当前位置:文档之家› 高功率密度高效率高压三相异步电动机的研制

高功率密度高效率高压三相异步电动机的研制

高功率密度高效率高压三相异步电动机的研制
高功率密度高效率高压三相异步电动机的研制

2017年新能源汽车电机控制器行业分析报告

2017年新能源汽车电机控制器行业分析报告 2017年10月

目录 一、电机控制器原理介绍 (5) 二、电机控制器市场分析 (6) 1、受益新能源产业发展,十三五500亿市场 (6) 2、市场竞争格局:自配为主,乘用车领域逐步渗透 (9) 三、国内外差距:关键在IGBT (11) 1、电控用IGBT:十三五约120亿市场 (12) 四、发展趋势:集成化、SiC化 (16)

电池、电机和电机控制器是新能源汽车的三大核心部件。对电池而言,四大材料中正极、负极、电解液已经基本实现国产化,隔膜起步较晚,但近些年各大厂商纷纷扩产,国产化进程也明显加快。对电机而言,国内也具备了相应的研发和制造能力,峰值比功率达到 2.8- 3.0Kw/kg,接近国际先进水平,驱动电机效率与国际先进水平基本相当。 但在电机控制器上,虽然国内市场基本实现自供,但功率密度与国外差距较大,且由于电力电子技术起步晚,在IGBT 等关键零部件上自给率极低,长期以来受制于人。 差距虽大,但随着新能源汽车产业的快速发展,电控必将迎来市场红利,其关键功率器件也将得到长足发展,故本文以电控为主题,着重分析电控的市场竞争格局,以及关键技术的差距所在。 电机控制器与新能源汽车产业发展密切相关,“双积分制度”为补贴长效机制的建立和2020年200万生产目标的实现打下坚实基础,我们预计2017 至2020年我国新能源汽车产量分别达到70.3、102.0、143.8、199.7 万辆,对应的电机控制器的市场规模分别为85.81、108.19、134.92、166.15 亿元,合计495 亿元的市场空间。 自配OR第三方供应?目前我国以车企自配电控为主,自配动力系统总成通常需要很大的投入,主要是为了满足产业链体系的需求,降低生产成本。而第三方供应模式的优势在于更好的电机匹配能力,北汽、宇通等实力雄厚的厂商至今仍采取自配+外购的双模式,从市场专业化分工和资源合理配置的角度来看,第三方电控供应商仍会持

几种驱动电动机的比较

动汽车用电机的比较与选择 电动汽车的驱动电动机通常要能够频繁的启动停车、加速减速,低速或爬坡时要求高转矩,高速行驶时要求低转矩,并要求变速范围大而工业驱动电机通常优化在额定的工作点。因此,电动汽车驱动电动机比较独特,应 单独归为一类。它们在负载要求、技术性能以及工作环境等方面的主要区别归纳如下 电动汽车驱动电动机需要有一倍的过载转矩以满足短时加速行驶与最大爬坡度的要求而工业驱动电动机只要求有倍的过载转矩就可以了电动汽车驱动电动机的最高转速要求达到在公路上巡航时基速的一倍,工业驱动电动机只要求达到恒功率时基速的倍电动汽车驱动电动机应根据车型与驾驶员的驾驶习惯进行设计而工业驱动电动机通常只根据典型的工作模式进行设计即可. 电动汽车驱动电动机要求有高的功率密度和好的效率图在较宽的转速和转矩范围内都有较高的效率,从而能够降低车重,延长继驶里程而工业驱动电动机通常对功率密度、效率及成本进行综合考虑,在额定工作点附近对效率进行优化.为使多电动机协调运行,要求电动汽车驱动电动机可控性高、稳态精度高、动态性能好而工业驱动电动机只有某一种特定的性能要求.电动汽车驱动电动机往往被装在机动车上,空间小,工作在高温、坏天气及频繁震动等恶劣的工作条件下而工业驱动电动机通常在某个固定的位置工作. 电动汽车用电机的比较与选择 高功率密度、高效率、宽调速的车辆牵引电机及其控制系统既是混合动力汽车的心脏,又是混合动力汽车研制的关键技术之一。目前,可用于混合动力电驱动系统的主要有直流电机系统、感应电机系统、无刷直流电机系统、永磁同步电机系统、开关磁阻电机系统。 直流电机驱动系统 由于直流电动机励磁绕组的磁场与电枢绕组的磁场是垂直分布的,因而其控制原理非常简单。通过用永磁材料代替直流电动机的励磁绕组,由于有效地利用了径向空间,从而可使电动机的定子直径大大减小。由于永磁材料的磁导率较小,因而电枢反应减小,互感增加。但是直流电动机的主要问题是,由于有换向器和电刷,这使得它的可靠性降低,且需要定期维护。不过,由于技术成熟和控制简单,直流电动机一直在电驱动领域有着突出的地位。实际上,串励、并励、他励和永磁等各种直流电动机目前在电动汽车上都有应用。 异步电机驱动系统 由于感应电动机低成本、高可靠性及免维护等特性,因而在电动汽车驱动电动机领域里,它是应用很广的一种无换向器电动机。但传统的变频变压控制技术等,不能使感应电动机满足所要求的驱动性能。主要原因在于它的动态模型的非线性。随着微机时代的到来,采用矢量控制法控制感应电动机可以克服由于其非线性带来的控制难度。矢量控制也称为解祸控制。不过,采用矢量控制的电动汽车感应电动机在轻载及有限的恒功率工作区域运行时效率较低。 异步电机其特点是结构简单、坚固耐用、成本低廉、运行可靠,低转矩脉动,低噪声,不需要位置传感器,转速极限高。异步电机矢量控制技术调速技术比较成熟,使得异步电机驱动系统具有明显的优势,因此被较早应用于电动汽车的驱动系统。目前仍然是电动汽车驱动系统的主流产品尤其在美国,但已被其它新型无刷永磁牵引电机驱动系统逐步取代。最大缺点是驱动电路复杂,成本高相对永磁电机而言,异步电机效率和功率密度偏低。 永磁同步电机驱动系统 永磁同步电机可采用圆柱形径向磁场结构或盘式轴向磁场结构,由于具有较高的功率密度和效率以及宽广的调速范围,发展前景十分广阔,在电动车辆牵引电机中是强有力的竞争者,己在国内外多种电动车辆中获得应用。 用永磁材料代替传统同步电动机的励磁绕组,永磁同步电动机就能去掉传统的电刷、滑环以及励磁绕组的铜损。永磁同步电动机由于采用正弦交流电及无刷结构,也被称为永磁无刷交流电动机或正弦永磁无刷电

电动汽车用高功率密度电机关键技术

摘要 近年来,电动汽车工业和新能源领域的发展越来越快,电机的性能也越来越高。高功率密度电机满足电动汽车及相关行业的发展需求,并逐渐受到业界和社会的广泛关注。本文从目前电动汽车市场上高功率密度电机的设计和应用的实际情况出发,探讨了高功率密度电机的特点、设计和高速3个方面,希望能为相关研究提供一定的参考。目前,功率密度已成为电机设计中的一个重要指标。高功率密度电机因其体积小、重量轻、效率高等优点,越来越受到研究者和生产厂家的重视。特别是在航空航天、潜艇、电动汽车等特别利用场所中,因为安置空间有限定,对电动秘密求体积更小、效力更高、重量更轻、效力更高,也便是请求机电有较高的功率密度。 关键词:电动汽车新能源电机性能高功率密度

0 引言 在目前的电机设计中,功率密度是一个不容忽视的关键点。一般来说,高功率密度电机的销售量很大,这主要是由于其重量轻,体积小。随着电动汽车工业和绿色能源相关领域的不断发展,高功率密度电机已逐渐得到应用和广泛推广。在电动汽车、航空航天等领域,高功率密度电机起着非常重要的作用,但仍需要在一定的技术水平上推广,以便更好地服务于需要的行业,发挥最大的价值,促进电动V的快速发展。电子、航空航天等相关领域。大量的研究表明,汽车的能量损失与汽车的质量成正比,车辆轻量化是降低新能源汽车能耗和增加行驶里程的重要手段。新能源纯电动汽车驱动系统通常占汽车总质量的30%-40%,驱动系统的轻量化是整车轻量化的重点之一。汽车驱动电机是新能源汽车的核心驱动部件。在有限的空间内,需要满足各工况的动态要求。因此,在较小的空间内,设计高效、安全、可靠的高功率密度电机是实现电机轻量化,降低汽车能耗的有效途径,关键问题 1 高功率密度电机的基本特点 1.1转子旋转速度快 高功率密度电机的主要特点之一是转子速度快。通常,电机转子的转速具有相对稳定的范围或值,例如,可以保持在6000 r/m iN,高功率密度电机转子的转速通常可以达到10000 r/min。在这样的高速旋转中,电机的供电频率会相应增加。正常频率下的电源频率为200 Hz,最大频率可超过1000 Hz。 1.2电磁负荷比较高 高功率密度电机的另一个特点是较高的电磁负载。与传统电机相比,高功率密度电机的电磁负荷要高得多,直接导致电机体积损失的增加,从而导致总损耗的增加。一旦电机的损耗增加,将会导致电机各部件的温度上升,这就对冷却方式提出了更加严格的要求,而如果冷却方式不合理,电机功能将会受影响 2 高功率密度电机的主要设计 2.1磁性材料 如果高功率密度电机的供电频率逐渐增加,电机铁芯的损坏也会增加,因此铁芯损耗在电机总损耗中的比例将逐渐增加。因此,电机磁芯的损耗直接与磁芯和磁芯材料的2个元素有关。电机正常工作时,铁心损耗是必不可免的,所以要采取积极的措施加以解决,从而降低铁心损耗。控制磁感应强度和降低磁感应强度可以在一定程度上降低铁芯损耗。同时,在选择芯材时,应坚持“高磁导率、低损耗”的原则,以保证芯材选择的合理性。2.2定子导线 在电动机的运行过程中,定子定子中铜的消耗可能较大,这将对电机的效率产生负面影响,因此还需要减少定子铜的消耗。从目前的情况来看,在解决高铜消耗的问题时,通常使用高导电性的导体,例如银铜合金材料的导线,这是一个理想的选择。电动汽车高功率密度驱动电机的供电方式通常是控制器或变频器,需要绝缘以保证绕组受电压的影响最大,并出现电晕。在某些情况下,可以在电机线圈中选择变频电磁线。 2.3笼型异步电机转子笼型材料 在笼型异步电动机的转子中,导杆通常由铜或铸铝制成。铜导杆和铝导条都有各自

电动汽车用高功率密度电机关键技术

1 引言 目前,功率密度已然成为设计电机中的一个非常有地位的指标。高功率密度电机因其体积小、重量轻、效率高等特点越来越受到研究人员和生产厂家的关注。特别是在航空航天、潜艇、电动汽车等特别利用场所中,因为安置空间有限定,对电动秘密求体积更小、效力更高、重量更轻、效力更高,也便是请求机电有较高的功率密度。因为提升电机的功率密度,应该应用下面的选择:1适当提升电机电磁选择与选择超性能的电磁素材;2选择提升电机的额定速度,转速通常可以设置上万转;3上升电机的散热性能。 高功率密度电机因为他的高速高频性质体现,和老式电机进行开始时几乎无一点相似。这篇文章通过三方面对超性能密度电机来对其讨论,所得出他的特性和体现选择。高功率密度机电因为其高速高频的特征,与传统机电在运行特征方面有很大的分歧。连系电动汽车用笼型异步机电(以特斯拉电动汽车机电为例)和永磁同步机电两种高功率密度机电,本文别离从电磁计划、机器工艺和冷却体例三方面临高功率密度机电进行了阐发,给出了其特色和计划请求。 为电动汽车的驱动电动机供给电能,电动机将电源的电能转化为机械能 出现背景正如大家所熟知的那样,机动车在行驶时,轮胎与地面之间产生的能量至今为止还在白白地被浪费着。目前机动车的动力95%以上仍是必要靠油和蔼来完成的。油和气都是不可再生的能源,随着使用和依赖的加剧,枯萎现象日趋严重,而且会造成严重的环境污染。新能源电动汽车(机动车动力收受接收转换装置,发明人:宋广杰),该项专利技术装置,经过进程特制机电作为体系配件,较好地办理了将机动车的动力收受接管并转化为电能的装配,从而,把华侈的动能很好地操纵起来,动能转化成电能后,又反馈到机动车自己举行驱动的体系装配。可以使现有的电动汽车一次充电完成后,再也不烧油和别的充电,续航本领增添100%-300%,节流本钱50%-85%。 无污染,噪声低;能源效率高,多样化;电动汽车的钻研表白,其能源效力已跨越汽油机汽车。支持续航时候和里程的电池手艺 目前良多新能源汽车的电池依旧是传统的铅蓄电池,无论从重量、蓄电量还是安全性角度恍如都是与新能源汽车的初志所矛盾的。是以若是没法在汽车电能贮存技术上冲破瓶颈,开辟划时代的产物,就没法让新能源汽车得以真正的广泛应用。今朝在这一开辟层面上手艺相对于进步前辈的可以参考特斯拉电动汽车,它经由过程将汽车底盘与电池融会的体例来减缓这一抵牾。当然,特斯拉电动车在安全性等其他方面也存在着巨大问题,因此它也一直没有能够广泛销售。

新能源汽车电机驱动系统关键技术展望[J]. 科学导报·学术, 2019年第32期

新能源汽车电机驱动系统关键技术展望新能源汽车电机驱动系统关键技术展望[J]. 科学导报·学术, 2019年第32期摘要:本文探讨了新能源汽车电机驱动系统的关键技术及发展趋势,包括驱动控制器中的功率半导体器件及封装、智能门极驱动、基于器件的系统集成设计,以及驱动电机中的扁铜线、多相永磁电机、永磁同步磁阻电机等关键技术。其中,着重介绍了当前车用电机驱动技术的发展趋势,并指出永磁同步电机在未来10年内将依然是新能源汽车市场的主流驱动电机。同时,通过横向比较指出当前我国在驱动电机发展道路上所面临的关键问题,可以为我国未来新能源汽车技术发展提供一定参考。 关键词:新能源汽车;电机驱动系统;永磁同步电机 1、前言 随着人们生活水平的提高,汽车逐渐走进千家万户,但是环境污染问题也随之加重。发展的问题只能靠发展来解决。汽车尾气是影响空气质量的重要因素,为了缓解能源紧缺,减少环境污染,新能源汽车应运而生。但是新能源汽车发展受到技术的掣肘,新能源汽车电机驱动系统控制技术作为新能源机车发展的关键技术,尚未成熟,仍需继续探索和优化。 2、新能源汽车技术的发展前景 2.1新能源汽车质量发展 未来,新能源汽车技术必然会向环保方向逐渐演变和深化,于是减少能耗就要求减少小汽车本身的质量。有研究数据显示,内燃机汽车减少10%的汽车质量就能减少燃油消耗量的7%,这也决定了新能源汽车将向轻量化发展,以提高新能源汽车续航能力与动力性。新能源汽车轻量化发展指的是汽车的车身设计,此外还有电池、传动设备等,今后的汽车制造还需使用更多新型的轻质材料,如铝合金、高性能钢、其他复合材料,而相关企业也要从新能源汽车结构上进行改进,确保轻量化的基础上保障汽车结构的完整和性能强度提升,进而提高新能源汽车生产率,使其受到更多消费者的青睐。 2.2新能源汽车电池发展 电池是新能源汽车的核心,其产生的动力均依靠电池,对电池的制造要注重工艺与成本的结合。实际上,不少电池制造企业在工艺与成本的新能源电池提供

电动车用高功率密度永磁电机及控制技术研究

目录 摘要.................................................................................................................................. I Abstract............................................................................................................................. I I 目录................................................................................................................................III 第一章绪论.. (1) 1.1 课题研究背景及意义 (1) 1.2 电动汽车及其驱动电机发展现状 (2) 1.2.1 电动汽车发展现状 (2) 1.2.2 电动汽车驱动电机种类 (3) 1.3 电动汽车用永磁电机发展现状 (5) 1.3.1 国外电动汽车永磁电机发展状况 (5) 1.3.2 国内电动汽车用永磁电机发展状况 (7) 1.3.3 永磁同步电机功率密度研究现状 (8) 1.4 本课题主要研究内容 (9) 第二章电动车用驱动电机工作原理分析 (10) 2.1 电动汽车驱动系统特性分析 (10) 2.2 电动车用永磁电机分析 (11) 2.1.1 永磁同步电机工作原理 (11) 2.1.2 永磁同步电机参数对电机性能的影响 (15) 2.3 本章小结 (18) 第三章电动汽车用永磁同步电机设计 (19) 3.1 永磁同步电机性能参数选取 (19) 3.1.1 电动汽车不同工况下永磁电机运行状态分析 (19) 3.1.2 电动车用永磁同步电机性能参数匹配 (21) 3.1.3 永磁同步电机性能参数选取 (23) 3.2 永磁同步电机设计 (24) 3.2.1 永磁同步电机结构选型 (25) 3.2.2 主要尺寸计算 (28) 3.2.3 永磁体尺寸计算 (29) 3.2.3 定子冲片设计 (30) 3.2.4 电枢绕组参数计算 (32) 3.2.5 电枢绕组嵌线设计 (33) 3.2.6 永磁同步电机样机参数汇总 (34)

新能源汽车驱动电机系统技术与产业发展(上海电驱动应红亮)

新能源汽车驱动电机系统技术 与产业发展 应红亮 上海电驱动股份有限公司

国家节能与新能源汽车重大工程

我国新能源汽车市场快速增长 ? 2016年,我国新能源汽车产销量达到50万辆,占2016年汽车市场份额的1.8%,新能源汽车保有量达到100万辆规模; ? 2017年,受新能源汽车推广目录重审和新的补贴政策影响,新能源汽车增长相对平缓,1~8月产销总量达到32万辆,总量较去年同期持续增长,全年预期60~70万辆。 32.0

我国新能源汽车国际地位逐步攀升

我国新能源汽车市场发展需求预测 2030年,新能源汽车年销量占汽车总 体需求量比例将超过40%,规模达千 万辆级,保有量超过5000万辆2025年,新能源汽车年销量占汽车总体需求量 比例将超过15%,规模为500万辆左右 2020年,新能源汽车年销量将占汽车总体需求 量的7%以上,规模为200万辆以上

高密度、小型化、轻量化:采用强制水冷结构、高电磁负荷、高性能磁钢、高转速等技术,实现电机小型轻量化和高密度化。 高效率:采用稀土永磁和电磁设计优化,驱动电机的最高效率可达到97%,电机超过85%的高效率区达到80%以上。 低速大出力、高速恒功率宽调速:在车辆起步和行车要求高转矩,高速运行时能够进行恒功率输出,电机调速范围达到1:3到1:4以上。 可靠性、耐久性、适应性:车用电机处于振动大、冲击大、灰尘多、温湿度变化大的环境下运行,要求电机系统具有耐冲击和环境适应性。 低噪声与低成本:电机成本的高低是决定电动汽车是否能够产业化的重要因素;电动汽车NVH技术是整车研发的重要衡量指标。

全电飞机用高功率密度永磁同步电机研究

目录 摘要 ............................................................................................................................... I Abstract ........................................................................................................................... I I 第1章绪论 . (1) 1.1 课题背景与研究意义 (1) 1.2 国内外的研究现状与简析 (1) 1.2.1 全电飞机研究现状 (1) 1.2.2 全电飞机用电机研究现状 (3) 1.3 本文的主要研究内容 (7) 第2章高功率密度永磁同步电机设计 (8) 2.1 引言 (8) 2.2 高功率密度永磁同步电机的技术要求 (8) 2.3 高功率密度永磁同步电机结构设计与分析 (9) 2.3.1 转子磁路结构设计分析 (9) 2.3.2 绕组结构的设计分析 (11) 2.3.3 极槽配合的设计分析 (12) 2.4 高功率密度永磁同步电机主要特性的计算 (13) 2.4.1 反电势计算分析 (13) 2.4.2 电磁转矩的计算 (13) 2.4.3 电磁转矩特性的分析 (14) 2.5 本章小结 (15) 第3章高功率密度永磁同步电机转矩脉动分析 (16) 3.1 引言 (16) 3.2 转矩特性计算 (16) 3.2.1 齿槽转矩的计算 (16) 3.2.2 电磁转矩的计算 (17) 3.3 高功率密度永磁同步电机齿槽转矩分析 (18) 3.3.1 槽口宽度对齿槽转矩的影响 (18) 3.3.2 槽口高度对齿槽转矩的影响 (20) 3.3.3 永磁体形状对齿槽转矩的影响 (20) 3.3.4 充磁方向对齿槽转矩的影响 (21) 3.4 高功率密度永磁同步电机转矩脉动分析 (24) 3.4.1 槽口宽度和槽口高度对转矩的影响 (24)

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势 2012年1月30日 电动汽车用永磁同步电机的发展分析 彭海涛,何志伟,余海阔 (华南理工夫学电力学院,广州510640) 摘要:简要的比较了几种常用电动汽车的驱动系统,并指出了永磁同步电动机的优势。在各类驱动电机中,永磁同步电机能量密度高,效率高、体积小、惯性低、响应快,有很好的应用前景,介绍了电动车驱动用永磁同步电机的目前研究状况以及目前的研究热点和发展趋势。关键词:电动汽车;永磁同步电机;弱磁控制;控制策略;应用 中圈分类号:TM351, TM341 文献标志码:A 文章编号:1001—6848[2010)06-0078-04 O引言 电动汽车具有低噪声、零排放、高效、节能及能源多样他和综合利用等显著优点,成为各国开发的主流。电动汽车的发展有赖于技术的进步,尤其是需要进一步提高其驱动系统的性能。电动汽车对其驱动系统的要求是转矩控制能力良好,转矩密度高,运行可靠性及在整个调速范围内的效率尽可能高,从而保证车辆具有良好的动力性能和操控性,同时在车载动力电池未能取得突破的情况下,延长车辆的续驶里程。研究并开发出高水平的电机驱动控制系统,对提高我国电动汽车驱动系统水平及电动汽车的产业化具有重要意义[2]。 随着永磁材料性能的提高和成本的降低,永磁同步电动机以其高效率、高功率因数和高功率密度等优点,正逐渐成为电动汽车驱动系统的主流电机之一。 1电动汽车用电动机及驱动系统比较 电气驱动系统作为现代电动汽车的核心,主要包括:电动机、功率电子元器件及控制部分。评价电动车的电气驱动系统实质上主要就是对不同电动机及其控制方式进行比较和分析。目前正在应用或开发的电动车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁电动机(PM)、开关磁阻电动机(SRM)网类。下面分别对几种电气驱动系统进行简要分析和说明,其总体比较见表l。 1.1直流电动机驱动系统 在电动汽车领域最早使用的就是直流电动机。直流电动机结构简单,易于控制,具有良好的电磁转矩控制特性,但是由于采用机械换向结构,维护困难,并产生火花,容易对无线电产

新能源汽车用高功率密度驱动电机设计方法

新能源汽车用高功率密度驱动电机设计方法 c_dj8 来源| 网络 编辑| 旺材小编,转载请注明出处大量研究表明,汽车能量损耗与汽车质量成正比关系,汽车轻量化是降低新能源汽车能量损耗,提高行驶里程的重要手段。新能源纯电动汽车驱动系统通常占汽车总质量的30%-40%,驱动系统的轻量化是整车轻量化的重点之一。汽车驱动电机是新能源汽车的核心驱动部件,需要在有限的布置空间内,满足汽车各个工况的动力性要求,因此在更小的空间内,设计高效、安全、可靠的高功率密度电机,是实现电机轻量化,降低汽车能量损耗,需要解决的重点问题。 电机功率密度的提高一般采用两用途径:1)提高电机转矩密度;2)电机高速化,从这两种途径出发,本文针对电机设计过程中定转子结构设计、电机材料选择、电机损耗与温升以及电机振动噪声,四个方面对实现电机轻量化,提高电机功率密度和体积密度,进行分析。1 电机结构设计1.1 车用驱动电机设计流程电动汽车性能的优劣,取决于核心部件驱动电机是电动汽车的设计。电动汽车驱动电机的研究是电动汽车研究领域最重要的方向之一。电动汽车对电机的性能要求是:基速以下具有恒转矩特性和较高的转矩过载倍

数,以适应快速起动、加速、负荷爬坡、频繁起停等要求;基速以上具有宽范围的恒功率特性和较大的弱磁扩速比,以适应最高车速和超车等要求;在大部分运行范围内效率最优化,以节约能源。 车用新能源驱动电机设计具有整车预留布置空间小,工作环境极其恶劣的特点,在新能源电动轿车设计中该特点表现尤为明显。传统的稳态电机设计方法难以满足电动汽车驱动电机的复杂要求,不能很好地显示出电动汽车驱动电机的特点。因此,在车用驱动电机设计中应该充分考虑过载倍数、弱磁扩速比、高效区等电动汽车驱动电机的特征设计参数,针对电动汽车的不同运行工况对电机设计所带来的影响进行分 析和优化。另外,在新能源轿车用驱动电机设计中,还应 该按照图1所示的设计流程进行驱动电机设计。根据永磁同步电动机(PMSM)的性能要求,首先借助于设计软件对电机的几何形状、尺寸及材料选择进行初始设计得到设计参数,通过有限元方法进行性能预测计算。性能预测计算、性能评估和参数设计之间需要反复重新计算直到找到最优设计,最后通过样机实验对驱动电机设计结果进行分析和验证。 1.2电机定子结构设计1)长径比选择在电机设计过程中,随着电机长径比的增加,体积增大,转子体积不变,转子转动惯量降低,电机用铜量增加。由于整车设计中驱动电机布置空间有限,在满足整车空间布局的条件下,综合电机控制

电动汽车电机控制器

电动汽车电机控制器 一、电机控制器的概述 根据GB/T18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。 3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。

4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。

纯电动客车电机控制器设计方案..

纯电动客车电机控制器设计方案 摘要:依思普林产品采用自主开发的1200V/400-800A六单元IPM模块,电机控制器结构完全针对电动客车应用设计,具有体积小、重量轻、功率密度高、温升低(控制器内部温升比市场同类产品低30℃以上)、长期可靠性高的特点,产品性能达到国际先进水平。 关键词:纯电动客车;电机控制器;设计方案 早在2010年,我在一次去瑞士考察时,走在苏黎世大街上,整洁的大街上几乎看不到燃油车,简直就是有轨电车的天下,恍惚间让我看到八九十年代老北京什刹海的景色,干净的空气让我流连!在回来不久后我就成立了深圳市依思普林科技有限公司,专注从事新能源汽车核心部件的研发。 依思普林目前拥有多名IGBT模块及电机控制器开发经验技术人员,团队所研发的电机控制器,性能覆盖540V/200kW以内所有新能源电动客车车型,功率范围在80kw-200kw。产品采用自主开发的1200V/400-800A六单元IPM模块,电机控制器结构完全针对电动客车应用设计,具有体积小、重量轻、功率密度高、温升低(控制器内部温升比市场同类产品低30℃以上)、长期可靠性高的特点,产品性能国内领先,达到国际先进水平。

一、控制器外观结构及技术参数 图1-1 电机控制器内部结构 图1-2 电机控制器外形图

电机控制器技术参数如下表: 表1-1 电机控制器技术参数二、电动客车电控整体解决方案

三、主要技术创新点: 1、造型新颖 依思普林电机控制器的箱体是铝合金一体压铸,防护等级达到IP67。体积小,重量轻,造型新颖,突出了“绿色、环保”的主题。 2、自主知识产权汽车级大功率IGBT模块技术 目前国内市场上电机控制器多采用标准封装的工业级的IGBT模块,由于模块不是针对电动客车应用设计,IGBT模块采用的材料、结构及长期可靠性均无法满足电动客车的应用要求,

新能源汽车用高功率密度驱动电机设计方法要点

新能源汽车用高功率密度驱动电机研究 大量研究表明,汽车能量损耗与汽车质量成正比关系,汽车轻量化是降低新能源汽车能量损耗,提高行驶里程的重要手段。新能源纯电动汽车驱动系统通常占汽车总质量的30%-40%,驱动系统的轻量化是整车轻量化的重点之一。汽车驱动电机是新能源汽车的核心驱动部件,需要在有限的布置空间内,满足汽车各个工况的动力性要求,因此在更小的空间内,设计高效、安全、可靠的高功率密度电机,是实现电机轻量化,降低汽车能量损耗,需要解决的重点问 题。 电机功率密度的提高一般采用两用途径:1)提高电机转矩密度;2)电机高速化,从这两种途径出发,本文针对电机设计过程中定转子结构设计、电机材料选择、电机损耗与温升以及电机振动噪声,四个方面对实现电机轻量化,提高电机功率密度和体积密度,进行分析。 1 电机结构设计 1.1 车用驱动电机设计流程 电动汽车性能的优劣,取决于核心部件驱动电机是电动汽车的设计。电动汽车驱动电机的研究是电动汽车研究领域最重要的方向之一。 电动汽车对电机的性能要求是:基速以下具有恒转矩特性和较高的转矩过载倍数,以适应快速起动、加速、负荷爬坡、频繁起停等要求;基速以上具有宽范围的恒功率特性和较大的弱磁扩速比,以适应最高车速和超车等要求;在大部分运行范围内效率最优化,以节约能源。 车用新能源驱动电机设计具有整车预留布置空间小,工作环境极其恶劣的特点,在新能源电动轿车设计中该特点表现尤为明显。传统的稳态电机设计方法难以满足电动汽车驱动电机的复杂要求,不能很好地显示出电动汽车驱动电机的特点。因此,在车用驱动电机设计中应该充分考虑过载倍数、弱磁扩速比、高效区等电动汽车驱动电机的特征设计参数,针对电动汽车的不同运行工况对电机设计所带来的影响进行分析和优化。 另外,在新能源轿车用驱动电机设计中,还应该按照图1所示的设计流程进行驱动电机设计。根据永磁同步电动机(PMSM)的性能要求,首先借助于设计软件对电机的几何形状、尺寸及材料选择进行初始设计得到设计参数,通过有限元方法进行性能预测计算。性能预测计算、性能评估和参数设计之间需要反复重新计算直到找到最优设计,最后通过样机实验对驱动电机设计结果进行分析和验证。

新能源汽车电机驱动系统关键技术解析【干货】

新能源汽车电机驱动系统关键技术解析 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 近年随着我国交通事业的飞速发展,交通领域成为我国能耗增长最快的领域。能源危机和环境污染的加剧,使电动汽车研发成为世界汽车工业可持续发展的战略性项目,世界各国也普遍将发展电动汽车确立为保障能源安全和转型低碳经济的重要途径。1881 年,第一辆电动汽车由法国工程师古斯塔夫. 士维(GustaveTrouve)制造问世,它是采用铅酸蓄电池供电,由0.1 hp(英制马力,1 hp=745.7 W)的直流电机驱动的三轮电动汽车,整车及其驾驶员的重量约160 kg。两位英国教授在1883年制成了相似的电动汽车。因当时该应用技术尚未成熟到足以与马车竞争,因此这些早期构造并没有引起公众很多的注意。 20 世纪40 年代之后,半导体技术快速发展,随后出现的晶闸管、三极管,尤其是在20 世纪80年代问世的绝缘栅双极型晶体管(IGBT)为电机调速与控制提供了便利,同时伴以电力电子技术的快速发展,为以电能为能源的电机取代以石油为能源的内燃机提供了技术基础。 一、电动汽车分类 根据国标GB/T 19596-2004 电动汽车术语,电动汽车可分为由动动力电池提供能源的纯电动汽车、电机和内燃机共存的混合动力汽车和以燃料电池为能源的燃料电池

电动汽车,这三类电动汽车均采用一个及以上的电机驱动系统将电能转换为机械能,进而驱动汽车,同时回收刹车的制动能量,从而实现了能量利用率的提升。 1. 纯电动汽车 纯电动汽车由电机驱动汽车,能量完全由二次电池(如铅酸电池、镍镐电池、镍氢电池或锂离子电池)提供。由于一次石化能源的日趋匮乏,纯电动汽车被认为是汽车工业的未来。典型的纯电动汽车动力结构如图1 所示。电池组的电能通过充电系统在车辆行驶一定里程后进行补充。纯电动汽车的特点是车辆 实现零排放,不依赖汽油,完全采用电能驱动车辆,但是由于蓄电池的能量密度和功率密度比汽油或柴油低很多,因此纯电动汽车的连续行驶里程有限。 2. 混合动力汽车 混合动力汽车按动力总成结构及能量流传递方案不同,可分为串联、并联及混联三种混合动力方式。串联混合动力车辆中,发动机动力与电动机动力通过电气系统传递;并联和混联混合动力车辆中,发动机动力与电动机动力通过一个专门的机电耦合机构实现向车轮的传递,常用的机电耦合机构包括行星齿轮耦合、变速器耦合及离合器耦合等。 串联式混合动力系统的动力总成,发动机的机械能通过发电机转化为电能,电动机将电能转换为机械能传到驱动桥,驱动桥和发动机之间没有直接的机械连接。该方案的优点是系统控制简单,缺点是难以应对复杂路况,电池充放电压力较大,电池寿命要求较高。

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势 中国汽车技术研究中心窦汝振李磊宋建锋 摘要:介绍了我国电动汽车用驱动电机系统的研发现状,以及车用系统与普通工业用系统间的差异,指出了发展趋势。 1 引言 我国汽车工业的发展面临着来自能源安全、环境保护和气候变化等可持续发展要求的多重挑战。随着近几年汽车保有量的快速增加,汽车能源消耗增长呈现加速趋势,进一步加剧了我国石油供需矛盾。在当前石油资源日益紧张,价格不断攀升的国际形势下,发展电动汽车特别是混合动力汽车是缓解我国石油资源短缺现状的有效途径,也是增强我国汽车工业核心竞争力的重大战略举措。 经过“八五”、“九五”规划的实施,特别是“十五”国家863电动汽车重大专项,我国已实现了官、产、学、研的资源整合,具有了电动汽车用驱动电机系统自主研发能力。在国家“三纵三横”总体布局中(如附图所示),驱动电机及其控制系统被列为“三横”中的共性技术之一。 附图国家“十五”电动汽车重大专项布局示意 2 电动汽车用驱动电机系统的特点及分类 电动汽车对驱动电机系统的要求至少包括: (1)基速以下输出大转矩,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况; (2)基速以上为恒功率运行,以适应最高车速、超车等要求; (3)全转速运行范围内的效率最优化,以提高车辆的续驶里程; (4)结构坚固、体积小、重量轻、良好的环境适应性和高可靠性; (5)低成本及大批量生产能力。 电动汽车最早采用了直流电机系统,特点是成本低、控制简单,但重量大,需要定期维护。随电力电子技术、自动控制技术、计算机控制技术的发展,包括异步电机及永磁电机在内的交流电机系统体现出比直流电机系统更加优越的性能,目前已逐步取代了直流电机控制系统。特别是借助于设计方法、开发工具及永磁材料的不断进步,用于驱动的永磁同步电动机得到了飞速发展。 电动汽车中常用的交流电机主要有异步、永磁、开关磁阻三大类型,其特点如表1所示。

电机控制器发展现状及研究意义

电机控制器发展现状及研究意义 一、盘式永磁电机的发展情况及研究现状 盘式电机的气隙是平面型的,气隙磁场是轴向的,所以又被称为轴向磁场电机。法拉第发明的世界上第一台电机就是轴向磁场电机,但是由于它的定、转子之间存在轴向磁吸力以及制造复杂等缺点,使得盘式电机未能得到进一步的发展,而被以后发展起来的常规电机又称为径向磁场电机所取代,可是常规电机也并非十全十美,由于齿根部存在“瓶颈”现象,致使电机的散热、铁心利用率低等问题一直困扰着电机工程人员,而这些问题只有从结构上进行彻底的变化才能解决,于是20世纪40年代起,轴向磁场电机又重新受到了电机界的重视。实际的研究结果表明,轴向磁场电机不仅具有较高的功率密度,而且在一些特殊应用场合,它还具有明显的优越性。(吴畏,许锦兴,林金铭.盘式永磁同步电动机及其发展.电工技术杂志,1990,2:10~13.) 随着数控机床、工业机器人、机械手、计算机及其外围设备等高科技产品的兴起和特殊应用如雷达、卫星天线等跟踪系统的需要,人们对伺服驱动电机小型化、薄型化、低噪声的呼声愈来愈高,对电机的结构和体积也提出了更高的要求。世界上一些先进的工业国家从20世纪80年代初期起,就已经开始研制盘式永磁电机。由于它结合了永磁电机和盘式电机的优点,使得该类电机既具有永磁电机结构简单、运行可靠、体积小、质量轻、损耗小、效率高的优点,又同时具有盘式电机轴向尺寸短、结构紧凑、硅钢片利用率高、工艺简单、功率密度高、转动惯量小的特点,因此,该类电机在国内外迅速地得到了广泛应用。目前在不同种类、不同结构的盘式永磁电机中尤以盘式永磁直流电动机、盘式永磁同步电动机和盘式无刷直流电动机应用最为广泛。 上世纪70年代初期,盘式电机首先以直流电机的形式应用于电车、水泵、吊扇和家用电器等场合。1973年,英国的Keiper F率先指出了盘式轴向磁场结构的优越性,从而引起了电机界的极大兴趣,从70年代末期起,人们开始将盘式电机研究的方向转向盘式永磁同步电机。1978年,意大利比萨大学的Bramanti A 教授首次提出了制造轴向气隙同步电动机的几种方法,探讨论了轴向磁场同步电机的特性,并且制造论文一台双定子单隐极转子的实验样机。1979年,联邦德国布伦瑞克大学的Weh H教授给出了双转子单定子盘式永磁同步电机电磁场的计算的解析法,并导出了电机的稳态、瞬态参数和特性方程。1985年,美国弗吉尼亚理工大学的Krishnan R教授对伺服驱动用的盘式永磁同步电动机进行了全面的介绍,通过对各种径、轴向磁场电机的性能进行比较,展现了盘式永磁同步电机的优越性。(Krishnan R,Beutler A J.Performance and design of an axial field permanent magnet synchronous motor servo drive.IEEE Industry Applications Annual Meeting,1985:634~640.)2001年,Metin Aydin和Surong Hung对环形有槽和无槽盘式永磁电机进行了深入的研究并推导出了用于环形盘式永磁同步电机的方程(Aydin M,Hung S,Thomas A.Design and 3D electromagnetic field analysis of non-slotted and slotted TO-RUS type axial flux surface mounted permanent magnet disc machines.IEEE Electric Machines and Drives Conference,2001:645~651)。2004年,意大利的Federico Caricchi,Fabio Giulii Capponi等对盘式永磁电机的空载损耗和脉动转矩通过试验和磁场分析的方法进行了深入地研究。(Caricchi F,Capponi F G,Crescimbini F,et al.Experimental study on reducing cogging torque and no load power loss in axial-flux permanent magnet machines with slotted winding.IEEE Transactions on Industry Applications,2004,40(4):1066~1075.)随着市场的需要和设计研究辅助工具的提高,近几年来,国外又涌现出了许多新型的盘式永磁电机。 图1-1所示为Briggs和Stratton研制的一种新型盘式永磁直流电动机(Etek),该电机利用铜条代替了传统电机中的铜制导线,与产生相同电磁转矩的传统绕线式直流电机相比,该

电动汽车电机驱动系统关键技术

? 31 ? 25卷第2期 (总146期) 近年随着我国交通事业的飞速发展,交通领域成为我国能耗增长最快的领域。能源危机和环境污染的加剧,使电动汽车研发成为世界汽车工业可持续发展的战略性项目,世界各国也普遍将发展电动汽车确立为保障能源安全和转型低碳经济的重要途径。 1881年,第一辆电动汽车由法国工程师古斯塔夫.士维(Gustave Trouve )制造问世,它是采用铅酸蓄电池供电,由0.1 hp (英制马力,1 hp=745.7 W )的直流电机驱动的三轮电动汽车,整车及其驾驶员的重量约160 kg 。两位英国教授在1883年制成了相似的电动汽车。因当时该应用技术尚未成熟到足以与马车竞争,因此这些早期构造并没有引起公众很多的注意。 20世纪40年代之后,半导体技术快速发展,随后出现的晶闸管、三极管,尤其是在20世纪80年代问世的绝缘栅双极型晶体管(IGBT )为电机调速与控制提供了便利,同时伴以电力电子技术的快速发展,为以电能为能源的电机取代以石油为能源的内燃机提供了技术基础。 一、电动汽车分类 根据国标GB/T 19596-2004电动汽车术语,电动汽车可分为由动 电动汽车电机驱动系统 关键技术 孔 亮 力电池提供能源的纯电动汽车、电机和内燃机共存的混合动力汽车和以燃料电池为能源的燃料电池电动汽车,这三类电动汽车均采用一个及以上的电机驱动系统将电能转换为机械能,进而驱动汽车,同时回收刹车的制动能量,从而实现了能量利用率的提升。 1. 纯电动汽车 纯电动汽车由电机驱动汽车,能量完全由二次电池(如铅酸电池、镍镐电池、镍氢电池或锂离子电池)提供。由于一次石化能源的日趋匮乏,纯电动汽车被认为是汽车工业的未来。典型的纯电动汽车动力结构如图1所示。电池组的电能通过充电系统在车辆行驶一定里程后进行补充。纯电动汽车的特点是车辆实现零排放,不依赖汽油,完全采用电能驱动车辆,但是由于蓄电池的能量密度和功率密度比汽油或柴油低很多,因此纯电动汽车的连续行驶里程有限。 2. 混合动力汽车 混合动力汽车按动力总成结 构及能量流传递方案不同,可分为串联、并联及混联三种混合动力方式。串联混合动力车辆中,发动机动力与电动机动力通过电气系统传递;并联和混联混合动力车辆中,发动机动力与电动机动力通过一个专门的机电耦合机构实现向车轮的传递,常用的机电耦合机构包括行星齿轮耦合、变速器耦合及离合器 耦合等。 串联式混合动力系统的动力总成如图2所示,发动机的机械能 通过发电机转化为电能,电动机将电能转换为机械能传到驱动桥,驱动桥和发动机之间没有直接的机械连接。该方案的优点是系统控制简单,缺点是难以应对复杂路况,电池充放电压力较大,电池寿命要求较高。 典型的并联式混合动力系统如图3所示,电机与发动机通过齿轮减速机构实现动力耦合。并联混合动力具有三种驱动模式:发动机单独驱动,电动机单独驱动,发动机和电动机混合驱动。并联式混合 图 1 纯电动汽车动力总成结构

相关主题
文本预览
相关文档 最新文档