磁功能复合材料
- 格式:pptx
- 大小:1.54 MB
- 文档页数:28
基于软磁复合材料的超咼速永磁同步电机电磁设计分析韦福东,王建辉,刘朋鹏!上海电器科学研究所(集团)有限公司,上海200063]摘 要:软磁复合(SMC )材料因其材料特性及微观结构特点,具有涡流损耗系数低、各向同性等优点,适用于超高速永磁同步电机(PMSM )设计,可以有效降低电机铁耗。
以1台额定转速4 000 .01、额定频率533.33 Hz 的PMSM 为例,从电磁特性、铁耗 计算等SMC 材料及进行对比分析及有限元仿真计算,通过样机SMC 材料 结 有效性。
利用方法,以1台 用SMC 材料的120 000 .02的超高速PMSM 为例,对比分析不同极槽配合对电磁性能的影响,对SMC 材料应用于超高速PMSM。
关键词:超高速永磁同步电机;软磁复合材料;铁耗分析中图分类号:TM 351文献标志码:A文章编号:1673-6540 ( 2021)01-0078-05doi :10.12177/eoca.2020.171Electromagnetic Design and Analysis of Ultra-High-Speed MotorBased on Soft Magnetic Composite Material *收稿日期:2020-10-09;收到修改稿日期:2020-10-29*基金项目:广东省重点领域研发计划项目(2019'090909002)作者简介:韦福东(1992-),男,硕士,研究方向为电机设计与控制技术°王建辉(1971-),男,博士,副教授,研究方向为电机设计与控制技术。
刘朋鹏(1990-),男,硕士,研究方向为电机设计与控制技术°WEI Fudong, WANG Jianhui, LIU Pengpeng[Shanghai Electrical Apparatus Research Institute (Group ) Co. Ltd., Shanghai 200063, China]Abstract : Due te ite oateOal characteristica and microstructure, soft magnetic composite (SMC) oateOal hasthe advantages of low eddy current loss coeCicient, isotropy and so on. Ie is suitable foe the design of ultra-high-speedpermanene maanet synchronous motoe (PMSM), which can eeectively reduce the motoe iron loss. Taking a PMSMwith a rotation speed of 4 000 r/min and a frequency of 533.33 Hz as an example, the comparison analysis and finite elemeni simulation calculation of SMC materials and silicon sted sheete ao ccrried out from the aspecte ofelectomagnetic propeoies and iron loss analysis. The validity of SMC materiai analysis resulte is verified by prototypetest. The analyticd method is used and a 120 000 r/min ultro-high-speed PMSM using SMC materiae is taken as anexampe t 。
磁性塑料是高分子磁性材料中的一种。
高分子磁性材料是一种具有记录声、光、电等信息并能重新释放的功能高分子材料,是现代科学技术的重要基础材料之一。
有机高分子磁性材料作为一种新型功能材料,在超高频装置、高密度存储材料、吸波材料和微电子等需要轻质磁性材料的领域具有很好的应用前景。
[1]磁性高分子材料的出现大大改善了传统的烧结磁体的这些缺点,它具有重量轻、有柔性、加工温度不高、结构便于分子设计、透明、绝缘、可与生物体系和高分子共容、成本低等优点。
相比于传统的磁铁烧结体,有机磁性材料有结构种类的多样性,可用化学方法合成,可得到磁性能与机械、光、电等方面的综合性能,磁损耗小、质轻、柔韧性好、加工性能优越,用于超高频装置、高密度存储材料、吸波材料、微电子工业和宇航等需要轻质磁性材料的领域的优点。
但是磁性高分子材料的磁性能较低,如何提高其磁性能成为磁性高分子材料研究的主要热点。
[1]目前,磁性高分子材料已广泛应用于冰箱、冷藏柜、冷藏车的门封磁条,标识教材,广告宣传,电子工业以及生物医学等领域,是一种重要的功能材料。
[1]高分子磁性材料分为结构型和复合型两种:结构型磁性材料是指高分子材料本身具有强性;复合型磁性材料是指以塑料或橡胶为黏结剂与磁粉混合黏结加工而制成的磁性体。
结构型高分子磁性材料的种类主要有:高自旋多重度高分子磁性材料;自由基的高分子磁性材料;热解聚丙烯腈磁性材料;含富勒烯的高分子磁性材料;含金属的高分子磁性材料;多功能化高分子磁性材料等。
复合型磁性塑料是指在塑料中添加磁粉和其他助剂,塑料起黏结剂作用。
磁性塑料根据磁性填料的不同可以分为铁氧体类、稀土类和纳米晶磁类。
根据不同方向磁性能的差异,又可以分为各向同性和各向异性磁性塑料。
[1]磁性高分子材料目前主要在5方向应用较多。
分别是磁性塑料卷材,磁性高分子复合材料,磁性泡沫塑料,磁性高分子微球,磁性塑料薄膜。
【4】另外,磁性高分子微球。
所谓磁性高分子微球是指通过适当的方法使聚合物与无机物结合起来,形成具有一定磁性及特殊结构的微球。
序号专利号名称摘要1 CN01134340.0 四氧化三铁超细颗粒的球磨工艺本发明涉及磁性材料加工制造业。
本发明是把现在使用的普通球磨机进行湿磨工艺中的磨球大小比例的搭配进行了改动。
从而加强了磨球与被加工物的撞击力,使Fe<sub>3</sub> O<sub>4</sub>的晶体结构破碎力大大的加强。
调整了磨球与被加工物的比例。
增加了被加工物与磨球的接触面,提高了研磨效果。
延长了研磨时间后,使得分解后的单晶体或聚合体的改性修饰更加符合使用要求。
从而使普通的球磨即可加工出纳米级Fe<sub>3</sub>O<sub>4</sub>。
打破了普通球磨机只能加工出0.2 5μm粒径物料的结论。
2 CN89102339.9 生产四氧化三铁黑的工艺方法生产四氧化三铁黑的工艺方法涉及一种从炼钢转炉铁泥中直接提取四氧化三铁黑的工艺方法,至少包括分散、除杂、沉淀、干燥和粉碎等工序,即首先将铁泥微粉化,然后用适当的浓酸进行酸处理,然后将经过酸处理后的铁泥混合液加以沉淀,弃去上清液并调整PH值,最后将沉淀物干燥、粉碎即得四氧化三铁黑成品。
本发明工艺简单、污染小,所生产的四氧化三铁黑产品可达到国家一级品标准,可广泛用于以转炉铁泥为原料生产四氧化三铁黑产品。
3 CN88104628.0 四氧化三铁超微粒子的制备方法本发明涉及一种四氧化三铁超微粒子的制备方法,主要是通过在反应过程中通入某种保护性气体的微型气泡,将刚生成的四氧化三铁微粒包围,来阻止微粒的长大或聚集成团。
本发明的优点在于简化工艺,降低成本,由反应制成的四氧化三铁超微胶态粒子不仅可用来制备磁流体,而且可用来制干粉,从而可广泛用于制造透明颜料、隐身材料等领域。
4 CN03150724.7 纳米四氧化三铁/聚苯乙烯磁性复合材料及其制备方法一种纳米四氧化三铁/聚苯乙烯磁性复合材料的制备方法,包括如下步骤:将三价铁盐和二价铁盐的水溶液混合,然后向混合物中加入含有表面活性剂的碱溶液进行反应得纳米四氧化三铁粒子,再将反应所得的纳米四氧化三铁粒子球磨分散到苯乙烯单体中进行本体聚合反应制得纳米四氧化三铁/聚苯乙烯磁性复合材料。
铁粉基软磁材料介绍1材料种类海绵铁从1910年开始生产,但直到1946年瑞典赫格纳斯公司才建立起世界第一家铁粉厂,现在铁粉生产已成为一种工业。
60年代建立起雾化制粉工艺,整个铁粉工业年产铁粉逾80万t。
这种材料大部分用于粉末冶金工业,按严格技术要求生产终形制品。
高纯度与高压缩性铁粉的开发,为粉末冶金制品开辟了软磁应用领域。
采用粉末冶金技术,压制铁粉并在高温下烧结,可得到相当于纯铁铸件的软磁部件。
不损害压缩性的合金化方法的开发,提供了大量的合金化材料。
合金添加剂提高电阻率,导致较低的涡流损耗。
合金化材料在高温下烧结也可得到高磁导率。
可是,合金添加剂也降低饱和磁感,而且合金含量在商业使用上还有一个限度。
一般认为,这些材料适合于直流电应用,或很低频率的应用。
减少铁颗粒涡流损耗的另一种方法是在颗粒之间引入绝缘层。
绝缘层可以是有机树脂材料或无机材料,因而这些材料是软磁复合材料。
绝缘层可以有效地降低涡流损耗,但绝缘层的作用像气隙一样,因而也降低了磁导率。
通常用降低绝缘层厚度、压制到高密度和进行热处理消除或减少应力来部分地恢复磁导率。
性能的变化取决于所使用的频率。
因而最近几年迅速发展了一系列材料与工艺。
软磁复合材料的最新开发,旨在生产可在较低频率下使用的部件。
像电机一类通常是在50-60Hz频率下工作,但微型化趋势可能将频率增加到100Hz或300Hz。
将低频应用的烧结软磁材料与50Hz应用的软磁复合材料对比一下是有趣的。
这种对比是在50Hz与0 5T条件下进行的,因为在较高磁感下的涡流损耗比例相当大,对于烧结材料性能的测定是困难的。
高电阻率的烧结材料在50Hz下的总损耗接近于软磁复合材料的总损耗。
而烧结材料的总损耗中涡流损耗占有很高比例,而软磁复合材料的总损耗几乎全是磁滞损耗。
对比软磁复合材料的直流磁滞曲线与50Hz时的磁滞曲线,这些曲线实际上是相同的,因而证实总损耗几乎全是磁滞损耗。
一种高电阻率材料(含3%Si的烧结铁)在直流和在0 05Hz、0 5Hz和50Hz交流时的磁滞曲线的面积随频率的增加而增加,证实存在着涡流损耗。
Fe3O4磁性纳米材料的研究纳米Fe3O4磁性材料的合成与现状邹晓菊(淮南师范学院化学与化工系08应化(1)班淮南 232001 )【摘要】:本论文从Fe3O4的空间构型,磁矩,磁化率,说明它具有磁性的原因。
简述纳米材料与纳米复合材料的特性,具体介绍了纳米Fe3O4磁性材料的制备方法,主要有机械球磨法,水热法,微乳液法,超声沉淀法,水解法,湿化法。
此外,还研究了选取不同聚合物对纳米Fe3O4粒子表面进行修饰,制备了四种类型的聚合物修饰纳米Fe3O4磁性复合材料,利用流变仪,红外光谱,热重分析,动态超显微硬度仪测试表征的方法地所复合体系的结构及性能进行了研究。
最后利用生物分子葡萄糖为还原剂,通过绿色化学合成方法制备得到了超顺磁性四氧化三铁(Fe3O4)纳米颗粒;还利用原位还原法、共混包埋法、悬浮聚合法等方法分别制备得到了双功能Fe3O4/Se一维纳米板束、Fe3O4/Se/PANI复合材料、双醛淀粉包覆的和聚苯乙烯-丙烯酸包覆的Fe3O4磁性高分子微球。
【Abstract】:This paper from the space configuration, Fe3O4 magnetic strength, susceptibility, explain it has magnetic reasons. Briefly nanometer material and the characteristics of nano composite materials, introduces the preparation of nanometer Fe3O4 magnetic material method, basically have mechanical ball grinding method, hydrothermal synthesis, microemulsion method, ultrasound depositing, hydrolysis method, moist method. In addition, also studied choosing different of nanometer particle surface of polymer modified Fe3O4 prepared, four types of polymer modified nano Fe3O4 magnetic composite materials, using rheometry, ir, thermogravimetric analysis, the dynamic super microhardness meter test method of compound characterized the land which the structure and properties of the system were studied. Finally, using the biological molecules glucose for reductant, and through the green chemical synthesis method preparation got super paramagnetic SanTie (four oxidationFe3O4) nanoparticles; Also use the in situ reduction method and blending embedding law, suspension polymerization methods such as double function was obtained respectively Fe3O4 / Se 1-d nano plate beam, Fe3O4 / Se/PANI composite materials, of dialdehyde starch coated and polystyrene - acrylic coated Fe3O4 magnetic polymer microspheres.【关键词】:磁矩磁化率磁性流体强磁性颗粒聚合物【 keywords 】: magnetic moment magnetism magnetic fluid strong magnetic particles polymer一 Fe3O4的介绍:磁铁矿Fe3O4是一种简单的铁氧体,是世界上最早应用的一种非金属磁性材料,它具有反尖晶石型结构。