柴油氧化萃取脱硫工艺
- 格式:pdf
- 大小:1.08 MB
- 文档页数:2
一种柴油脱硫方法柴油脱硫是为了降低柴油中硫含量,减少尾气中的硫氧化物排放而进行的处理过程。
目前主要的柴油脱硫方法有物理吸附法、化学吸收法、催化氧化还原法等。
下面将详细介绍一种常用的柴油脱硫方法——催化氧化还原法。
催化氧化还原法是目前广泛应用于柴油脱硫的一种方法,其主要原理是通过催化剂将柴油中的硫化物氧化成二氧化硫,然后再进一步还原为硫化氢。
首先,将含有硫化物的柴油与空气或者氧气进行预处理,去除其中的杂质和沉淀物。
然后,将预处理后的柴油经过加热,使其达到合适的反应温度。
在反应温度下,柴油中的硫化物与催化剂发生氧化反应,生成二氧化硫。
催化剂通常采用过渡金属氧化物,如氧化钒、氧化钼等。
这些催化剂具有良好的氧化活性,可以高效地催化硫化物的氧化反应。
催化氧化反应是一个催化剂与柴油中硫化物的接触和相互作用的过程。
因此,反应过程中催化剂的选择和使用方式显得尤为重要。
一般而言,催化剂应该具有高的表面积和活性,以增加其与柴油中硫化物的接触面积和反应速率。
此外,催化剂的构造和形状也会对反应结果产生影响。
为了提高反应效果,可以采用多孔材料或者拥有大量活性位点的催化剂。
当柴油中的硫化物经过氧化反应生成二氧化硫后,需要进一步进行还原反应,将二氧化硫还原为硫化氢。
还原反应需要在适当的温度和压力下进行,并在反应过程中保持适当的氢气浓度。
一般而言,催化剂对硫化物的氧化反应具有较高的选择性,因此在实际操作中需要进行连续的氧化和还原反应。
催化氧化还原法具有许多优点。
首先,催化氧化还原法可以在较低的温度下进行,从而降低能源消耗。
其次,催化氧化还原法可以高效地去除柴油中的硫化物,使得柴油的硫含量大大降低。
此外,催化氧化还原法还可以降低尾气中的硫氧化物排放,减少环境污染。
当然,催化氧化还原法也存在一些局限性。
首先,催化剂的选择和制备具有一定的难度,需要考虑催化活性和稳定性的平衡。
同时,催化剂的再生和长效运行也需要一定的技术支持。
此外,催化氧化还原法对硫化物的氧化能力较强,但其对其他污染物的氧化反应效果较差。
柴油脱硫技术及其进展200802 化学工艺郑晓明 30号柴油脱硫技术及其进展随着柴油发动机技术的发展,特别是电喷技术的应用,加上柴油的体积发热值大、耐用、高效、维修少等优势,柴油已广泛用作车、船及内燃机设备的燃料。
使得全球范围内的柴油总需求量越来越大,世界各国都在大力增产柴油。
我国对柴油需求增长的愿望也非常强烈。
近年来,国内市场对柴油的需求增长幅度都超过了汽油[1]。
但柴油中的硫在高温燃烧时生成硫的氧化物,不但腐蚀汽车发动机的零部件,而且是主要的汽车尾气污染物。
柴油中的硫含量直接影响到柴油车尾气中颗粒物的组成,这种颗粒物主要是碳、可溶性有机物和硫酸盐,对环境和人类健康有极大的危害。
因此降低柴油中的硫含量,生产清洁柴油,以满足日益严格的柴油标准的要求,是柴油生产企业必须关注和研究的问题。
柴油中的含硫化合物有硫醇、硫化物、噻吩、苯并噻吩和二苯并噻吩,其中噻吩占到柴油总硫的80%以上,苯并噻吩和二苯并噻吩又占噻吩类的70%以上。
活性硫(硫兀素、硫化氢、硫醇、二硫化物和多硫化物也归于此)相对容易脱除,非活性硫(硫醚、噻吩、苯并噻吩)则较难脱除;其中柴油中的4,6-二烷基二苯并噻吩,脱硫非常困难[2]。
近几年,柴油脱硫技术取得了一些新成就,出现了新的发展趋势。
本文综述了各种柴油脱硫技术及其最新研究进展。
1 柴油脱硫原理要使柴油深度脱硫,可以向两个方面发展:一方面,通过氧化将氧原子连到有机硫化物的硫原子上,增加其偶极矩,即增加硫化物在极性溶剂中的溶解度,从而将溶解在极性溶剂中的砜与不溶的有机物分开;另一方面,破坏有机硫化物的环状结构,消除其空间位阻,提高有机硫化物本身的极性或以硫化氢的形式出现,然后再通过萃取、吸附等手段,将其从柴油中脱出。
2 柴油脱硫技术2.1 加氢脱硫(HDS)技术加氢处理技术是工业上可行且已得到广泛应用的脱硫技术,是目前国内外生产清洁柴油的重要手段。
2.1.1 KF-757和KF-848加氢脱硫催化剂荷兰Akzo Nobel公司和日本Ketjen公司利用STARS(Ⅱ类超活性反应中心)技术开发出两种柴油加氢脱硫催化剂KF-757和KF-848,现已实现广泛应用。
石油化工工艺的技术摘要:石油化工行业作为我国现代化建设的一个支柱产业,对国民经济的发展起着举足轻重的作用。
石油作为重要的化工原料,已经成为世界各国争相储存的重要资源。
随着这种不可再生资源的消耗,石油的成品价格也不断攀升,油价的飞涨,石油化工产品的生产和石油炼制、石油化工工艺技术也越来越受到重视。
关键词:石油化工、工艺技术、研究一、前言一般来讲,石油化工是指石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应者,伴随着经济的发展,对石油化工产品的需求也越来越多,导致石油的开采量不断加大,石油这种不可再生资源,只能越来越少,我们必须合理的持久的利用这部分资源,那么我们就需要在石油化工工艺上下功夫,让我们把资源利用上减少个个环节的损失。
近些年,环境保护意识的加强,使我们在环境保护上越来越重视,石油化工生产过程中对环境具有很大的污染,例如:空气污染、酸雨、地球变暖、臭氧层变薄等环境问题成为我们越来越不可忽视的问题,各个化工公司要想在激烈的市场竞争环境中立足,对加工工艺就必须不断的提高,来适应大环境的变化。
因此可以说,石油化工工艺的开发与创新很可能是决定石油化工工业未来生存和发展的关键。
二、石油化工工艺过程石油化学生产过程一般可概括为三个主要步骤:即原料处理、化学反应和产品精制。
1、原料处理为了使原料符合进行化学反应所要求的状态和规格,根据具体情况,不同的原料需要经过净化、提浓、混合、乳化或粉碎(对固体原料)等多种不同的预处理。
2、化学反应化学反应这是生产的关键步骤。
经过预处理的原料在一定温度、压力等条件下进行反应,以达到所要求的反应转化率和收率,反应的类型可以是氧化、还原、复分解、磺化、异构化、聚合、焙烧等,通过化学反应,获得目的产物或其混合物。
3、产品精制将由化学反应得到的混合物进行分离,除去副产物或杂质,以获得符合组成规格的产品。
以上每一步都需在特定的设备中,在一定的操作条件下完成所要求的化学的和物理的转变三、几种常见石油化工工艺技术1、石化行业专用叠螺式污泥脱水技术针对石化行业含油污泥含油量较高、黏度大、颗粒细、难以脱水等特点,国内部分企业自主创新研发了石化行业专用叠螺式污泥脱水机,同时推出了以TECHASE 叠螺式污泥脱水机作为核心设备的石油化工行业含油污泥脱水处理系统解决方案。
第五章柴油中含硫有机物的选择催化氧化-萃取(吸附)脱硫5.1 前言柴油中的有机硫化物经发动机燃烧后产生的SOx不仅是导致酸雨的罪魁祸首,而且还是城市NOx和颗粒物排放的主要贡献者。
为了减少柴油中硫对环境的危害,世界各主要国家和地区相继颁布了更加严格的柴油含硫标准(见表5-1)[1-3]。
从表中可以看出,世界各主要国家的车用柴油硫含量标准均在300~500 ppm之间,未来将降至50 ppm以下(即超低硫柴油)。
我国柴油标准规定的硫含量远远大于欧美国家,从2002年1月起开始实施2000 ppm的柴油含硫新标准,中国石油化工股份有限公司提出从2003年起开始在北京、上海和广州三大城市供应符合欧洲II类标准柴油,要求硫含量小于300 ppm [4]。
表5-1 部分国家和地区柴油硫含量标准(ppm)表5-1 Diesel sulfur specifications for parts of countries and districts (ppm)面对严格的柴油硫含量限制以及市场对超低硫柴油的巨大需求,世界各国纷纷致力于开发各种脱硫技术。
柴油脱硫技术可以简单地分为加氢脱硫(HDS)和非加氢脱硫(NHDS)。
传统的加氢脱硫能将柴油中的硫含量降至500 ppm左右,剩下的主要是二苯并噻吩及其衍生物。
在这些硫化物中,以4、6位有烷基取代基的二苯并噻吩最难脱除[5]。
要将这部分硫化物脱至超低硫含量的水平,必需改变传统的加氢脱硫操作条件,如提高操作温度和压力、使用活性更高的催化剂以及降低空速等等。
然而,这必将带来一系列问题:增加投资费用和操作成本、缩短催化剂的使用寿命、降低油品质量(如增加色度等)等等[6-7]。
燃料油超深度脱硫不仅是为了生产清洁燃料,而且在生产燃料电池用无硫氢方面也有潜在的应用(燃料油重整制氢)。
由于在燃料电池系统中使用的制氢催化剂和电极均使用贵重金属,微量的硫就能将这些贵重金属产生不可逆中毒。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。