线性代数-同济大学(第五版)课件 [完整版]
- 格式:pptx
- 大小:13.19 MB
- 文档页数:489
第六章 二次型本章主要包括二次型的矩阵及其矩阵,化二次型为标准型和规范形,二次型及实对称矩阵的正定性问题,学习本章内容需要结合矩阵的特征值与特征向量的相关知识.§1 二次型及其矩阵一、二次型及其矩阵定义1 关于n 个变量n x x x ,,,21 的二次齐次函数+++= 2222211121),,,(x a x a x x x f n n n n n n nn x x a x x a x x a x a 1,1313121122222--++++ (1)若取ji ij a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成j i nj i ij n x x a x x x f ∑==1,21),,,( (2)称为n 元二次型,所有系数均为实数的二次型称为实二次型.记,212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x x21 则二次型),,,(21n x x x f 又表示为Ax x x x x f T n =),,,(21 ,其中A 为对称矩阵,叫做二次型 ),,,(21n x x x f 的矩阵,也把),,,(21n x x x f 叫做对称矩阵A 的二次型.对称矩阵A 的秩,叫做二次型Ax x x x x f T n =),,,(21 的秩. 例1 写出二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=的矩阵,并求出二次型的秩.解 写出二次型所对应的对称矩阵为A ,⎪⎪⎪⎭⎫ ⎝⎛----=242422221A因为二次型的秩就是对称矩阵A 的秩.⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎭⎫ ⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛----=14002202214~6808602212~224242222123321312r r r r r r r r A ∴二次型的秩为3.§2 化二次型为标准型一、二次型合同矩阵二次型),,,(21n x x x f 经过可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 即用(3)代入(1),还是变成二次型. 那么新二次型的矩阵与原二次型的矩阵A 的关系是什么?可逆线性变换 (3),记作Cy x =,其中矩阵)(ij c C =,把可逆的线性变换Cy x =代入二次型Ax x x x x f T n =),,,(21 ,得二次型ACy C y Cy A Cy Ax x x x x f T T T T n ===)()(),,,(21定义 1 两个同阶方阵A B 、,若存在可逆矩阵C ,使B AC C T=,则称矩阵A B 、合同.若A 为对称矩阵,C 为可逆矩阵,且B AC C T=.则B 亦为对称矩阵,且).()(A r B r =证 因为A 是对称矩阵, 即A A T=,所以B AC C C A C AC C B T T T T T T T T ====)()(即B 为对称矩阵. 因为AC C B T =,所以)()()(A r AC r B r ≤≤.因为11)(--=BC C A T ,所以)()()(1B r BC r A r ≤≤-, 故得).()(B r A r = 主要问题:求可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 将二次型(1)化为只含平方项,即用(3)代入(1),能使222221121),,,(nn n y k y k y k x x x f +++= (4) 称(4)为二次型的标准形.也就是说,已知对称矩阵A ,求一个可逆矩阵C 使Λ=AC C T为对角矩阵.定理2 任意二次型j inj i ij x x af ∑==1,)(ji ij a a =,总有正交变换Py x =,使f 化为标准形2222211nn y y y f λλλ+++= ,其中n λλλ,,,21 是f 的矩阵)(ij a A =的特征值.推论 任给n 元二次型Ax x x f T=)(,总有可逆变换Cz x =使)(Cz f 为规范形.二、二次型的合同标准形1、拉格朗日配方法化二次型成标准型(1) 对有完全平方的二次型,每一次配方都应将某个变量的平方项以及涉及这一变量的所有混合项配成完全平方,而使得这个完全平方式的外面不再出现这个变量.然后对剩下的不是完全平方的部分再按照此处理,直到全部配成完全平方为止,这样做,是为了保证所得的线性变换是非异的.如果不这样做,最后就需要检验所得的线性变换是否非异.例2 用配方法化二此型32312123222132182292),,(x x x x x x x x x x x x f +++++=为标准形.解 由于f 中含变量型1x 的平方项,故把含1x 的项归并起来,配方可得32312123222182292x x x x x x x x x f +++++=322322232168)(x x x x x x x +++++=上式右端除第一项外已不再含1x .继续配方,可得232322321)3()(x x x x x x f -++++= 令⎪⎩⎪⎨⎧=+=++=3332232113x y x x y x x x y 即⎪⎩⎪⎨⎧=-=+-=33322321132y x y y x y y y x 就把f 化成标准形(规范形),232221y y y f -+=所用的变换矩阵为).0(100310211≠⎪⎪⎪⎭⎫⎝⎛--=C C(2) 如果所给的二次型全由混合项组成,而没有平方项,例如133221321),,(x x x x x x x x x f ++=,则需要先做类似于⎪⎩⎪⎨⎧=-=+=33212211y x y y x y y x 之类的非异线性变换,使变换后的二次型由平方项,再按(1)处理.二次型经非异线性变换化为标准型后,还可以再作非异线性变换,化为标准形.例3化二次型3231212x x x x x x f -+=成标准型,并求所用的变换矩阵.解 由于所给二次型中无平方项,所以令 ⎪⎩⎪⎨⎧=+=-=33212211yx y y x y y x 即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100011011y y y x x x 代入3231212x x x x x x f -+=得323122213y y y y y y f ++-=在配方,得.2)23()21(23232231y y y y y f +--+= 令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+=333223113332231123212321z y z z y z z y y z y y z y y z即.10023102101321321⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛z z z y y y得2322212z z z f +-= 所用变换矩阵为.10011121110023102101100011011⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=C )02(≠=C2、正交变换化二次型成标准型寻求正交变换,化二次型为标准型,其步骤如下: (1) 写出二次型的矩阵A ,求0-=A E λ的所有相异的根n λλλ,,,21 (n s ≤,n 为A 的阶数);(2) 对每个i λ(s ,,2,1 =i )求齐次线性方程组0)(=-x A E i λ的基础解系.如果i λ,基础解系只含1个解向量,则单位化.如果i λ,基础解系含有多于1个的解向量,则规范化,这样,总共得到n 个两两正交的单位向量.(3) 以所得的n 个两两正交的列向量得到矩阵P ,则P 为正交矩阵,正交变换Py x =化二次型Ax x T为标准形y y TΛ为对角阵,主对角线上第i ),,2,1(n i =个元素是P 的第i 个列向量所对应的特征值(k 重特征值出现k 次).经正交变换得到的标准形后,还可以再作非异的线性变换将标准后,还可以再作非异的线性变换将标准形化为规范形.但这一变换已不再是正交变换了.换言之,经正交变换,二次型一定可以化为标准型,但未必能化规范形.例4求一个正交变换Py x =,化二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=为标准形.解 (1)写出二次型f 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=242422221A (2) 求矩阵A 的特征值,写出特征多项式λλλλλλλλλλ------=-------=-------204622412204222212424222212)2)(7(6241)2(λλλλλ-+-=------=故特征值为2,7321==-=λλλ(3) 求矩阵A 的特征值所对应的特征向量 ①当71-=λ时, 解方程0)7(=+x E A ,由⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=+0001102101~5424522287r E A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=2211ξ.②当232==λλ时, 解方程0)2(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=-000000221~4424422212r E A得基础解系⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=102,01232ξξ.(4) 将32,ξξ正交化:取22ξη=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=-=5425101254102],[],[2223233ηηηξηξη(5) 将321,,ηηξ单位化,得,22131111⎪⎪⎪⎭⎫ ⎝⎛-==ξξp ,01251222⎪⎪⎪⎭⎫ ⎝⎛-==ηηp .542531333⎪⎪⎪⎭⎫ ⎝⎛==ηηp(5) 可得正交矩阵P.53503253451325325231),,(321⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==p p p P 若令Py x =则Ax x x x x x x x x x x x x x f T =++---=32312123222132184422),,(233222211y y y APy P y T T λλλ++== 2322212271y y y ++-= 注 用正交变换法化二次型成标准型后,其平方项的系数就是矩阵A的特征值.而变换矩阵的各列,分别是这些特征值对应的规范正交的特征向量.例 5 已知,1001110101⎪⎪⎪⎭⎫⎝⎛--=a a A 二次型x A A x x x x f T T )(),,(321=的秩为2.(1) 求实数a 的值.(2) 求正交变换Qy x =将f 化为标准型. 解(1),3111101021001110101111010010122⎪⎪⎪⎭⎫⎝⎛+---+-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=a a a a a a a a a a A A T x A A x T T )( 秩为22)()(==∴A r A A r T可得 1-=a .(2) 令⎪⎪⎪⎭⎫⎝⎛==422220202B A A T由0)6)(2(422220202=--=-------=-λλλλλλλE B解之得.6,2,0321===λλλ① 当01=λ时,由0)0(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=11-1-1ξ.②当22=λ时,由0)2(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=011-2ξ.③当63=λ时,由0)6(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=2113ξ.将321,,ξξξ单位化,得⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==211613,011-212,11-1-313322111ξξξξξξr r r令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==6203161210612131),,(321r r r Q . 则Qy x =时,可得标准型232262y y Bx x f T +==. 例6 设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-,若二次型f 的规范形为2212y y +,求a 的值. 解 若二次型f 的规范形为2212y y +,说明f 两个特征值为正,一个为0.当2=a 时,三个特征值为 0,2,3,这时,二次型的规范形为2212y y +.§3 二次型及实对称矩阵的正定性二次型的标准形不是唯一的.标准形中所含项数是确定的(即是二次型的秩).限定变换为实变换时,标准形中正系数的个数是不变的.一、惯性定理定理3(惯性定理) 设有实二次型Ax x f T =它的秩是r ,有两个实的可逆变换Cy x =与Pz x =.使)0(,2222211≠+++i r r k y k y k y k 及,2222211r r y z z z +++ λλ)0(≠i λ则r k k k ,,,21 中正数的个数与r λλλ,,,21 中正数的个数相等. 正数的个数称为正惯性指数,负数的个数称为负惯性指数.例7 二次型,2223),,(323121232221321x x x x x x x x x x x x f +++++=求f 的正惯性指数.解:方法一:3231212322213212223),,(x x x x x x x x x x x x f +++++= 2223212)(x x x x +++= 令⎪⎩⎪⎨⎧==++=33223211xy x y x x x y , 则22212y y f +=.故f 的正惯性指数为2.方法二:f 的正惯性指数为所对应矩阵特征值正数的个数,由于二次型f 对应矩阵.111131111⎪⎪⎪⎭⎫ ⎝⎛=A所以λλλλλλλλλλλ---=---=---=-211231001111310111131111E A λλλ---=2112310)4)(1(2123---=---=λλλλλλ=0 故4,1,0321===λλλ.故f 的正惯性指数为2. 二、正定性的判别定义10 设有实二次型Ax x f T=如果对于任何0≠x ,都有0)(>x f ,(显然0)0(=f ),则称f 为正定二次型,并称对称阵A 是正定的.记作0>A ;如果对任何0≠x ,都有0)(<x f ,则称f 为负定二次型,并称对称阵A 是负定的,记作0<A .定理4 实二次型Ax x f T=为正定的充分必要条件是:它的标准形的n 个系数全为正,即f 的正惯性指数为n .证 设可逆变换Cy x =使21)()(ini i yk Cy f x f ∑===.先证充分性:设0>i k ),,2,1(n i =,任给0≠x ,故.0)(21>=∑=i ni i y k x f再证必要性: 用反证法,假设有0≤s k ,则当s e y =(单位坐标向量)时,0)(≤=s s k Ce f ,显然0≠s Ce 这与假设f 正定矛盾,故.0>i k推论 对称阵A 为正定的充分必要条件是: A 的特征值全为正.定理5 对称阵A 为正定的充分必要条件是:A 的各阶主子式都为正.即011>a ,022211211>a a a a,01111>nnn na a a a ; 对称阵A 为负定的充分必要条件是:奇数阶主子式为负,而偶数阶主子式为正.即,0)1(1111>-nrn rra a a a ),,2,1(n r =.这个定理称为霍尔维兹定理.注:对于二次型,除了有正定和负定以外,还有半正定和半负定及不定二次型等概念.例8设实二次型312322212x cx ax bx ax f +++=,当该二次型为正定二次型,c b a ,,应满足的条件?解 写出f 的矩阵 ⎪⎪⎪⎭⎫⎝⎛=a c b c a A 0000因为该二次型为正定二次型,所以0)(,0,022>-=>>∴b c a A ab ac b a ,,∴应满足0,>>b c a .定理6实二次型Ax x f T =为正定的充分必要条件是:存在可逆矩阵C ,使C C A T =,即矩阵A 与单位矩阵合同.证明 先证充分性:若存在可逆矩阵C ,使C C A T=,任取非零向量x ,则0≠Cx (如果0=Cx ,由C 可逆,则0=x 矛盾),对任取的0≠x ,有0)()()(T >====Cx Cx Cx Cx C x Ax x x f T T T,从而矩阵A 正定.再证必要性:设对称矩阵A 为正定矩阵,因为A 为对称矩阵,则存在正交矩阵Q ,使A 对角化,即),,,(21n T diag AQ Q λλλ =Λ=,其中n λλλ,,,21 为A 的特征值,而A 是正定矩阵,所以0>i λ,记),,,(211n diag λλλ =Λ.则Λ=Λ21,从而T T T Q Q Q Q Q Q A ))((1111ΛΛ=ΛΛ=Λ=令T Q C )(1Λ=,则C 可逆,而且得到C C A T=. 所以可得EC C A T=,故矩阵A 与单位矩阵合同.定理7实二次型Ax x f T =为正定的充分必要条件是:存在正定矩阵B ,使2B A =.证明 因为A 是正定矩阵,所以矩阵A 可以正交相似对角化。
第四章 线性方程组本章以矩阵的理论作为工具,研究线性方程组有解的条件及其解法.§1 线性方程组的几种表示一、一般形式n m ⨯的齐次线性方程组的一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 二、向量形式n m ⨯的齐次线性方程组的向量形式为βααα=+++n n x x x 2211,其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mi i i i a a a 21α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=m b b b 21β.三、矩阵形式n m ⨯的齐次线性方程组的矩阵形式为β=Ax其中n m ⨯矩阵][ij a A =是方程组的系数矩阵,T n x x x x ],,,[21 =是n 维未知数向量,特别地,当0=β时,0=Ax 称为齐次线性方程组,而当0≠β时,β=Ax 称为非齐次线性方程组,并称0=Ax 为β=Ax 的导出组.§2 齐次线性方程组的解任何一个齐次线性方程组一定有解,因为当021====n x x x 就是它的一个解,通常称为零解或平凡解.一、齐次线性方程组有非零解的充分(或必要)条件(1) 0=Ax 有非零解的充分必要条件是A 的列向量组相性相关 (2) 若方程个数小于未知向量个数,则0=Ax 必有非零解.(3) 当n m =,即A 为方阵时,则0=Ax 有非零解的充分必有条件是.0=A二、齐次线性方程组解的性质性质 1 如果 1ξ=x ,2ξ=x 是方程组0=Ax 的解,那么21ξξ+=x 也是方程组0=Ax 的解.性质 2 如果是1ξ=x 方程组0=Ax 的解,k 为实数,那么也1ξk x =是方程组0=Ax 的解.推论:如果m ξξξ,,,21 都是方程组0=Ax 的解,m k k k ,,,21 是常数,那么m ξξξ,,,21 的线性组合m m k k k ξξξ+++ 2211也是方程组0=Ax 的解.性质3 n 维向量ξ是n 齐次线性方程组0=Ax 的解,ξ一定与A 的每一个行向量均正交.由于0=ξ必是0=Ax 解向量,所以有性质1、2可知0=Ax 全体解向量的集合对于通常意义上的向量加法和数乘运算可构成向量空间,称为解空间.三、齐次线性方程组解的结构设s ξξξ,,,21 是0=Ax 的一组线性无关解向量,如果0=Ax 的任一解向量均可由s ξξξ,,,21 线性表示出,则称s ξξξ,,,21 为0=Ax 的解空间的一个基.亦即是0=Ax 的一个基础解系.对于0=Ax ,若n r A R <=)(,则下面将证明0=Ax 的基础解系,并给出了求基础解系的方法:不妨设A 的前r 个列向量线性无关,则A 经若干初等变换可得行最简形矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--000000001001,1,111r n r r r n b b b b B0=Bx 与0=Ax 同解,而0=Bx ,即 ⎪⎪⎩⎪⎪⎨⎧---=---=---=-+-+-+nr n r r r n n r n r n r n r x b x b x x b x b x x b x b x ,11,21212,11111其中n r r x x x ,,,21 ++称为自由未知数,显然任给自由未知数的一组值,由上即可唯一确定r x x x ,,,21 的值,于是就得0=Bx 的一个解,也就是0=Ax 的一个解,现在分别取.100,,010,00121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ n r r x x x (n r r x x x ,,,21 ++的r n -组取值形式线性无关的向量组)可得0=Ax 的r n -个线性无关的解向量.,0011111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--= r b b ξ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=0012122 r b b ξ,, ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-100212 r r n b b ξ下面证明0=Ax 的任一解向量()T n r r ,,1,21,,,,λλλλλξ +=均可由r n -ξξξ,,,21 线性表示.作向量r n n r r -+++++=ξλξλξλη 2211则由于r n -ξξξ,,,21 是0=Ax 的解,所以η也是0=Ax 的解,而η的后面r n -个分量与ξ的刚好对应相等,于是知η与ξ的前r 个分量也对应相等,所以ξη=,即r n n r r -+++++=ξλξλξλξ,2,211所以,r n -ξξξ,,,21 是0=Ax 的一个基础解系,亦即是解空间的一个基,从而知解空间的维数是r n -,此时,0=Ax 的解向量可表示为r n n k k k x -+++=ξξξ 2211,其中r n k k k -,,,21 为任意常数,此式称为=Ax 的通解,而解空间可表示为|{2211r n n k k k x -+++=ξξξ },,,21R k k k r n ∈- .例1 求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++,0,0,0543321521x x x x x x x x x 的基础解系.解:设系数矩阵为A⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=010001010010011~111000*********A25125545322521,0c x c x x x x x x x x x x x ==⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=∴令∴基础解系为:。
第三章 向量§1 向量的概念及运算一、n 维向量的概念定义1:n 个数n a a a ,,,21 组成的有序数组称为n 维向量,其中),2,1(n i a i =称为n 维向量的第i 个分量。
分量是实数的向量称为n 维实向量,分量是复数的向量称为n 维复向量。
n 维向量可写成一行,称为行向量;即),,,(21n T a a a =α.也可写成一列,称为列向量,即⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α.用小写的黑体希腊字母 ,,,γβα来代表向量。
每一个分量都是0的向量称为n 维零向量。
记为O ,即)0,,0,0( =O向量),,,(21n a a a --- 称为向量),,,(21n a a a ---= α的负向量,记为-α。
在n 维向量中,两个向量),,,(21n a a a =α,),,,(21n b b b =β相等,是指它们的各个分量对应相等,即),2,1(n i b a i i ==这时,记为βα=.如干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组.二、n 维向量的线性运算定义2:设向量组),,,(21n a a a =α,),,,(21n b b b =β,则βα+=),,,(2211n n b a b a b a +++ 称为向量βα,的和,记为βαγ+=.加法满足下列运算规律: 1)交换律:αββα+=+2)结合律:γβαγβα++=++)()(3)存在零向量O ,对一切向量α,使ααα=+=+O O 4)对第一向量α,存在-α,使O =-+)(αα 向量减法:)(βαβα-+=- 定义3:向量),,,(21n a a a =α与数k 的数量乘积为向量),,,(21n k k k ααα ,记为αk .数量乘法满足的运算规律。
1)结合律:αα)()(kl l k = 2)分配律:βαβαk k k +=+)( 3)分配律:αααl k l k +=+)( 4)对任何向量α,恒有αα=⋅1§2向量组的线性关系一、线性表示出定义1:若m ααα ,,21是m 个n 维向量,m k k k ,,,21 是一组数,则向量αααm k k k +++ 2211称为这m 个向量的线性组合.对于n 维向量m ααα ,,21及β,若存在一组数m k k k ,,,21 使得m m k k k αααβ+++= 2211那么β称为m ααα ,,21的线性组合,或称β可由m ααα ,,21线性表示.定理1:如果有两个向量组Ⅰ: m ααα ,,21、Ⅱ: n βββ ,,21,向量组Ⅰ中的每个向量均可由向量组Ⅱ线性表示,向量组Ⅱ中的每个向量也均可由向量组Ⅰ线性表示,则称两个向量组等价. 二、线性相关与线性无关定义2:设m ααα ,,21是m 个n 维向量,如果存在不全为零的数m k k k ,,,21 使得O k k k m m =+++ααα 2211那么m ααα ,,21称为线性相关,否则称为线性无关.所谓线性无关,即只有021====m k k k 时,才有O k k k m m =+++ααα 2211.三、向量组线性关系的判定1).仅含一个零向量的向量总是线性相关的,与此相反,任意一个非零向量总是线性无关的.任何含有零向量的向量组线性相关.2).向量组m ααα ,,21线性相关的充分必要条件是它构成的矩阵),,(21m A ααα =的秩小于向量个数m ;向量组线性无关的充分必要条件是m A R =)((n 个n 维向量线性无关的充分必要条件是以n 个向量作为行的n 阶行列式0||≠A ).例 研究下列向量组是线性相关还是线性无关(1) ⎪⎪⎭⎫ ⎝⎛-=3211α,⎪⎪⎭⎫ ⎝⎛-=5202α,⎪⎪⎭⎫⎝⎛-=2013α(2) (),1,1,1,21T--=β(),0,2,3,02T -=β()T 1,3,4,23--=β分析 给出一个n 维向量组m ααα ,,21,就有一个相应的矩阵),,(21m A ααα =,首先求出)(A R ,若m A R =)(,则m ααα ,,21线性无关,若m A R <)(,则m ααα ,,21线性相关.解(1) 因为⎪⎪⎭⎫ ⎝⎛-=3211α,⎪⎪⎭⎫ ⎝⎛-=5202α,⎪⎪⎭⎫⎝⎛-=2013α得到矩阵 ⎪⎪⎭⎫ ⎝⎛---==253022101),,(321αααA 因为⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=000220101~253022101A 所以32)(<=A R故向量组321,,ααα线性相关. (2) 因为(),1,1,1,21T--=β(),0,2,3,02T -=β()T 1,3,4,23--=β得到矩阵⎪⎪⎪⎭⎫⎝⎛-----==101321431202),,(321βββB 因为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----=000000110202~101321431202B 所以32)(<=B R故向量组321,,βββ线性相关. 推论1:n 个n 维向量),,,(112111n a a a =α;),,,(222212n a a a =α;……),,,(21nn n n n a a a =α线性相关⇔行列式n m ij a A ⨯=)det(||=0.证:必要性:设m ααα ,,21线性相关,当n=1时,结论显然成立。
第二章 矩阵矩阵及其运算是线性代数的核心,是后续各章的基础,本章主要讨论矩阵的概念、矩阵运算、初等矩阵、逆矩阵与伴随矩阵以及矩阵方程.§1 矩阵的概念定义1 由n m ⨯个数),,2,1;,2,1(n j m i a ij ==排成的m 行n 列的数表:⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211称为m 行n 列矩阵,其中ij a 称为矩阵A 的第i 行第j 列元素.矩阵可用大写字母 ,,B A 来表示,简记为n m A ⨯或n m ij a A ⨯=)(. 当n m =时, ()n a a a A 11211 =,则称A 称为m 阶方阵或m 阶矩阵;当1=m 时, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=12111m a a a A ,则称A 称为行矩阵当1=n 时,A 称为列矩阵。
定义2 设n m A ⨯中每个元素都是零的矩阵称为零矩阵,记为:n m O ⨯ 或O . 定义3 矩阵n m ij a ⨯-)(称为矩阵n m ij a A ⨯=)(的负矩阵,记作A -. 定义4 如果n m ij a A ⨯=)(与m xn ij b B )(=,有ij ij b a =),,2,1;,2,1(n j m i ==,那么称这两矩阵相等,记为B A =.几个特殊矩阵(1) 设方阵n n ij a A ⨯=)(中, ),,2,1,,(0n j i j i a ij =≠=,则称它为对角矩阵,记为:),,,(2211nn a a a diag ;特别地,当12211====nn a a a 时,即⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001 A 时,称A 为n 阶单位矩阵,记作n E 或E .(2)设方阵nn ij a A ⨯=)(中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a a a A 022211211时,当j i >时0=ij a ,称为上三角阵.(4)设方阵nn ij a A ⨯=)(中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a a a A 21222111时,当j i <时0=ij a ,称为下三角阵.§2 矩阵的运算一、矩阵的加法定义 5 设两个同型矩阵n m ij n m ij b B a A ⨯⨯==)(,)(,可以相加,其和是同型矩阵n m ij c C ⨯=)(,其元素是B A ,对应元素之和,称为矩阵B A ,之和,记为B AC +=.即 n m ij ij n m ij b a c ⨯⨯+=)()(由于矩阵的加法归结为两个数表对应元素相加,因而与数的加法有相同运算性质;;A O A =+ A B B A +=+ .)()(C B A C B A ++=++例1 已知.212111320112B A B A +⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=,求, 解 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+++++--+=+5322012312201111)1(2B A . 二、数与矩阵的乘法定义6:数k 与矩阵n m ij a A ⨯=)(相乘,即以数k 乘A 的每个元素,即n m j i ka kA ⨯=)(⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n ka ka ka ka ka ka ka ka ka 212222111211称为矩阵()nm ij a A ⨯=与数k 的数量乘积,记为kA .由此可知,若矩阵A 的所有元素有公因数,则公因数可提到矩阵A 外作为系数.矩阵=-⨯nm ij a )(⎪⎪⎪⎪⎪⎭⎫⎝⎛---------mn m m n n a a a a a a a a a 212222111211称为矩阵A 的负矩阵,记为A -显然有O A A =-+)( 数量乘积满足以下规律:A kl lA k )()(=;OA =0;AA =1;lAkA A l k +=+)(;kB kA B A k +=+)(三、矩阵的乘法定义7设矩阵s m ik a A ⨯=)(与矩阵n s kj b B ⨯=)(可以相乘,其积AB 是n m ⨯矩阵n m ij c C ⨯=)(,其元素ij c 是矩阵A 的第i 行元素与矩阵B 的第j 列元素对应乘积之和,即AB C =,其中∑==+++=SK kj ik sj is j i j i ij b a b a b a b a c 12211 ,),,2,1;,2,1(n j m i ==.单位矩阵E 与数k 相乘所得矩阵称为数量矩阵,简称数量阵.例2 设⎪⎪⎭⎫⎝⎛--=213012A , ⎪⎪⎪⎭⎫⎝⎛--=051231B ,则AB C =. 解:⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛--==81570051231213012AB C如果n m ij a A ⨯=)(是一线性方程组的系数矩阵,而⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X21 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b B 21,分别是未知量和常数项所成的1⨯n 和1⨯m 矩阵,那么线性方程组可以写成矩阵形式,B AX =.矩阵乘法满足运算规律 (1)矩阵的乘法满足结合律,即)()(BC A C AB =(2)矩阵乘法和加法适合分配律,即BC AC C B A +=+)(,CB CA B A C +=+)((3)矩阵的乘法不适合交换律,即:一般AB ≠BA例3 ⎪⎪⎭⎫ ⎝⎛--=1111A ,⎪⎪⎭⎫⎝⎛--=1111B ,求.AB⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=000011111111AB .而 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛--=222211111111BA (4)数乘矩阵与所有的n n ⨯矩阵相乘是可交换的.)()(kE A A kE kA ==对于矩阵的乘法,请特别注意:(1) 乘积AB 只有当左矩阵A 的列数等于右矩阵的行数时才有意义.同理,仅当A 为方阵时,2A 才有意义.(2) 矩阵乘法一般不满足交换律.实际上,AB 有意义时,BA 未必有意义,即使AB 与BA 都有意义,二者也未必相等.当BA AB =时,称B A ,相乘是可交换的.特别地,当E AB =时,E BA =也成立.(3)矩阵乘法与数的乘法不同,有O AB =不能得出B A ,至少有一个为O 的结论,由此又得AY AX =及O A ≠不能得出Y X =的结论,这又使得在解矩阵方程时不能像解通常代数方程那样约去非零的因子.四、方阵的幂(1)设A 为n 阶方阵,定义A 的幂为,1A A =,,2 AA A = .1A A A k k -=对于正整数l k ,成立kl l K l k l k A A A A A ==+)(;对于0≠A 时,定义,0E A =,)(1k kA A --=则这两个运算公式可推广于任何整数l k ,.(2) 对任何正整数k ,求方阵的幂kA ,往往需要一定的技巧,常用的几种方法:① 用乘法算出,,32A A 以此观察或通过递推得出kA 的结构,写出一般表达式.必要时用数学归纳法证明.例4 设⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,(1)求);2(E A A -(2)求).2(21≥--n A A n n解 (1) =-)2(E A A ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛101000101101020101⎪⎪⎪⎭⎫ ⎝⎛=000000000(2) =--12n nAA =--)2(1E A A n O E A A An =--)2(2例5 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=010101001A ,证明E A A A n n -+=-22)3(≥n ,并由此计算100A.证明 利用数学归纳法,当3=n 时,由于,1010110010101010010101010012⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=A,0111020010101010011011110013⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=A可直接验证E A A A -+=23成立. 设k n =时,E A AA k k-+=-22成立,则对于1+=k n 时:A E A A A A A k k k )(221-+==-+AA A k -+=-31A E A A A k --++=-)(21E A A k -+=-21即对于1+=k n 等式也成立,故对于一切3≥n 成立.利用已经证明的等式计算100A,可得:E A A A -+=298100E A E A A -+-+=2296)()(2296E A A -+= )(3294E A A -+= =)(4922E A A -+=E A 49502-=故.105001500011000100014910101100150100⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=A② 利用结合律,若方阵的各行对应成比例,则矩阵可写成T αβ的形式,由于αβT是一个数,所以将矩阵的幂归结为数的幂与矩阵之积.例6 设⎪⎪⎪⎭⎫ ⎝⎛=963321642A ,求nA .解 因为矩阵A 的各行对应成比例,设矩阵TA αβ=,⎪⎪⎪⎭⎫⎝⎛=312α(1,2,3)=Tβ(1,2,3)312(1,2,3)312(1,2,3)312(1,2,3)312963321642⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛= nn A)(1,2,3)312(1,2,3)312(1,2,3)312((1,2,3)312⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛= (1,2,3)313121-⎪⎪⎪⎭⎫ ⎝⎛=n (1,2,3)312311⎪⎪⎪⎭⎫ ⎝⎛=-n.311A n -=③ 若矩阵A 是数量矩阵与幂零矩阵之和,即B E A +=λ,且存在l,使0=l B ,则利用公式kn n k n n k n k n k B C B E C B E C E C B E ++++=+---11110)()()()(λλλλ例7设,000000⎪⎪⎪⎭⎫ ⎝⎛=b c a A 求).,3,2( =n A n解,000000000000000000002⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=ab b c a b c a A,0000000000000000000000023⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==b c a ab A A A于是,000000002⎪⎪⎪⎭⎫ ⎝⎛=ab A O A n =).3(≥n注 若存在正整数k 使O A k=,则称A 为幂零矩阵,本题中的A 是3阶幂零矩阵,一般主对角线及其下方元素全为0的n 阶矩阵是n 阶幂零矩阵,对一切n k ≥,O A k=.例8 设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A , 求).,3,2( =n A n 解 令,000100010⎪⎪⎪⎭⎫⎝⎛=B 则B E A +=λ,而B 是幂零矩阵.,0000001000001000100001000102⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=B O B k =).3(≥k于是n n B E A )(+=λkn n k n n k n k n B C B E C B E C E C ++++=---11110)()()(λλλB n n B n E n n n 212)1(---++=λλλ ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---nn nn n n n n n n λλλλλλ0002)1(121.④ 当矩阵Q P A Λ=,且E PQ =时,求矩阵A 的幂问题.例9设,110111121⎪⎪⎪⎭⎫⎝⎛-=P ,11121133031⎪⎪⎪⎭⎫ ⎝⎛---=Q ⎪⎪⎪⎭⎫⎝⎛=Λ066,Q P A Λ=求n A .解:E QP =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=10001000111011112111121133031QP Q QP P A n ΛΛΛ=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=-111211330310661*********n ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=--1112113303106611011112111n n .211121112622⎪⎪⎪⎭⎫ ⎝⎛--⋅=-n五、矩阵的转置定义8设矩阵n m A ⨯的第),2,1(m i i =行写成第i 列,也将第),,2,1(n j j =列写成第j 行当⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211时⎪⎪⎪⎪⎪⎭⎫⎝⎛=nm n nm m T a a a a a a a a a A 212221212111. 注 n m ⨯矩阵转置所得到的矩阵是m n ⨯矩阵 满足条件A A T=的矩阵A 称为对称矩阵. 满足条件A A T -=的矩阵A 称为反对称矩阵. 矩阵的转置规律 (1) A A TT =)((2) TTTB A B A +=+)( (3)TTTA B AB =)((4) T T kA kA =)((k 为实数)证明(3):设s m ij a A ⨯=)( n s ij b B ⨯=)( 则AB 中),(j i 的元素为∑=sk kj ik b a 1所以TAB )(中),(j i 的元素为∑=Sk kijk b a1 (1)其次,TB 中),(k i 的元素为ki b TA 中),(j k 的元素为jk a 故TTA B 中),(j i 的元素即为:∑∑===sk ki jk sk jk kib a a b11(2)比较(1),(2)即得(3)例10设⎪⎪⎭⎫ ⎝⎛-=231102A ,⎪⎪⎪⎭⎫⎝⎛-=102324171B ,求T AB )(. ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1013173140102324171231102AB⎪⎪⎪⎭⎫ ⎝⎛-=213012TA ⎪⎪⎪⎭⎫ ⎝⎛-=131027241T BT T T AB A B )(1031314170213012131027241=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=六、方阵的行列式n 阶方阵A 的2n 个元素按原来的相对位置所成的n 阶行列式称为A 的行列式,记为A 或)det(A .特别需要注意,矩阵与行列式的区别(1) 矩阵A 是2n 个元素按某个规律排成的数表,而行列式A 则是这2n 个元素按某种规则运算所得的数.(2) 两个矩阵当且仅当它们同型且对应元素相等时才相等,而两个行列式相等是指它们经计算所得的值相等,并不要求对应元素相等,甚至阶数都可以不同.(3) 两个同型矩阵相加是对应元素相加,而两个行列式相加必须求得它们的值而后相加,一般不能归结为对应元素之间的运算.(4) 对于矩阵一般不满足A A T=,而行列式A AT=却成立.(5) 当n 阶矩阵A 的每个元素都乘以同一个数l 时,得到的是lA ,而组成行列式A 的每个元素都乘以同一个数l 时,得到的却是A l n .(6) 一般而言BA AB ≠,但却有A B B A AB ==. 例11 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足E B BA 2+=,则求B .分析 化简方程乘积形式,两边再取行列式.解:由E B BA 2+=,得E E A B 2)(=-,两边取行列式,得42==-E E A B又,21111=-=-E A 因此2=B . §3 逆矩阵一、逆矩阵定义定义9 对于n 阶矩阵A ,若存在矩阵B ,使,E BA AB ==则称矩阵A 是可逆矩阵或者称A 为非奇异矩阵,矩阵B 为A 的逆矩阵,记为1-=A B .于是E AA A A ==--11.在矩阵运算中,可根据不同情况将单位矩阵E 写成A A 1-或1-AA 是常用的有效技巧.二、逆矩阵的性质① 对于可逆矩阵A ,逆矩阵1-A 是唯一的.证明:假设矩阵C B ,都是矩阵A 的逆矩阵,则有.,E AC E BA ==C EC BAC AC B BE B =====∴)(所以可逆矩阵A 的逆矩阵是唯一的.② 可逆矩阵乘以非零常数为可逆矩阵,可逆矩阵的乘积是可逆矩阵,但可逆矩阵之和未必是可逆矩阵.③ 逆矩阵的运算性质设矩阵B A ,都是可逆矩阵,k 为不为零的常数,则;)(11A A =--111)(---=A B AB ;111)(--=A kkA ;;)()(11T T A A --=.11AA =- 三、伴随矩阵定义10 设ij A 是矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211中元素ij a 的代数余子式,则矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn nnn n A A A A A A A A A A212221212111*称为A 的伴随矩阵。