3(1).复合材料的复合效应
- 格式:ppt
- 大小:1.92 MB
- 文档页数:50
《复合材料》课程笔记第一章:复合材料概述1.1 材料发展概述复合材料的发展历史可以追溯到古代,人们使用天然纤维(如草、木)与土壤、石灰等天然材料混合制作简单的复合材料,例如草绳、土木结构等。
然而,现代复合材料的真正发展始于20世纪40年代,当时因航空工业的需求,发展了玻璃纤维增强塑料(俗称玻璃钢)。
此后,复合材料技术经历了多个发展阶段,包括碳纤维、石墨纤维和硼纤维等高强度和高模量纤维的研制和应用。
70年代,芳纶纤维和碳化硅纤维的出现进一步推动了复合材料的发展。
这些高强度、高模量纤维能够与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,形成了各种具有特色的复合材料。
1.2 复合材料基本概念、特点复合材料是由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。
复合材料具有以下特点:- 重量轻:复合材料通常具有较低的密度,比传统材料轻,有利于减轻结构重量。
例如,碳纤维复合材料的密度仅为钢材的1/5左右。
- 强度高:复合材料可以承受较大的力和压力,具有较高的强度和刚度。
例如,碳纤维复合材料的拉伸强度可达到3500MPa以上。
- 加工成型方便:复合材料可以通过各种成型工艺进行加工,如缠绕、喷射、模压等。
这些工艺能够适应不同的产品形状和尺寸要求。
- 弹性优良:复合材料具有良好的弹性和抗冲击性能,能够吸收能量并减少损伤。
例如,橡胶基复合材料在受到冲击时能够吸收大量能量。
- 耐化学腐蚀和耐候性好:复合材料对酸碱、盐雾、紫外线等环境因素具有较好的抵抗能力,适用于恶劣环境下的应用。
例如,聚酯基复合材料在户外长期暴露下仍能保持较好的性能。
1.3 复合材料应用由于复合材料的优异性能,它们在各个领域得到了广泛的应用。
主要应用领域包括:- 航空航天:飞机、卫星、火箭等结构部件。
复合材料的高强度和轻质特性使其成为航空航天领域的重要材料,能够提高飞行器的性能和燃油效率。
复合材料的协同效应复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成除具备原材料的性能外,还具有新性能的材料。
各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。
复合效应是原相材料及其所形成的界面(介相)相互制约、相互补充的总称,它可归结为两类(或两部分):其一为混合效应,它与刚度问题密切相关。
另一为协同(非平均)效应,协同效应与强度、破坏等现象密切相关。
主要来自有新的“相”生成和相材料的各种就位特性。
细观非均匀性、制作工艺等对它的影响也较大。
混杂填料填充复合材料对其摩擦学性能的协同作用。
单种填充的高分子复合材料由于其摩擦学性能或力学性能达不到要求,一定程度上限制了其应用性。
经过不断研究发现纳米SiO2和短碳纤维对增强环氧树脂复合材料的摩擦学性能具有一定的协同效应。
相关研究是先从碳纤维开始的,即先研究不同含量下碳纤维填充环氧树脂的摩擦学性能,得到一个最佳含量值,固定此填料总含量值,然后通过改变纤维和粒子的比例研究其协同性。
这种方法下材料的协同效应呈现无疑,但各填料并不一定是处于最佳含量,而且接枝效果对复合材料的摩擦磨损性能影响也值得研究。
基于此,通过正交试验设计,分析了混杂填料填充复合材料对其摩擦学性能的协同作用,优化了SiO2/SCF/EP复合材料的含量。
结果表明,对摩擦系数而言,纳米粒子含量的影响最大;对磨损率而言,纤维含量的影响最大。
两种接枝单体的比例对这两种性能的影响都较小。
当纤维含量为质量分数1%,粒子含量为质量分数5%,接枝链链节比为8∶1时所得的复合材料更能发挥填料的优势,从而使复合材料的摩擦学性能达到最优化值。
通过电镜分析复合材料的磨损面,发现纤维的加入在一定程度上分担了载荷,粒子的加入增强了基体,混杂复合材料对摩擦学性能具有一定的协同效应。
EG与IFR复合阻燃ABS的协同效应。
哈尔滨工业大学材料科学与工程学院2012\2013年硕士研究生招生复试指导根据教育部关于加强硕士研究生招生复试工作的指导意见及学校有关要求,硕士研究生入学考试初试合格的考生和推免生均需参加复试,材料科学与工程学科2011年硕士研究生招生复试指导确定如下:复试比例及主要内容,Ⅰ复试由笔试和面试两部分组成,外国语听力考试在面试中进行。
复试的总成绩为280分,其中笔试200分,面试80分。
Ⅱ复试笔试科目(一)报考080501材料物理与化学学科的考生以下共有六套考题供考生选择。
参加复试的考生须从六套题中任选两套考题回答。
每套题100分,共200分。
第一套题:材料X射线与电子显微分析一、X射线物理基础1. 连续X射线2. 特征X射线3. X射线与物质相互作用(包含相干散射、非相干散射、光电子、X射线荧光及俄歇电子)二、X射线衍射方向1. 布拉格方程的推导2. 布拉格方程的讨论(包含反射级数、干涉指数、消光等)三、X射线衍射强度1.原子散射因子2.结构因子(包括含义、推导及如何用结构因子推导晶体消光规律)3.多晶体X射线衍射强度影响因素四、电子光学基础与透射电子显微镜:1. 电磁透镜的像差种类、消除或减少像差的方法;2. 透射电子显微镜结构、成像原理五、电子衍射:1. 爱瓦尔德球图解法2. 晶带定理与零层倒易面3. 电子衍射基本公式参考书目:周玉、武高辉编著,《材料X射线与电子显微分析》,哈尔滨工业大学出版社。
第二套题热力学一、热力学基本规律1.物态方程2.热力学第一定律3.热容量和焓4.热力学第二定律5.熵和热力学基本方程6.熵增加原理的简单应用7.自由能和吉布斯函数二、均匀物质的热力学性质1.麦克斯韦关系及其简单应用2.特性函数3.平衡辐射热力学4.磁介质热力学三、单元系的相变1.热动平衡判据2. 单元系的复相平衡条件3.单元复相系的平衡性质四、多元系的复相平衡和化学性质1.多元系的热力学函数和热力学方程2.多元系的复相平衡条件3.吉布斯相律参考书目:汪志诚,《热力学·统计物理(第二版)》,高等教育出版社。
复合材料的界面效应
嘿,朋友们!今天咱来聊聊一个超有意思的东西——复合材料的界面效应!
你想想看啊,这世界上有那么多不同的材料,它们各自有着独特的性能。
但当它们组合在一起,形成复合材料的时候,就会发生一些神奇的事情,就好像魔法一样!
复合材料就像是一个团队,而界面效应呢,就是让这个团队能够紧密合作、发挥出超强力量的关键。
它可不是简单的一加一等于二哦!比如说,你把坚固的纤维和有韧性的基体材料放在一起,通过界面效应,它们就能相互配合,变得既坚固又有韧性,这多了不起啊!
这就好比是一场精彩的足球比赛,每个球员都有自己的特点和优势,而他们之间的默契配合和相互作用,才能让整个球队赢得比赛。
复合材料的界面效应不也是这样吗?
再想想,要是没有这种界面效应,那些高性能的复合材料怎么能被制造出来呢?我们怎么能享受到它们带来的便利和好处呢?从飞机到汽车,从建筑到日常用品,复合材料无处不在,而这一切都离不开界面效应这个神奇的存在啊!
所以说,复合材料的界面效应真的是太重要了!它让不同的材料能够融合在一起,发挥出超乎想象的性能,为我们的生活带来了巨大的改变。
我们真应该好好去了解它、研究它,让它为我们创造出更多更美好的东西!这就是我对复合材料的界面效应的看法,你们觉得呢?。
第二章复合材料的复合效应第一节复合效应概述复合材料的复合原理是研究复合材料的结构特性、开拓新材料领域的基础。
耦合:不同性质材料之间的相互作用。
→复合材料性能与结构的协同相长特性(即复合后的材料性能优于每个单独组分的性能)。
从力学、物理学上理解复合材料多样性的基础。
拟解决的问题:寻找材料复合的一般规律。
研究增强机理。
一、材料的复合效应线性效应:平均效应、平行效应、相补效应、相抵效应。
非线性效应:相乘效应、诱导效应、共振效应、系统效应。
复合效应是复合材料的研究对象和重要内容,也是开拓新型复合材料、特别是功能型复合材料的基础理论问题。
非线性效应尚未被充分认识和利用,有待于研究和开发。
1、平均效应:P c=P m V m+P f V f(P:材料性能;V:材料体积含量;c:复合材料;m:基体;f:增强体或功能体)应用:力学性能中的弹性模量、线膨胀率等结构不敏感特性;热传导、电导等物理常数。
例:复合材料的弹性模量:E c=E m V m+E f V f(混合定律)2、相补效应:性能互补→提高综合性能。
例:脆性高强度纤维与韧性基体复合,适宜的结合形成复合材料。
→性能显示为增强体与基体互补。
3、相乘效应:X/Y·Y/Z=X/Z(X、Y、Z:物理性能)两种具有转换效应的材料复合→发生相乘效应→设计功能复合材料。
例:磁电效应(对材料施加磁场产生电流)——传感器,电子回路元件中应用。
压电体BaTiO3与磁滞伸缩铁氧体NiFe2O4烧结而成的复合材料。
对该材料施加磁场时会在铁氧体中产生压力,此压力传递到BaTiO3,就会在复合材料中产生电场。
最大输出已达103V·A。
单一成分的Cr2O3也有磁电效应,但最大输出只有约170V·A。
4、共振效应:两个相邻的材料在一定条件下,产生机械的、电的、磁的共振。
应用:改变复合材料某一部位的结构→复合材料固有频率的改变→避免材料工作时引起的破坏。
吸波材料:调整复合材料的固有频率,吸收外来波。
材料科学根底之复合效应与界面引言复合材料是一种由两种或两种以上不同材料组合而成的新材料,通过复合可以获得更好的性能和性质。
在复合材料中,界面起着至关重要的作用。
本文将介绍复合材料的根本概念,复合效应以及界面在复合材料中的重要性。
复合材料的定义复合材料是由两个或多个具有不同性质的构件通过某种方式结合在一起形成的一种新材料。
它们可以是两种不同的材料,也可以是相同材料的不同形式。
复合材料通常具有比单一材料更优越的性能,如高强度、高刚度、低密度、较好的耐热性和耐腐蚀性等。
复合效应在复合材料中,复合效应是指由于不同材料的结合而导致的材料性能的改变。
复合效应包括增强效应和效应协调两种。
增强效应是指由于复合材料中的材料的性能优于单一材料的性能而导致整体材料的性能提高。
效应协调是指复合材料中的各个构件相互协同工作以实现更好的性能表现。
复合材料中的界面在复合材料中,界面是指两个不同材料之间的接触面。
界面具有很重要的作用,它影响着复合材料的强度、韧性、耐热性等性能。
在复合材料的界面上,通常存在着一些缺陷,如界面反响、界面应力、界面位移等。
这些缺陷会导致界面的破坏,进而影响整体材料的性能。
影响界面性能的因素界面性能受到多种因素的影响,包括界面分子结构、界面化学键、界面热力学等。
界面分子结构是指两个不同材料之间的分子结构特征,它影响着界面的稳定性和结合力。
界面化学键是指两个不同材料之间的化学键,它影响着界面的强度和稳定性。
界面热力学是指界面上的热力学性质,包括界面能量和界面位移等,它们直接影响着界面的稳定性和性能。
界面改性技术为了改善复合材料中界面的性能,人们开发出了一系列的界面改性技术。
这些技术包括界面改性剂的添加、界面修饰、界面增强等。
界面改性剂是指一种具有特殊功能的材料,它可以在两个不同材料之间形成一层保护膜,从而减少界面的缺陷和提高界面的性能。
界面修饰是指通过改变界面的化学结构和物理性质来改善界面的性能。
界面增强是指通过增加界面的外表积和接触面来增强界面的粘结力和力学性能。
复合材料的复合效应材料在复合后所得到的复合材料,就其产生复合效应的特征可以分为两大类:一类复合效应为线性效应,另一类为非线性效应。
在这两类复合效应中,线性效应有:平均效应、平行效应、相补效应、相抵效应;非线性效应有:相乘效应、诱导效应、共振效应、系统效应、系统效应平均效应:是复合材料所显示的最典型的一种复合材料。
它可以表示为:Pc=Pm*Vm+Pf*Vf式中,P为材料性能,V为材料体积含量,角标c、m、f分别表示复合材料,集体和增强体。
例如复合材料的弹性模量,若用混合率来表示,则为:Ec=Em*Vm+Ef*Vf平行效应:显示这一效应的复合材料,其组成复合材料的各组分在符合材料中,军博暗流本身的作用。
既无剩余也无补偿。
对于增强体(如纤维)与基体界面结合很弱的复合材料所显示的复合效应,可以看做是平行效应。
相补效应:组成复合材料的基体与增强体,在性能上能互补,从而提高了综合性能,则显示出相补效应。
对于脆性的高强度纤维增强体与韧性集体复合时,两者间若能得到适宜的结合而形成的复合材料,起性能显示为增强体与基体的互补。
相抵效应:基体与增强体组成复合材料时,若组分间性能相互制约,限制了整体性能提高,则复合后显示出相抵效应。
例如脆性的纤维增强体与韧性的基体组成的复合材料,当两者界面结合很强时,复合材料整体显示为脆性断裂。
在玻璃轻微增强塑料中,当玻璃纤维表面选用十一的硅烷偶联剂处理后,与树脂基体组成的复合材料,由于强化了界面的结合,故致使材料的拉伸强度比未处理纤维组成的复合材料可以高出30%~40%,而且湿态强度保留率也明显提高。
但是这种强结合的界面同时却导致了复合材料冲击性能的降低。
在金属基、陶瓷基增强复合材料中,过强的界面结合不一定是最适宜的。
相乘效应:两种具有转换效益的材料复合在一起,即可发生相乘效应。
例如,把具有电磁效应的材料与具有磁光效应的材料复合时,将可能产生复合材料的光电效应。
因此,通常可以将一种具有两种性能互相转换的功能材料X/y和另外一种功能转换材料Y /Z复合起来,可以用下列通式来表示,即:X/Y*Y/Z=X/Z 式中,X、Y、Z分别表示各种物理性能。
复合材料的物理和化学性质复合材料是由两种或两种以上的材料组合而成的一种新材料。
这些材料具有各自独特的物理和化学性质,可以通过组合得到具有更加优良的性能。
本文将会分析复合材料的物理和化学性质以及这些性质如何对于材料的应用产生影响。
1. 复合材料的物理性质复合材料具有优良的物理性质,这些物理性质基于组成材料之间互相作用的协同效应。
这种协同效应像基础物理现象一样,包括嵌入式颗粒对于力学性能,纤维膜对于力学和导热性能,以及成分和结构对于热膨胀的影响。
1.1 强度和刚度纤维膜和矩阵材料可以通过喜悦基质相互作用,形成高强度和高刚度材料。
例如,碳纤维聚酰亚胺复合材料具有非常好的机械性能,与传统金属材料相比,比重更轻,同时,强度和刚度也更高。
1.2 导热性纤维膜和矩阵材料的选择对于复合材料的导热性非常重要。
例如,金属矩阵和高热导膜可以形成具有优异传热性能的复合材料。
1.3 电特性复合材料在电特性方面也具有独特的性能。
例如,通过控制含纤维丝层的取向和/spacer,可以形成纤维捆绑复合材料,这些捆绑可以在复合材料中形成芯和垂直场向。
2. 复合材料的化学性质2.1 生物相容性添加生物相容性材料可以使复合材料更加生物相容。
生物医学领域中常用增强复合材料是由生物相容性高分子材料作为矩阵材料,并将具有生物相容性的纤维膜作为增强材料。
2.2 耐腐蚀性耐高温和高剪切应力的复合材料通常分别使用碳纤维和铝矽质纤维作为增强材料和矩阵材料。
通过额外添加化学稳定剂可以面对材料的耐腐蚀性。
这种材料的应用范围非常广泛包括航天、航空、交通运输、军事和体育用品等。
2.3 热膨胀性复合材料的热膨胀性在很多应用领域都非常重要。
通过控制复合材料的组成和结构,可以调整这些材料的热膨胀性。
例如,可以采用多种具有高热膨胀系数的材料,掺杂成熟的高度可调制复合材料。
3. 复合材料的应用3.1 航空航天领域航空航天领域对于材料的要求非常高,需要具有轻、强、刚、耐高温等性能。