激光熔融快速成型技术
- 格式:pptx
- 大小:12.14 MB
- 文档页数:27
科技·探索·争鸣科技视界Science &Technology VisionScience &Technology Vision科技视界1熔融沉积快速成型简介基于CAD/CAM 技术的快速成型技术(又称3D 打印技术)近年来成为社会与科技热点。
该技术是利用CAD 模型驱动,通过特定材料运用逐层累积方式制作三维物理模型的先进制造技术[1]。
整个产品制造过程无需开发模具,利用计算机三维实体建模得到的模型即可直接打印制件,因此可以实现产品的快速制造。
熔融沉积成型(Fused Deposition Modeling ,FDM)则是一种近十几年来得到迅速发展的快速成型制造工艺。
该工艺又叫熔丝沉积,它是将丝状的热熔性材料加热熔化,通过带有一个微细喷嘴的喷头挤喷出来,根据零件的分层截面信息,按照一定的路径,在成型板或工作台上进行逐层地涂覆。
由于热熔性材料的温度始终稍高于固化温度,而成型部分的温度稍低于固化温度,就能保证热熔性材料挤喷出喷嘴后,随即与前一层面熔结在一起。
与SLA 、SLS 等工艺不同,熔融沉积在成型过程中不需要激光,设备维护方便,成型材料广泛,自动化程度高且占地面积小,目前被广泛应用于产品开发、快速模具制作、医疗器械的设计开发及人体器官的原型制作,代表着快速成型制造技术的一个重要发展方向。
但是,由于其成型过程为半固态到固态过程的转化,分层厚度不易降低以及热熔性材料冷却过程中的收缩等因素,使得成型件的精度难以得到保证,也制约了熔融沉积成型的发展。
目前国内外学者针对熔融沉积快速成型设备、材料、工艺以及数值模拟等方面开展了一系列研究并取得了阶段性成果。
2熔融沉积快速成型设备方面的研究进展当前FDM 设备制造系统应用最为广泛的主要是美国Stratasys 公司的产品,从1993年Stratasys 公司开发出第一台FDM1650机型以来,先后推出了FDM-2000,FDM-3000和FDM-8000机型。
四种常见快速成型技术FDM丝状材料选择性熔覆(Fus ed Dep osi tion Mod eling)快速原型工艺是一种不依*激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。
丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。
热塑性丝状材料(如直径为1.78m m的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。
一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。
这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。
这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。
但仍需对整个截面进行扫描涂覆,成型时间长。
适合于产品设计的概念建模以及产品的形状及功能测试。
由于甲基丙烯酸ABS(M AB S)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。
但成型精度相对较低,不适合于制作结构过分复杂的零件。
FD M快速原型技术的优点是:1、操作环境干净、安全可在办公室环境下进行。
2、工艺干净、简单、易于材作且不产生垃圾。
3、尺寸精度较高,表面质量较好,易于装配。
可快速构建瓶状或中空零件。
4、原材料以卷轴丝的形式提供,易于搬运和快速更换。
5、材料利用率高。
6、可选用多种材料,如可染色的A BS和医用A BS、PC、PP SF等。
FDM快速原型技术的缺点是:1、做小件或精细件时精度不如SLA,最高精度0.127mm。
2、速度较慢。
SL A敏树脂选择性固化是采用立体雕刻(Stereo litho gra phy)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。
在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。
激光选取融化技术和激光粉末床熔化激光选取融化技术和激光粉末床熔化是目前被广泛应用于金属制造领域的两项先进技术。
随着3D打印技术的不断发展,激光选取融化技术和激光粉末床熔化在金属制造领域中扮演的角色愈发重要。
本文将就这两种技术的原理、应用现状以及未来发展方向进行较深入的探讨。
首先,激光选取融化技术是一种通过激光束将金属粉末逐层烧结成零件的制造方法。
该技术通过激光束的高能量浓度和定向性,使得金属粉末在特定区域快速融化并凝固,最终形成所需的零件结构。
激光选取融化技术具有制造速度快、成型精度高、可以制造复杂结构等优点,因此在航空航天、汽车制造、医疗器械等领域得到了广泛应用。
与之类似,激光粉末床熔化技术是一种通过在工件表面逐层喷撒金属粉末并利用激光束进行熔化的加工方法。
激光粉末床熔化技术在激光选取融化技术的基础上加入了床层金属粉末的使用,通过连续熔化并固化每一层金属粉末,最终实现零件的制造。
激光粉末床熔化技术具有工艺简单、适用性广泛、成本低廉等优点,适用于快速制造复杂零件和小批量生产。
然而,尽管激光选取融化技术和激光粉末床熔化技术在金属制造领域具有广阔的应用前景,但也存在一些挑战和问题需要克服。
首先是材料选择的问题。
由于激光的高能量密度和快速固化速度,金属材料需要具有良好的热导性和熔化性能才能适用于这两种技术。
其次是技术参数的优化问题。
激光选取融化技术和激光粉末床熔化技术的工艺参数对成形零件的质量和性能具有重要影响,因此需要不断优化和调整。
为了克服上述问题,研究人员们在近年来开展了大量的研究工作。
他们通过改进金属粉末的制备工艺、优化激光工艺参数、探索新型的合金材料等途径,不断提升激光选取融化技术和激光粉末床熔化技术的加工质量和效率。
同时,随着人工智能、大数据等技术的应用,激光金属制造技术也在不断向智能化、高效化的方向发展,为工业制造带来了新的机遇。
总的来说,激光选取融化技术和激光粉末床熔化技术作为当今金属制造领域的两项重要技术,在实践中已经取得了令人瞩目的成果。
选择性激光烧结快速成形技术摘要:选择性激光烧结快速成形(Selective Laser Sintering Rapid Prototyping)技术使用固体粉末材料,该材料在激光的照射下,能吸收能量。
发生熔融固化,从而完成层信息的成型。
这种方法适用的材料范围广(适用于聚合物、铸造用蜡、金属或陶瓷粉末),特别是在金属和陶瓷材料的成型方面具有独特的优点,有着制造工艺简单,柔性度高、材料选择范围广、材料价格便宜,成本低、材料利用率高,成型速度快等特点。
本文就SLS的原理,优点,以及使用材料的发展做了简要概括,并对金属粉末的进行了重点讨论。
关键字:SLS,原理,材料,金属粉末目录前言 (1)1 选择性激光烧结快速成形技术的应用 (1)2 选择性激光烧结快速成形技术原理 (2)2.1 基本工作原理 (2)2.2 SLS快速成形技术工艺流程 (4)2.3 SLS烧结机理 (4)3SLS技术的特点 (5)4 中北大学SLS方面的成果 (6)5 选择性激光烧结用原材料 (6)5.1 金属材料 (7)5.2 聚合物材料 (8)5.3 陶瓷材料 (8)5.4 新型SLS原料的研制-木塑复合材料 (8)6 金属粉末选择性激光烧结(SLS)技术 (8)6.1 间接法 (9)6.2 直接法 (10)6.3 金属粉末SLS存在的问题 (11)6.4 金属粉末SLS发展趋势 (12)总结 (12)参考文献 (14)前言选择性激光烧结快速成形(Selective Laser Sintering Rapid Prototyping)技术(简称SLS技术)1989年由美国C.R Decard申请专利,DTM公司推向市场,之后因为具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速的发展,受到越来越多的重视。
选择性激光烧结(SLS)也可被称为选区激光烧结,它跟其它的快速成型工艺一样,加工原理也是离散-堆积成型原理。
其以Nd:YAG或CO2激光发射器为加工能源,利用计算机来控制激光束对加工材料(包括高分子材料、金属粉末、预合金粉末材料及纳米材料等)按设定的速度并调整合适的激光能量密度并根据切片截面轮廓的二维数据信息进行烧结,层层堆积,全部烧结完后去掉周围多余的粉末, 再对烧结件进行打磨、烘干等一系列后处理操作便可以获得零件。
快速成型技术1、快速成型简介快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
2、RP 技术的原理RP 技术是采用离散∕堆积成型的原理, 由CAD 模型直接驱动的通过叠加成型方出所需要零件的计算机三维曲面或实体模型, 根据工艺要求将其按一定厚度进行分层, 把三维电子模型变成二维平面信息(截面信息), 在微机控制下, 数控系统以平面加工的方式有序地连续加工出每个薄层并使它们自动粘接成型, 图1 为RP 技术的基本原理。
图1 RP 技术的基本原理。
RP 技术体系可分解为几个彼此联系的基本环节: 三维CAD 造型、反求工程、数据转换、原型制造、后处理等。
2.1立体光固化成型(SLA)该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速成型方法。
SLA 技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描, 被扫描区域的树脂薄层( 约十分之几毫米) 产生光聚合反应而固化, 形成零件的一个薄层。
工作台下移一个层厚的距离, 以便固化好的树脂表面再敷上一层新的液态树脂, 进行下一层的扫描加工, 如此反复, 直到整个原型制造完毕。
由于光聚合反应是基于光的作用而不是基于热的作用, 故在工作时只需功率较低的激光源。
此外,因为没有热扩散, 加上链式反应能够很好地控制, 能保证聚合反应不发生在激光点之外, 因而加工精度高, 表面质量好, 原材料的利用率接近100%, 能制造形状复杂、精细的零件, 效率高。
快速成型技术概述现代科学技术的飞速进展,尤其是微电子、计算机、数控技术、激光技术、材料科学的进步为制造技术的变革与进展制造了前所未有的机遇,使得机械制造能够突破传统的制造模式,进展出一项崭新的制造技术一一,快速成型技术。
诞生背景快速成型技术的诞生主要有两方面的缘由:1)市场拉动市场全球化和用户需求共性化为先进制造技术提出了新的要求,随着市场一体化的进展,市场竞争越来越激烈,产品的开发速度成为竞争的主要冲突。
同时用户需求多样化的趋势日益明显,因此要求产品制造技术有较强的敏捷性,在不增加成本的前提下能够以小批量生产甚至单件生产产品。
2)技术推动新技术的进展为快速成型技术的产生奠定了技术基础,信息技术、计算机技术的进展、CAD/CAM技术的进展、材料科学的进展一新材料的消失、激光技术的进展为快速成型技术的产生和进展奠定了技术基础。
快速成型技术就是在这样的社会背景下在80年月后期产生于美国并快速扩展到欧洲和日本。
由于即技术的成型原理突破了传统加工中的塑性成形(如锻、冲、拉伸、铸、注塑加工等和切削成形的工艺方法,可以在没有工装夹具或模具的条件下快速制造出任意简单外形又具有肯定功能的三维实体原型或零件,因此被认为是近二十年来制造技术领域的一次重大突破。
基本原理与特征快速成型技术是一种将原型(或零件、部件)的几何外形!结构和所选材料的组合信息建立数字化描述模型,之后把这些信息输出到计算机掌握的机电集成制造系统进行材料的添加、加工,通过逐点、逐线、逐面进行材料的三维堆砌成型, 再经过必要的处理,使其在外观、强度和性能等方面达到设计要求,实现快速!精确地制造原型或实际零件、部件的现代化方法。
快速成型技术的特征为:(1)可以制造出任意简单的三维几何实体;(2)CAD模型直接驱动;(3)成形设施无需专用夹具或工具;(4)成形过程中无人干预或较少干预;快速成型技术的优势(1)响应速度快:与传统的加工技术相比,RP技术实现了CAD模型直接驱动, 成形时间短,从产品CAD或从实体反求获得数据到制成原型,一般只需要几小时至几十个小时,速度比传统成型加工方法快得多"这项技术尤其适于新产品的开发,适合小批量、简单(如凹槽、凸肩和空心嵌套等)、异形产品的直接生产而不受产品外形简单程度的限制,还改善了设计过程中的人机沟通,使产品设计和模具生产并行,从而缩短了产品设计、开发的周期,加快了产品更新换代的速度,大大地降低了新产品的开发成本和企业研制新产品的风险。
第六章快速成型技术 (2)4.1 快速原型技术简介 (2)4.1.1 快速成型的基本原理 (2)4.1.2 快速成型的工艺过程 (3)4.1.3 快速原形技术的特点 (4)4.2 RP工艺方法简介 (5)4.2.1典型RP工艺方法简介 (5)4.2.2 典型快速成型工艺比较 (8)4.2.3 其他快速成型工艺 (9)4.3 SCPS350紫外光快速成型机 (9)4.3.1 SCPS350紫外光快速成型机基本原理及制作过程 (9)4.3.2 SCPS350紫外光快速成型机床控制软件的介绍 ..................................... 错误!未定义书签。
4.3.3 SCPS350紫外光快速成型机机床实例讲解............................................. 错误!未定义书签。
第六章快速成型技术4.1 快速原型技术简介快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的新兴制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。
它集成了CAD 技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。
通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
快速成型技术自问世以来,得到了迅速的发展。
由于RP技术可以使数据模型转化为物理模型,并能有效地提高新产品的设计质量,缩短新产品开发周期,提高企业的市场竞争力,因而受到越来越多领域的关注,被一些学者誉为敏捷制造技术的使能技术之一。
快速成型摘要:快速成型技术是一种集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
快速成型技术正在不断完善,具有广泛的应用前景快速成型技术以其独特的优势和魅力,在制造业领域起到越来越重要的作用,并将给制造业带来深远的影响。
通过介绍快速成型系统的基本原理方法和技术特点,阐述其工艺特点及开发和应用,探讨快速成型技术在现代制造业中起到的重要作用和产生的巨大效益,分析快速成型技术的优点和缺点,并提出快速成型技术未来的发展方向和深远意义。
关键词:快速成型 CAD/CAM 激光技术基本原理快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。
它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。
通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
快速成型的基本原理快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。
再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并图1快速成型的基本原理图至顶完成零件的制作过程。
快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。
快速成型:SLA、LOM、SLS、3DP、FDM快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术Laser Technology,例如:光固化成型SLA、分层实体制造LOM、选域激光粉末烧结SLS、形状沉积成型SDM 等;基于喷射的成型技术Jetting Technoloy,例如:熔融沉积成型FDM、三维印刷3DP、多相喷射沉积MJD光造型工艺SLASLA,Stereolithogrphy Apparatus工艺,也称光造型或立体光刻,由Charles Hul 于 1984 年获美国专利。
SLA 技术是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
SLA工作原理SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
当一层扫描完成后.未被照射的地方仍是液态树脂。
然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
SLA 方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。
S LA 工艺成型的零件精度较高,加工精度一般可达到 0.1 mm ,原材料利用率近 100 %。
但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。
叠层实体制造工艺LOMLOM,Laminated Object Manufacturing,LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的Michael Feygin于1986 年研制成功。
激光选区熔化成型工作原理激光选区熔化成型(Selective Laser Melting,简称SLM)是一种先进的三维打印技术,它基于激光束对金属粉末进行定向熔化,逐层堆积构建出复杂的零件结构。
这种工艺具有高精度、高质量和高灵活性的特点,被广泛应用于航空航天、汽车制造、医疗器械等领域。
1. 激光选区熔化成型的基本原理激光选区熔化成型的基本原理是利用激光束将金属粉末进行局部熔化,并在固化后逐层堆积形成零件。
具体步骤如下:第一步,通过计算机辅助设计(Computer Aided Design,简称CAD)软件将待打印的零件进行三维建模。
第二步,将建模数据转换为切片数据,并通过切片软件生成激光扫描路径。
第三步,将金属粉末均匀地铺在打印台上。
第四步,激光束根据预设的路径控制扫描,在每个扫描点上将金属粉末熔化成液态,形成一个很小的熔池。
第五步,激光束移动到下一个扫描点,重复第四步的熔化过程,直到一层完成。
第六步,被熔化的金属粉末与底板相互粘接,形成一层固体。
第七步,打印台下降一层,重复第三步至第六步的过程,直到整个零件打印完成。
通过以上步骤,激光选区熔化成型技术能够实现高精度的零件制造。
激光束的高能量密度和狭窄的熔化区域,使得零件的熔化和凝固过程非常快速,可以避免材料的过热和过熔的问题。
SLM技术还可以根据需要调整激光功率、扫描速度和层厚等参数,实现对打印质量的控制。
2. 激光选区熔化成型的优势和应用激光选区熔化成型技术具有以下几个显著的优势:2.1 高度灵活性:激光选区熔化成型技术可以打印出复杂的零件结构,包括内部空洞、异形表面和薄壁结构等。
相比传统的加工方法,SLM技术不需要使用模具,可以大大缩短产品开发周期和降低成本。
2.2 高精度和精细性:激光束的直径非常细小,可以实现非常高的精度。
由于激光束的定向和熔化粉末的局部熔化,可以在零件表面形成非常光滑的层面和边缘。
这使得SLM技术在制造复杂、高精度的零部件和模具方面具有独特优势。