程、应用领域以及最新进展等多个方面进行深入的探讨。
我们将简要介绍谱聚类算法的基本概念和原理,包括图论基础、拉普拉斯矩阵、特征值分解等关键知识点。
然后,我们将详细阐述谱聚类算法的基本流程和主要步骤,包括数据预处理、构建相似度矩阵、计算拉普拉斯矩阵、求解特征向量和聚类等。
接下来,我们将重点分析谱聚类算法在不同领域中的应用,如图像处理、社交网络分析、机器学习等,并探讨其在这些领域中取得的成果和优势。
我们还将对谱聚类算法的性能进行评估,包括其时间复杂度、空间复杂度以及聚类效果等方面。
我们将对谱聚类算法的最新研究进展进行综述,包括新的算法模型、优化方法以及应用领域的拓展等方面。
通过对这些最新进展的梳理和总结,我们可以更好地了解谱聚类算法的发展趋势和未来研究方向。
本文旨在对谱聚类算法进行全面的综述和分析,为读者提供一个清晰、系统的认识框架,同时也为该领域的研究者提供有价值的参考和启示。
二、谱聚类算法的基本原理谱聚类算法是一种基于图理论的聚类方法,它通过将数据点视为图中的节点,数据点之间的相似性视为节点之间的边的权重,从而构建出一个加权无向图。
谱聚类的基本原理在于利用图的拉普拉斯矩阵(Laplacian Matrix)的特征向量来进行聚类。
构建相似度矩阵:需要计算数据点之间的相似度,这通常通过核函数(如高斯核函数)来实现,从而构建出一个相似度矩阵。
构建图的拉普拉斯矩阵:根据相似度矩阵,可以构建出图的度矩阵和邻接矩阵,进而得到图的拉普拉斯矩阵。
拉普拉斯矩阵是相似度矩阵和度矩阵之差,它反映了数据点之间的局部结构信息。
求解拉普拉斯矩阵的特征向量:对拉普拉斯矩阵进行特征分解,得到其特征向量。
这些特征向量构成了一个新的低维空间,在这个空间中,相似的数据点更接近,不相似的数据点更远。
常用聚类算法在数据挖掘、机器学习以及计算机视觉中,聚类分析是一种非常重要的机器学习技术,又被称作簇分析、集群分析或族群分析。
它的基本思想是将数据按其相似性分成若干个子集,以便我们更好的理解、探索数据。
目前主流的聚类算法有K-means、DBSCAN、层次聚类算法、谱聚类算法等等。
1、K-means聚类算法K-means聚类算法是最常用的无监督学习算法,它的基本思想是首先随机选择K个中心点,然后将每一个数据点都分到最接近它的中心点;接着重新计算每个簇的中心;最后重复这个过程直到所有数据点都收敛到设定的中心点,从而实现聚类。
K-means聚类算法的缺点是无法解决成簇的点的不同密度的情况,并且容易受到初始值的影响。
2、DBSCAN聚类算法DBSCAN(密度聚类域算法)是一种无监督学习算法,它通过构建指定半径E和指定最小点数MinPts之间的邻域来构建密度聚类,它能够发现任意形状的聚类,因而比K-means聚类算法更具有普适性。
它最大的优点是可以发现任意形状的聚类;最大的缺点是需要较大的计算量,运算时间可能比较长。
3、层次聚类算法层次聚类(Hierarchical Clustering)是一种以树状图的形式来表示聚类的算法。
它以数据点的距离(欧氏距离或余弦距离)为基础,将距离最近的点合并成一个簇,依次迭代,直到聚类完成。
层次聚类算法不需要设置K值,具有简单易懂的解释性,并且可以产生不同类型的层次聚类树,可以很好地反应数据的结构,但是它的时间复杂度比较高,有一定的性能问题。
4、谱聚类算法谱聚类算法(Spectral Clustering)是一种基于图的聚类算法,它将样本数据表示为图的节点,并用图的特征矩阵的特征向量来提取聚类的簇。
谱聚类算法可以处理任意形状的簇,并且可以有效地避免局部最小值问题,但它受到输入数据大小的约束,并且如果聚类数据存在噪声和重叠簇的情况下,它的表现不佳。
总结而言,K-means、DBSCAN、层次聚类算法、谱聚类算法等算法是聚类分析的常见算法,它们在数据挖掘、机器学习和计算机视觉等多领域有着重要的应用价值。
时间序列谱聚类Python时间序列谱聚类是一种基于相似性图变换的聚类方法,能够处理时间序列数据,将相似的数据点分到同一类别中。
在时间序列谱聚类中,我们需要计算相似性矩阵,并将其转化为拉普拉斯矩阵,进而通过特征分解来获得聚类。
Python是一种功能强大的编程语言,被广泛应用于数据科学领域。
在Python中,有许多强大的库可以使用,帮助我们实现时间序列谱聚类。
本文将介绍如下内容:如何计算时间序列相似性矩阵、如何转换为拉普拉斯矩阵、如何通过特征分解实现时间序列聚类等。
1.计算时间序列相似性矩阵在时间序列聚类中,我们需要计算相似性矩阵。
常见的相似性度量包括欧氏距离、曼哈顿距离、动态时间规整等。
我们以欧氏距离为例进行介绍。
假设我们有m个时间序列数据,每个序列有n个时间点。
我们将每个时间序列看作一个m维向量,于是每个时间序列可以表示成一个m×n的矩阵。
现在我们要计算的是这m个序列之间的欧氏距离矩阵。
可以使用SciPy库中的pdist函数:```import numpy as npfrom scipy.spatial.distance import pdist, squareformdata = np.random.rand(100, 50) # 100个50维的时间序列数据distances = np.sqrt(np.sum(np.square(pdist(data, 'euclidean')), axis=0)) # 计算欧氏距离similarity_matrix = np.exp(-np.square(squareform(distances))/np.median(distances)) # 转换为相似性矩阵```2.转换为拉普拉斯矩阵得到相似性矩阵之后,我们需要将其转换为拉普拉斯矩阵。
类似于无向图和有向图中的定义,我们有两种拉普拉斯矩阵:对称型拉普拉斯矩阵和非对称型拉普拉斯矩阵。
Matlab中的聚类分析与聚类算法详解绪论数据分析是现代科学和工程领域中非常重要的一项技术。
随着互联网和物联网技术的发展,数据的规模和复杂度不断增加,数据分析越来越成为解决实际问题的关键。
聚类分析是一种常用的数据分析技术,它通过将数据样本划分成具有相似性的组或簇,从而揭示数据的内在结构和模式。
在Matlab中,聚类分析功能强大且易于使用,提供了多种聚类算法,如K-means、层次聚类等。
本文将详细介绍Matlab 中的聚类分析方法及其算法。
一、K-means算法K-means算法是聚类分析中最经典且最常用的算法之一。
它将数据样本划分成K个簇,并迭代地优化簇的中心,使得簇内的样本与簇中心的距离最小化。
在Matlab中,使用kmeans函数可以轻松实现K-means算法。
K-means算法的步骤如下:1. 随机选择K个样本作为初始的K个簇中心。
2. 计算每个样本与簇中心的距离,将样本分配到离其最近的簇。
3. 更新每个簇的中心,即计算簇内所有样本的平均值。
4. 重复步骤2和步骤3,直到簇中心不再变化或达到迭代次数。
K-means算法的优点是简单、高效,并且可以处理大规模数据。
但是,它对初始簇中心的选择敏感,容易陷入局部最优解。
二、层次聚类算法层次聚类算法是另一种常见的聚类分析方法。
它通过计算样本之间的相似性,逐步合并或划分样本,构建聚类层次结构。
在Matlab中,使用clusterdata函数可以实现层次聚类算法。
层次聚类算法的步骤如下:1. 将每个样本作为一个初始簇。
2. 计算任意两个簇之间的相似性,常用的相似性度量包括欧氏距离、相关系数等。
3. 合并相似性最高的两个簇,得到新的簇。
4. 重复步骤2和步骤3,直到所有样本被合并为一个簇或达到设定的簇数。
层次聚类算法的优点是可以得到聚类层次结构,方便分析和可视化。
然而,它对数据规模较大时计算复杂度较高。
三、谱聚类算法谱聚类算法是一种基于图论的聚类方法,在处理复杂数据时具有较好的性能。
各种聚类算法的优缺点
聚类算法是一种将数据集中的对象按照相似性进行分组的方法。
在机器学习和数据挖掘中,聚类算法是最常用的一种技术之一。
常见的聚类算法包括k-means聚类、层次聚类、DBSCAN聚类、谱聚类等。
不同的聚类算法有各自的优缺点,下面我们来具体探讨一下:
1、k-means聚类
优点:速度快、易于实现、可扩展性强。
缺点:需要预先指定聚类数量k,对数据的初始值敏感,对噪声和离群点敏感。
2、层次聚类
优点:不需要预先指定聚类数量,可视化效果好。
缺点:计算复杂度高,对噪声和离群点敏感。
3、DBSCAN聚类
优点:不需要预先指定聚类数量,能够处理噪声和离群点。
缺点:对密度变化敏感,需要调整一些参数。
4、谱聚类
优点:对非凸数据和高维数据有较好的表现,可用于图像分割。
缺点:计算复杂度高,需要预处理数据,对噪声和离群点敏感。
总之,选择合适的聚类算法需要根据数据的特点和需要解决的问题来综合考虑。
不同的算法在不同场景下都有其优势和局限性。
- 1 -。
了解人工智能的基础算法分类回归与聚类人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,通过模拟和仿效人类的智能过程和行为,使计算机系统具备识别、学习、推理和决策等一系列人类智能特征。
在人工智能的发展过程中,算法是实现人工智能的重要工具。
本文将介绍人工智能的基础算法分类中的回归与聚类两种算法。
一、回归算法回归算法用于研究变量之间的关系,并根据已有数据拟合出一个函数模型,用于预测或解释未知数据。
以下是常见的回归算法:1. 线性回归(Linear Regression):线性回归是一种最简单的回归算法,通过拟合一个线性方程来描述输入变量和输出变量之间的线性关系。
2. 逻辑回归(Logistic Regression):逻辑回归用于处理分类问题,将线性回归的输出通过一个逻辑函数映射到一个概率值,并根据概率值进行分类。
3. 多项式回归(Polynomial Regression):多项式回归是线性回归的一种扩展形式,通过添加输入变量的高次项来拟合非线性关系。
4. 支持向量回归(Support Vector Regression):支持向量回归通过构造支持向量机模型,来拟合非线性关系和处理带有噪声的数据。
二、聚类算法聚类算法是将一组对象划分为若干个类别或簇,使得同一类别内的对象相似度较高,而不同类别之间的对象相似度较低。
以下是常见的聚类算法:1. K均值聚类(K-means Clustering):K均值聚类将数据集中的对象划分为K个簇,通过计算对象与簇中心的距离来判断归属簇,并通过迭代优化来获取最优划分。
2. 分层聚类(Hierarchical Clustering):分层聚类通过计算对象之间的相似度或距离,将相似度高的对象逐渐归并为同一簇,形成层次结构的聚类结果。
3. 密度聚类(Density-based Clustering):密度聚类算法通过计算对象的密度,在稠密区域创建簇,并通过密度相连的对象逐步扩展簇的范围,形成不同密度的聚类结果。
谱聚类算法算法简介 谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。
该算法首先根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量,然后选择合适的特征向量聚类不同的数据点。
谱聚类算法最初用于计算机视觉、VLS I 设计等领域,最近才开始用于机器学习中,并迅速成为国际上机器学习领域的研究热点。
谱聚类算法建立在图论中的谱图理论基础上,其本质是将聚类问题转化为图的最优划分问题,是一种点对聚类算法,对数据聚类具有很好的应用前景。
算法步骤 谱聚类算法将数据集中的每个对象看作是图的顶点V,将顶点间的相似度量化作为相应顶点连接边E的权值,这样就得到一个基于相似度的无向加权图G(V, E),于是聚类问题就可以转化为图的划分问题。
基于图论的最优划分准则就是使划分成的子图内部相似度最大,子图之间的相似度最小。
虽然根据不同的准则函数及谱映射方法,谱聚类算法有着不同的具体实现方法,但是这些实现方法都可以归纳为下面三个主要步骤: 1) 构建表示对象集的相似度矩阵W; 2) 通过计算相似度矩阵或拉普拉斯矩阵的前k个特征值与特征向量,构建特征向量空间; 3) 利用K-means或其它经典聚类算法对特征向量空间中的特征向量进行聚类。
上面的步骤只是谱聚类算法的一个总体框架,由于划分准则、相似度矩阵计算方法等因素的差别,具体的算法实现同样会有所差别,但其本质依然是图划分问题的连续放松形式。
划分准则 谱聚类算法将聚类问题就可以转化为图的划分问题之后,基于图论的划分准则的优劣直接影响到聚类结果的好坏。
常见的划分准则有Mini cut,Average cut,Normalized cut,Min-max cut,Ratio cut,MNcut等。
最小割集准则 在对图像分割中产生了较好的效果,但是该准则容易产生分割出只包含几个顶点的较小子图的歪斜分割现象。
谱聚类算法(Spectral Clustering)谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。
其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut),也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Normalized cut)。
图1 谱聚类无向图划分——Smallest cut和Best cut 这样,谱聚类能够识别任意形状的样本空间且收敛于全局最优解,其基本思想是利用样本数据的相似矩阵(拉普拉斯矩阵)进行特征分解后得到的特征向量进行聚类。
1 理论基础对于如下空间向量item-user matrix:如果要将item做聚类,常常想到k-means聚类方法,复杂度为o(tknm),t为迭代次数,k为类的个数、n为item个数、m为空间向量特征数:1 如果M足够大呢?2 K的选取?3 类的假设是凸球形的?4 如果item是不同的实体呢?5 Kmeans无可避免的局部最优收敛?……这些都使常见的聚类问题变得相当复杂。
1.1 图的表示如果我们计算出item与item之间的相似度,便可以得到一个只有item的相似矩阵,进一步,将item看成了Graph(G)中Vertex(V),歌曲之间的相似度看成G中的Edge(E),这样便得到我们常见的图的概念。
对于图的表示(如图2),常用的有:邻接矩阵:E,e ij表示v i和v i的边的权值,E为对称矩阵,对角线上元素为0,如图2-2。
Laplacian矩阵:L = D – E,其中d i (行或列元素的和),如图2-3。
图2 图的表示1.2 特征值与L矩阵先考虑一种最优化图像分割方法,以二分为例,将图cut为S和T两部分,等价于如下损失函数cut(S, T),如公式1所示,即最小(砍掉的边的加权和)。
谱聚类(spectralclustering)原理总结 谱聚类(spectral clustering)是⼴泛使⽤的聚类算法,⽐起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也⼩很多,更加难能可贵的是实现起来也不复杂。
在处理实际的聚类问题时,个⼈认为谱聚类是应该⾸先考虑的⼏种算法之⼀。
下⾯我们就对谱聚类的算法原理做⼀个总结。
1. 谱聚类概述 谱聚类是从图论中演化出来的算法,后来在聚类中得到了⼴泛的应⽤。
它的主要思想是把所有的数据看做空间中的点,这些点之间可以⽤边连接起来。
距离较远的两个点之间的边权重值较低,⽽距离较近的两个点之间的边权重值较⾼,通过对所有数据点组成的图进⾏切图,让切图后不同的⼦图间边权重和尽可能的低,⽽⼦图内的边权重和尽可能的⾼,从⽽达到聚类的⽬的。
乍⼀看,这个算法原理的确简单,但是要完全理解这个算法的话,需要对图论中的⽆向图,线性代数和矩阵分析都有⼀定的了解。
下⾯我们就从这些需要的基础知识开始,⼀步步学习谱聚类。
2. 谱聚类基础之⼀:⽆向权重图 由于谱聚类是基于图论的,因此我们⾸先温习下图的概念。
对于⼀个图G,我们⼀般⽤点的集合V和边的集合E来描述。
即为G(V,E)。
其中V即为我们数据集⾥⾯所有的点(v_1, v_2,...v_n)。
对于V中的任意两个点,可以有边连接,也可以没有边连接。
我们定义权重w_{ij}为点v_i和点v_j之间的权重。
由于我们是⽆向图,所以w_{ij} = w_{ji}。
对于有边连接的两个点v_i和v_j,w_{ij} > 0,对于没有边连接的两个点v_i和v_j,w_{ij} = 0。
对于图中的任意⼀个点v_i,它的度d_i定义为和它相连的所有边的权重之和,即d_i = \sum\limits_{j=1}^{n}w_{ij} 利⽤每个点度的定义,我们可以得到⼀个nxn的度矩阵D,它是⼀个对⾓矩阵,只有主对⾓线有值,对应第i⾏的第i个点的度数,定义如下:\mathbf{D} = \left( \begin{array}{ccc} d_1 & \ldots & \ldots \\ \ldots & d_2 & \ldots \\ \vdots & \vdots & \ddots \\ \ldots & \ldots & d_n\end{array} \right) 利⽤所有点之间的权重值,我们可以得到图的邻接矩阵W,它也是⼀个nxn的矩阵,第i⾏的第j个值对应我们的权重w_{ij}。