激光雷达的应用
- 格式:doc
- 大小:43.56 KB
- 文档页数:7
激光雷达具备独特的优点,如极高的距离分辨率和角分辨率、速度分辨率高、测速范围广、能获得目标的多种图像、抗干扰能力强、比微波雷达的体积和重量小等。
这使得激光雷达能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。
自1961年科学家提出激光雷达的设想,历经 40余年,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,进而研发出不同用途的激光雷达,如精密跟踪激光雷达、侦测激光雷达、侦毒激光雷达、靶场测量激光雷达、火控激光雷达、导弹制导激光雷达、气象激光雷达、水下激光雷达、导航激光雷达等。
激光雷达已成为一类具有多种功能的系统。
目前,激光雷达在低空飞行直升机障碍物规避、化学和生物战剂探测和水下目标探测等军事领域方面已进入实用阶段,其它军事应用研究亦日趋成熟。
它在工业和自然科学领域的作用也日益显现出来。
一、军事领域应用侦察用成像激光雷达激光雷达分辨率高,可以采集三维数据,如方位角-俯仰角-距离、距离-速度-强度,并将数据以图像的形式显示,获得辐射几何分布图像、距离选通图像、速度图像等,有潜力成为重要的侦察手段。
美国雷锡昂公司研制的ILR100激光雷达,安装在高性能飞机和无人机上,在待侦察地区的上空以120~460m的高度飞行,用GaAs激光进行行扫描。
获得的影像可实时显示在飞机上的阴极射线管显示器上,或通过数据链路发送至地面站。
1992年,美国海军执行了“辐射亡命徒”先期技术演示计划,演示用激光雷达远距离非合作识别空中和地面目标。
该演示计划使用的CO2激光雷达在P-3C 试验机上进行了飞行试验,可以利用目标表面的变化、距离剖面、高分辨率红外成像和三维激光雷达成像,识别目标。
同时,针对美国海军陆战队的战备需求,桑迪亚国家实验室和Burns公司分别提出了手持激光雷达的设计方案。
这种设备能由一名海军陆战队队员携带,重量在2.3~3.2kg之间,可以安装在三脚架上;系统能自聚焦,能在低光照条件下工作;采集的影像足够清晰,能分辨远距离的车辆和近距离的人员。
激光雷达在测绘中的应用简介激光雷达作为一种高精度测量设备,已经在测绘领域得到广泛应用。
它通过发射激光束并测量其返回时间来获取目标物体的距离和形状信息,可以快速、准确地获取地面、建筑物、植被等目标的三维数据,被广泛应用于制图、数字地型模型(DTM)生成、地理信息系统(GIS)的建设以及城市规划等领域。
一、地面测绘激光雷达在地面测绘中的应用被广泛运用于地形测绘和地貌分析。
通过激光雷达获取的地面数据可以精确地呈现地表地貌的特征,包括高度、坡度、坡向等信息。
这对于城市规划、农业规划以及自然灾害防治具有重要意义。
激光雷达能够快速生成地形数据模型,提供了高精度的数据支持,为城市的规划与建设提供重要参考。
二、建筑物测绘激光雷达在建筑物测绘领域的应用主要体现在建筑物的三维建模和立面分析方面。
使用激光雷达可以迅速获取建筑物的三维结构信息,包括立面、屋顶、窗户等。
这使得建筑物的测绘工作更加高效和准确,大大节省了时间和人力成本。
此外,通过对建筑物的三维建模和立面分析,可以使建筑物在规划和设计中更加合理,在建筑的施工和维护过程中也能提供有力的支持。
三、植被测绘激光雷达在植被测绘中的应用主要体现在植被研究、森林资源调查和农业生产管理等方面。
传统的植被调查方式需要大量的人力和时间成本,而激光雷达可以通过高频率的激光束快速扫描和采集植被数据,包括树高、树冠密度、叶面积指数等信息。
这些数据对于植被生长状况、生态系统和资源管理具有重要意义。
通过激光雷达获取的植被数据,可以帮助相关部门制定科学的植被保护与管理措施,提高生态环境质量。
总结起来,激光雷达在测绘领域的应用给传统测绘工作带来了重大的突破和改变。
它不仅提高了测绘数据的精度和准确性,还提高了测绘工作的效率和效果。
激光雷达的快速、准确和高精度的测量特性,使其在测绘领域的应用前景广阔。
未来,随着激光雷达技术的进一步发展和不断升级,相信它在测绘领域的应用会愈发广泛,为我们的日常生活和发展带来更多的便利和创新。
激光雷达的工作原理与应用激光雷达(Lidar)是一种利用激光发射器和接收器来测量距离、速度和方向等信息的远距离感知技术。
激光雷达在自动驾驶、机器人导航、环境监测和三维建模等领域都有广泛的应用。
本文将介绍激光雷达的工作原理、组成结构和应用。
一、激光雷达的工作原理激光雷达利用激光器发射一束高强度激光束,通过接收反射回来的激光信号来进行测量。
其工作原理可以简单地分为三个步骤:发射、接收和信号处理。
1. 发射:激光雷达通过激光器发射一束脉冲激光光束。
这个激光光束通常是红外线激光,因为红外线光在大气中传播损耗小。
2. 接收:激光光束照射到目标物体上,并被目标物体表面反射。
激光雷达的接收器接收反射回来的激光信号。
3. 信号处理:接收到的激光信号通过光电二极管(Photodiode)或光纤传感器转换成电信号。
然后,这些电信号经过放大、滤波和数字化等处理,得到目标物体的距离、速度和方向等信息。
二、激光雷达的组成结构激光雷达通常由发射器、接收器和信号处理器等组成。
1. 发射器:激光雷达的发射器是用来发射激光脉冲的关键部件。
发射器通常由激光二极管或固体激光器等构成。
激光发射的功率和频率会影响到测量距离和精度。
2. 接收器:激光雷达的接收器是用来接收反射回来的激光信号的部件。
接收器通常包括光电二极管或光纤传感器等。
接收器的灵敏度和抗干扰性会影响到激光雷达的性能。
3. 信号处理器:激光雷达的信号处理器负责接收、放大和数字化等处理激光信号。
信号处理器通常包括模拟信号处理电路和数字信号处理电路。
通过信号处理,可以提取目标物体的距离、速度和方向等信息。
三、激光雷达的应用激光雷达具有高精度、远距离、快速测量和全天候工作等特点,因此在各个领域都有广泛的应用。
1. 自动驾驶:激光雷达是自动驾驶系统中的重要传感器之一。
它可以实时获取道路和障碍物的信息,帮助车辆进行精确的定位和避障。
2. 机器人导航:激光雷达在机器人导航中扮演着关键的角色。
工程测绘中激光雷达测绘技术的应用工程测绘中,激光雷达可以应用于以下几个方面:一、水利工程的测量在水利工程中,主要应用激光雷达测绘技术进行水库库容测量,湖泊水深测量,汛期洪水位及流速的测量等。
通过激光雷达测量,在水利工程中,可以得到精确的水库库容数据,以便于制定水利规划,优化水资源利用和调度。
湖泊水深测量可以更全面深入地了解湖泊的形态,并更加准确地判断湖泊水质。
汛期洪水位及流速的测量可以帮助水利工程进行准确测量计算,进一步提高水文研究的科学性和可靠性。
二、城市规划的实施在城市规划中,激光雷达可用于三维建模及精确地形测量。
精确地形测量,可以利用激光雷达探测地面的高度差异,建立高分辨率的数字高程模型,为城市规划提供准确的基础数据。
同时,常规的地面测量会受到建筑物、垃圾堆、树木等因素的影响,使用激光雷达可以避开这些障碍,从而更准确地测量地形数据。
基于这些地形数据,城市规划专家可以操作激光雷达得到建筑物的数字化模型,实现真实模拟,提高城市规划的可视化质量。
激光雷达技术也可以用于中心城区的空间测量,检查建筑物、道路等存在的问题,以便于进行合理安排和利用。
三、建筑工程的检测在建筑工程施工、验收过程中,激光雷达技术的应用也在不断增加。
激光雷达技术可以对建筑物外立面进行三维测量,实现对建筑物的轮廓、长宽高等各种参数的测量。
这样,就可以获得更精确、更详细的信息,检测建筑的质量,并实现内部管道、设备的精确定位,以便于进行合理布局和安装。
四、公路铁路工程的测量在公路铁路工程中,利用激光雷达技术可以进行铁路和公路地形的探查,检测路面的平整度和破损情况,并进行路线选址分析。
隧道和桥梁是路面工程中难点工程,这些类型的建筑物需要特殊的测绘技术进行制图与计算。
利用激光雷达技术可以快速自动地获取房屋、桥梁等建筑物的三维几何信息。
激光雷达在智能交通管理中的应用方案智能交通管理是一种应用科技手段以提高交通效能和交通安全的方式。
其中,激光雷达作为一种先进的传感器技术,正在被广泛应用于智能交通管理中。
本文将探讨激光雷达在智能交通管理中的应用方案。
一、激光雷达在交通监控中的应用激光雷达在交通监控中起到了举足轻重的作用。
通过将激光雷达安装在交通监控装置上,可以实现对车辆行驶轨迹的精确监测。
激光雷达可以实时扫描道路上的车辆,通过识别车辆的大小、速度和位置等信息,能够准确判断车辆的行驶状态和变道操作,从而更好地指导交通信号灯的变换,提高道路通行效率。
二、激光雷达在智能交通导航中的应用激光雷达还可以应用于智能交通导航系统中。
在现代城市交通拥堵日益严重的背景下,智能交通导航系统的作用不可忽视。
激光雷达可以实时地获取道路上车辆的密度和速度等数据,并通过智能交通导航系统将这些数据反馈给驾驶员。
驾驶员可以根据这些信息选择最优的出行路径,避免拥堵路段,提高出行效率。
三、激光雷达在自动驾驶汽车中的应用自动驾驶汽车是智能交通管理中的一大创新。
而激光雷达则是实现自动驾驶汽车的核心技术之一。
激光雷达可以通过扫描周围环境的方式获取精细的地图和障碍物信息,实现对车辆周围环境的高精度感知和识别。
激光雷达可以在车辆行驶过程中实时更新地图和障碍物信息,从而为自动驾驶汽车提供实时的导航和避障支持,确保车辆行驶的安全性和稳定性。
四、激光雷达在智能交通违法检测中的应用激光雷达还可以应用于智能交通违法检测系统中。
通过将激光雷达安装在交通违法检测装置上,可以实现对违法行为的准确识别和记录。
例如,激光雷达可以通过测速技术判断车辆是否超速,通过车距监测技术判断车辆是否保持安全的车距,从而及时发出警报并记录违法行为。
这样的应用不仅可以提高交通执法的效率,也能够有效地降低道路交通事故的发生率。
总结起来,激光雷达在智能交通管理中的应用方案着实广泛而深远。
无论是在交通监控、智能交通导航、自动驾驶汽车还是智能交通违法检测中,激光雷达都发挥了重要作用。
激光雷达技术在智慧城市中的应用随着城市化的不断推进,智慧城市的建设也越来越受到关注。
智慧城市是一种利用先进技术和信息化手段,优化城市规划、建设、管理和服务,提升城市品质和居民生活的现代化城市。
在智慧城市建设中,激光雷达技术被广泛应用,为城市规划、交通管理、公共安全等方面提供了有力的支持。
一、激光雷达技术概述激光雷达(LIDAR,Light Detection and Ranging)是一种利用激光光束进行距离测量的技术。
激光雷达系统可以发射一束激光光束,当激光束遇到物体时,产生反射,反射回来的光信号通过接收器接收并分析,可以计算出与物体的距离。
激光雷达技术具有高精度、高效率、无接触等优点,广泛应用于地形测量、3D建模、自动驾驶等领域。
二、1.城市规划与管理激光雷达技术可以快速获取城市地形及建筑物等数据,为城市规划和管理提供准确的数据支持。
通过激光雷达技术采集的数据,可以生成城市数字模型,实现对城市总体规划的模拟和优化。
同时,激光雷达也可以用于城市环境監測,对城市污染源和环境质量进行实时监测和评估。
2.交通管理激光雷达技术可以用于道路交通监控和管理。
通过安装在交通信号灯处的激光雷达设备,可以实时获取路口交通情况,包括车流量、车辆速度、道路拥堵情况等信息,可以实现智能交通信号控制,使道路交通更加高效和顺畅。
3.城市公共安全激光雷达技术可以用于城市公共安全的监控和警报。
通过在城市各个区域安装激光雷达设备,可以快速发现异常情况,如火灾、爆炸、坍塌等,及时向相关部门报警和处理,防止事故发生或加速事故处理。
4.智能交通激光雷达技术可以与智能交通系统结合,实现自动驾驶和多车协同行驶。
通过在汽车上安装激光雷达,可以实时获取车辆周围的情况,包括道路和障碍物等信息,可以进行自动化驾驶和避障控制,提高驾驶安全性和舒适性。
三、激光雷达技术应用挑战尽管激光雷达技术在智慧城市中的应用十分广泛,但也存在一些挑战。
1.成本问题激光雷达技术设备价格较为昂贵,需要大量投入成本。
激光雷达在车联网中的应用随着科技的不断进步,车联网已经成为了智能化时代不可或缺的一部分。
借助于激光雷达技术,车联网可以更好地实现自动驾驶、智能交通等应用。
本文将围绕激光雷达在车联网中的应用进行探讨。
一、激光雷达技术简介激光雷达(Lidar)是一种由发射装置和接收装置组成的测距装置。
它借助于激光束对空间目标进行扫描,可获得目标的三维空间坐标信息。
由于其精度高、可靠性强、响应速度快等优点,激光雷达技术已经广泛应用于各种领域。
二、激光雷达在车联网中的应用1.自动驾驶自动驾驶技术需要对车辆周边环境进行高精度的感知和判断,而激光雷达正是实现此目的的重要工具之一。
激光雷达可以实时扫描周围环境,获取道路、障碍物、行人等的精确距离、方位、速度等信息,并将其传输给自动驾驶系统进行处理,从而实现高精度的定位和自主决策。
2.智能交通激光雷达还可应用于智能交通领域。
例如,通过将激光雷达安装在路灯杆上,可实现实时监测路面交通状况,实现自动交通信号控制。
此外,激光雷达还可用于智能停车场的车位管理和车辆进出检测。
3.智能化安防在智能化安防方面,激光雷达也有着广泛的应用前景。
激光雷达可以通过对周围环境的3D扫描,实现对异常行为的快速识别和报警。
例如,可以通过激光雷达对建筑物、围栏等进行实时监测,及时发现不明入侵行为,保障社会安全。
三、总结随着激光雷达技术的发展,它在车联网应用中的重要性不断提升。
然而,目前激光雷达技术仍有着高昂的成本和技术难点,如何克服这些问题将成为激光雷达技术在车联网应用中推广的重要课题。
相信在不久的将来,激光雷达技术将成为推动车联网行业发展的重要力量。
激光雷达的应用场景激光雷达是一种利用激光技术来测量距离和探测物体的设备。
它可以在各种应用场景中发挥重要作用。
1. 自动驾驶汽车激光雷达是自动驾驶汽车中不可或缺的一部分。
它可以通过扫描周围环境来获取精确的三维地图,帮助汽车实现精准定位、避障和规划行驶路线。
目前市面上很多自动驾驶汽车都采用了激光雷达技术,如特斯拉、Waymo等。
2. 机器人导航机器人也可以通过激光雷达来进行导航。
在工业生产线上,机器人需要准确地识别和定位物体,以便执行任务。
而激光雷达可以提供高精度的距离信息和环境地图,让机器人能够更加智能地移动。
3. 无人机无人机需要具备精准的定位和遥感能力,以便执行各种任务。
而激光雷达可以提供高精度的距离信息和地形数据,在无人机飞行时起到了至关重要的作用。
例如,在农业领域中,无人机可以通过激光雷达来测量农田的形状、高度和植被覆盖情况,以便精准地执行农业作业。
4. 建筑测量激光雷达可以用来进行建筑测量。
它可以快速地获取建筑物的三维结构信息,包括楼层高度、房间面积等。
这对于建筑设计、施工和维护都非常重要。
5. 智能家居在智能家居领域中,激光雷达可以用来实现室内定位和环境感知。
例如,在智能音响中,激光雷达可以扫描房间内的物体和人员位置,并根据这些信息调整音响的输出方向和音量。
6. 安防监控激光雷达也可以用来进行安防监控。
例如,在银行、商场等公共场所中,激光雷达可以扫描周围环境并检测异常行为,如盗窃或暴力事件。
总之,激光雷达在各种应用场景中都发挥着重要作用。
随着技术的不断进步和应用范围的不断扩大,激光雷达的应用前景将会更加广阔。
激光雷达在机器人领域中的应用激光雷达(Lidar)是一种测量目标距离和获取目标空间位置信息的重要传感器。
它通过发射激光束并接收其反射回来的信号来实现测距,可以提供高精度、快速的距离和形状信息。
在机器人领域,激光雷达被广泛应用于地图构建、环境感知、导航和避障等方面,为机器人的自主行动提供了重要的支持。
本文将探讨激光雷达在机器人领域中的应用。
一、地图构建激光雷达通过扫描环境中的物体并获取其距离和形状信息,可以将这些信息用于建立环境的三维模型,从而实现地图构建。
机器人可以通过激光雷达获取环境中的障碍物和其他物体的位置,进而建立起准确的地图。
这对于机器人的导航和路径规划非常关键,可以帮助机器人识别和避开障碍物,实现自主导航。
二、环境感知激光雷达可以提供机器人周围环境的高分辨率感知,帮助机器人感知周围的物体和环境信息。
通过激光雷达,机器人可以获取障碍物的位置、形状、大小等信息,以及地面、墙壁等背景环境的信息。
这些环境感知数据对于机器人的决策和行为起着至关重要的作用,使得机器人可以在复杂的环境中进行精确的定位和导航。
三、导航和避障激光雷达是机器人导航和避障中最常用的传感器之一。
机器人可以通过激光雷达获取周围环境的距离信息,并根据这些数据进行路径规划和决策。
激光雷达可以快速准确地检测到周围的障碍物,帮助机器人避开这些障碍物,从而实现安全、高效的导航。
四、三维感知激光雷达可以提供机器人对目标物体的三维感知能力。
通过激光雷达,机器人可以获得目标物体的精确位置和形状信息,从而实现对目标物体的抓取、操作和操控。
三维感知能力使得机器人能够在复杂和不规则的环境中进行精确的操作,提高工作效率和准确性。
五、自动驾驶激光雷达在自动驾驶领域中有着广泛的应用。
激光雷达可以用于检测和辨识道路上的车辆、行人、障碍物等,并提供实时的环境感知数据。
这些数据可以帮助自动驾驶系统进行场景理解、路径规划和决策,从而实现自主导航和避障。
激光雷达在自动驾驶中的应用,不仅提高了行驶的安全性和稳定性,也为实现无人驾驶技术奠定了基础。
激光雷达在测绘中的应用案例激光雷达是一种常用于测量和绘图的先进技术,其应用范围非常广泛。
从建筑物测量到地形测量,激光雷达可以提供高精度的数据,并为我们提供了许多有价值的应用案例。
本文将介绍几个激光雷达在测绘中的应用案例,展示其在现代测绘工作中的重要作用。
第一个案例是激光雷达在建筑物测量中的应用。
传统上,建筑物的测量通常需要使用传统的测量仪器,如经纬仪和水平仪。
然而,这些方法需要大量的时间和人力,并且存在一定的误差。
而通过使用激光雷达,我们可以快速而准确地测量建筑物的尺寸和结构。
激光雷达可以发射脉冲激光束,然后通过测量激光束从建筑物表面反射回来所需的时间来计算出建筑物各个部分的距离。
通过这种方法,我们可以获取高精度的建筑物数据,包括墙壁、楼层和屋顶的几何形状和尺寸。
这些数据对于建筑设计、维护和改造工作非常重要。
第二个案例是激光雷达在地形测量中的应用。
地形测量是一项重要的任务,可以用于制作地图、规划城市和管理自然资源。
传统的地形测量方法通常需要大量的人力和时间,而且存在一定的误差。
然而,通过使用激光雷达,我们可以快速而准确地获取地形数据。
激光雷达可以扫描地面,并通过测量激光束从地面反射回来所需的时间来计算地面的高度。
通过这种方法,我们可以获取大范围的地形数据,包括山脉、河流、湖泊和森林等自然景观的高度和形状。
这些数据对于地理信息系统(GIS)的建立和管理非常重要,可以用于制作精确的地图和进行精细的地形分析。
除了建筑物和地形测量,激光雷达还可以应用于其他许多测绘领域。
例如,激光雷达可以用于测量道路和铁路的几何形状和轨迹,以确保其满足设计要求。
它还可以用于测量桥梁和隧道的结构,以及检测它们是否存在结构缺陷。
此外,激光雷达还可以用于测量河流和海洋的水位和流速,以及检测海洋环境污染。
这些应用案例表明,激光雷达在现代测绘工作中发挥着重要的作用,为我们提供了高精度和高效率的测量数据。
尽管激光雷达在测绘中的应用已经取得了巨大的成功,但在实际应用中仍面临一些挑战。
(1)基于激光雷达的移动机器人位姿估计方法综述位姿估计方法是移动机器人研究的一个核心问题,精确地位姿估计对于机器人的定位、自动地图生成、路径规划等具有重要意义。
传统的位姿估计方法在不同程度上都有位移误差较大、成本较高的缺点。
而激光雷达刚好解决了这个问题。
目前常用的激光雷达为2维脉冲式激光雷达,这种方法有两个重要的步骤:距离数据的表示和距离数据的对应。
数据的表示。
利用一对脉冲近红外发射器和接收器,通过测量发射到接受的时间差,即可计算出目标的距离,从而得到关于环境的水平剖面图。
对于静态环境的表示方法目前比较好的方法是Gonzalez提出的混合式表达方法,这种方法综合了基于特征的表示方法和占据网格的表示方法而提出的一种同时具有两者各自优点的方法。
距离数据的对应。
目前已有的对应方法有特征—特征、点—特征和点—点等。
以下主要介绍三类。
特征—特征对应方法首先从参考扫描和当前扫描中分别抽取出一组特征,然后是用特征的属性和特征间相对关系对两组特征进行匹配,得到一组特征对,最后使用迭代的方法求解机器人的位姿,使特征对之间的误差最小。
点—特征与特征—特征方法的不同主要在于它直接使用当前的原始数据与参考扫描的特征进行匹配,匹配的依据是点到线段的距离。
由于这种方法在匹配中直接使用了原始的距离数据,避免了中间的特征抽取过程,因此这种方法的精度略高于特征—特征方法。
点对点的方法是利用一个合适的规则直接匹配2个扫描中的数据,从而得到相对位姿的关系,目前这个常用的规则是最近点规则。
(2)激光雷达技术在城市三维建筑模型中的应用“数字城市”是数字地球技术系统的重要组成部分,而表达城市主要物体的三维模型包括三维地形,三维建筑模型、三维管线模型。
这些三维建筑模型是数字城市重要的基础信息之一。
而激光雷达技术可以快速完成三维空间数据采集,它的优点使它有很广阔的应用前景。
机载雷达系统的组成包括:激光扫描器、高精度惯性导航仪、应用查分技术的全球定位系统、高分辨率数码相机。
通过这四种技术的集成可以快速的完成地面三维空间地理信息的采集,经过处理便可得到具有坐标信息的影像数据。
利用激光进行三维建筑建模的技术。
首先,进行数据预处理。
就是结合IMUU记录的姿势参数、机载GPS数据、地面基站GPS观察数据、GPS偏心分量、扫描仪和数码相机各自的偏心分量,进行GPS/IMU联合解算,得到扫描仪及相机曝光坐标下的轨迹文件,进而得到外方为元素。
其次,使用LIDAR数据商业处理软件将地面数据与非地面数据分离,生成DEM,在利用纯地表数据对影像外方位元素通过寻找同名像点的方式进行校正快速生成DOM。
DEM 和DOM叠加在一起就形成了三维地形模型。
最后,为了表达真实的城市面貌对三维建筑模型进行纹理贴图。
纹理粘贴的方法常见的有手动粘贴和纹理映射两种。
常用的纹理获取方法也有两种,第一种方法是对建筑顶部纹理采用航空影像,侧面纹理信息为手持相机实地拍摄。
第二种方法为倾斜航空摄影。
得到纹理后利用专业软件进行纹理面的选择、匀光处理等将反应建筑现状的影像信息映射在对应的模型上就达到了反映城市现状的目的。
(3)激光雷达技术的发展及其在大气环境监测中的应用激光雷达由于探测波长短、波束定向性强,能量密度高,因此具有高空间分辨率、高的探测灵敏度、能分辨被探测物种和不存在探测盲区等优点,已经成为目前对大气进行高精度遥感探测的有效手段。
利用激光雷达可以探测气溶胶、云粒子的分布、大气成分和风场的垂直廓线,对主要污染源可以进行有效监控。
对大气污染物分布的观测。
当激光雷达发出的激光与这些漂浮粒子发生作用时会发生散射,而且入射光波长与漂浮粒子的尺度为同一数量级,散射系数与波长的一次方成反比,米氏散射激光雷达依据这一性质可完成气溶胶浓度、空间分布及能见度的测定。
差分激光雷达主要用于大气成分的测定。
差分激光雷达的测试原理是使用激光雷达发出两种不等的光,其中一个波长调到待测物体的吸收线,而另一波长调到线上吸收系数较小的边翼,然后以高重复频率将这两种波长的光交替发射到大气中,此时激光雷达所测到的这两种波长光信号衰减差是待测对象的吸收所致,通过分析便可得到待测对象的浓度分布。
在大气中间层金属蒸气层的观测主要采用荧光共振散射激光雷达。
其原理是利用Na、K、Li、Ca等金属原子做为示踪物开展大气动力学研究。
由于中间层顶大气分子密度较低,瑞利散射信号十分微弱,而该区域内的钠金属原子层由于其共振荧光截面比瑞利散射截面高几个数量级,因此,利用钠荧光雷达研究钠层分布,进而研究重力波等有关性质更展示其独有的特性。
(4)激光雷达在空间交会对接中的应用交会对接范围为100km—1m,在实际的空间对接中,当距离大于100km时,航天员可以通过机载微博交会雷达和潜望镜获得两个航天器之间的相对位置。
随着两航天器的逼近,当相对距离小于1 0 0 m时,由于硬件的限制,微波雷达不能为最后逼近提供足够精度的测量信息。
由于激光本身的波束窄、相干性好、工作频率高等优点,激光雷达能在交会阶段直到对接的整个过程中提供高精度的相对距离、速度、角度和角速度的精确测量,因此它既能用于目前的自动寻的、接近和最后的手动逼近操作过程,又能为未来无人交会对接任务提供自主导航的扩展功能。
激光雷达一般由下列部分组成:激光源、发射与接收光路、信号处理、扫描跟踪机构、目标反射器和检测器等。
扫描跟踪机构可完成大角度的光束偏转。
这种机构大都由两自由度框架组成,框架上固定了反射镜,使光束偏转。
由于偏转对象是光束,所以机构可作得十分精巧、细致。
目标反射器安装在目标飞行器上,一般用角反射器 ( 三个相互垂直的反射镜组成 ),从而使目标反射器将雷达天线射出的光束按原方向反射回去。
此时目标的位置和姿态信息由激光雷达光学接收天线接收,然后进行检测和数据处理。
激光雷达的测距、测度、和测角原理与微波雷达基本相同。
因此用于空间交会对接的激光雷达包含连续波测距器和位置敏感器两个部分。
这两个部分通过公用光学装置混合起来。
激光雷达比较可靠和精确的测速方法是测量回波信号的多普勒频移。
激光雷达对目标的角跟踪可采用圆锥扫描法和单脉冲法。
现在,激光雷达也能用于最后的手动逼近和对接阶段,此时主要用来测量相对姿态。
激光测距技术比较成熟,但是激光测量姿态角是一项技术难点。
(5)激光雷达在油气直接勘察中的应用前景利用遥感直接探测油气上方的烃类气体的异常是一种直接而快捷的油气勘探方法。
激光雷达是激光技术和雷达技术相结合的产物,将其应用于油类勘测已经成为可能。
激光器的工作波长范围广,单色性好,而且激光是定向辐射,具有准直性,测量灵敏度高等优点,使其在遥感方面远优于其他传感器。
激光雷达由发射系统和接收系统两大部分组成。
发射系统主要包括激光器和发射望远镜;接受系统主要由接收望远镜、光电倍增管和显示器三部分组成。
激光雷达技术是根据激光光束在大气中传输时,大气中尘埃微粒和各种气体分子对激光产生弥散射,瑞利散射、拉曼散射和共振荧光以及共振吸收等现象,然后利用激光雷达接收系统收集和记录上述现象过程中所产生的背向散射光谱,以达到探测大气成份和浓度的目的。
烃类气体是油气田油气微渗漏的主要指示性气体,而近地表的烃类气体从成分上看,主要是由早期的成岩作用、细菌作用和地下热作用等共同作用的结果。
共振吸收激光雷选在探测气体分子含量时一般都采用各种可调谐激光器激光雷达探测气体的探测灵敏度,是指激光雷达所能接收到的激光功率细微变化的能力。
探测的距离和被测气体分子的吸收截面是影响探铡灵敏度的主要因素。
据研究资料介绍,吸收截面越大灵敏度越高;而探测距离越大,灵敏度越高。
而路径与灵敏度之间的关系是路径越长,气体分子对激光光束的吸收衰减也越强烈,从而使探测灵敏度大大提高。
但是,由于存在着激光光斑的发散和因大气湍流引起的激光传输方向改变的抖动效应,将使激光的有效利用率减小,即信噪比下降,从而影响污染气体分子含量的探测精度。
因此探测距离以数公里为宜。
(6)使用超高频雷达和离散回波激光雷达估算温带阔叶林和混交林的生物量本研究的目的是要确定使用哪种方法能更好的估计温带阔叶林的生物量估计,一种方法是单独使用高频雷达数据来确定,另一种是同时使用高频雷达与小尺寸离散回波激光雷达来估计生物量。
激光雷达的分布描述数据和平均归一化雷达截面在每个观测点被用来作为独立变量处理。
研究的区域是在弗吉尼亚州阿波马托克斯 - 白金汉国家森林。
首先收集指定区域中的数据。
BioSAR数据是用一艘双引擎飞机收集的,飞机上的雷达发出高频率的波,通过收集反射回来的信号来确定探测物体的信息。
可供分析的激光雷达数据是使用便携式机载激光系统在符合BioSAR数据分析要求的13条飞行线路上收集的。
激光雷达扫描数据收集时使用的是机载激光雷达测量仪3100系列的传感器,要拍摄的数据包括四个测量值。
裸露的地面传回的数据是基于一个专有的算法提供的。
普通地面数据的获取是采用空间分辨率为1米的普通克里格插值方法。
最后采用以模型为基础的度量计算战略,这种方法适应于直接用地面观察到的生物量与模型比较来估算生物量。
最后创建一个最佳子集的线性回归方程作为遥感变量的函数。
结果表明,同时使用高频雷达与小尺寸离散回波激光雷达来估计生物量在估算硬木林和混交林的生物量时使非常有效的。
在很多林业研究中,激光雷达,无论是扫描或分析,其对生物量的估计比其他传感器更加准确,而且激光雷达已被证明是准确估计树冠高度,甚至老年,单特异性森林与顶部优势生长形式的有效工具。
在林业研究中,甚高频散射机制主要应用于简单的森林结构,如轻轻倾斜针叶林,而较长波长激光雷达具有良好的穿透枝叶特性,这又增加了数据的准确性。
(7)利用激光雷达进行气象研究激光雷达是一种非常重要的气象仪器,它是基于电磁能量会从目标反射回来的检测原理。
像雷达一样,有关目标的性质、距离、角度等数据都可以通过光的散射给我们提供出来。
其比雷达更为优秀的是它不仅可以在微波区域进行操作,而且可以在可见光、红外光或更短的区域进行操作。
激光雷达是雷达在光学电磁频谱上的一个延拓。
由激光发射机生成一个短脉冲的能量再针对一个目标发射出去。
目标辐射出的散射波由接收光学系统收集并且集中到一个敏感的探测器上,它将入射光的能量转换成一个电信号,经过放大信号处理后再进行使用。
在斯坦福研究所开发的第一个比较原始的仪器设计清楚地表明了激光雷达的应用,如通过雨水或底层的云的结构探测云和雾层的位置,上升限度的高度。
激光雷达回波可以清楚的从低海拔地区观察到一个清晰的连续气溶胶层,而这对于肉眼来说是不可见。
SRI Mark III的激光雷达,对稀薄的卷云的检测展示了一个更高的水平。
它表明一个很高的峰值功率可以穿透云层,同时形成反射。
利用这种现象在不同海波高度观察时就可以证明几个不同层的卷云的存在。